233 research outputs found

    On Counterexample Guided Quantifier Instantiation for Synthesis in CVC4

    Full text link
    We introduce the first program synthesis engine implemented inside an SMT solver. We present an approach that extracts solution functions from unsatisfiability proofs of the negated form of synthesis conjectures. We also discuss novel counterexample-guided techniques for quantifier instantiation that we use to make finding such proofs practically feasible. A particularly important class of specifications are single-invocation properties, for which we present a dedicated algorithm. To support syntax restrictions on generated solutions, our approach can transform a solution found without restrictions into the desired syntactic form. As an alternative, we show how to use evaluation function axioms to embed syntactic restrictions into constraints over algebraic datatypes, and then use an algebraic datatype decision procedure to drive synthesis. Our experimental evaluation on syntax-guided synthesis benchmarks shows that our implementation in the CVC4 SMT solver is competitive with state-of-the-art tools for synthesis

    The EZSMT Solver: Constraint Answer Set Solving meets SMT

    Get PDF
    Constraint answer set programming is a promising research direction that integrates answer set programming with constraint processing. It is often informally related to the field of Satisfiability Modulo Theories. Yet, the exact formal link is obscured as the terminology and concepts used in these two research areas differ. In this thesis, by connecting these two areas, we begin the cross-fertilization of not only of the theoretical foundations of both areas but also of the existing solving technologies. We present the system EZSMT, one of the first solvers of this nature, which is able to take a large class of constraint answer set programs and rewrite them into Satisfiability Modulo Theories programs so that Satisfiability Modulo Theories technology can be used to process these programs

    Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Full text link
    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant synthesis (obtained as the dual of backward reachability), again, under suitable hypotheses on the theories. We also present a pragmatic approach to interleave invariant synthesis and backward reachability so that a fix-point for the set of backward reachable states is more easily obtained. Finally, we discuss heuristics that allow us to derive an implementation of the techniques in the model checker MCMT, showing remarkable speed-ups on a significant set of safety problems extracted from a variety of sources.Comment: Accepted for publication in Logical Methods in Computer Scienc

    TOOLympics 2019: An Overview of Competitions in Formal Methods

    Get PDF
    Evaluation of scientific contributions can be done in many different ways. For the various research communities working on the verification of systems (software, hardware, or the underlying involved mechanisms), it is important to bring together the community and to compare the state of the art, in order to identify progress of and new challenges in the research area. Competitions are a suitable way to do that. The first verification competition was created in 1992 (SAT competition), shortly followed by the CASC competition in 1996. Since the year 2000, the number of dedicated verification competitions is steadily increasing. Many of these events now happen regularly, gathering researchers that would like to understand how well their research prototypes work in practice. Scientific results have to be reproducible, and powerful computers are becoming cheaper and cheaper, thus, these competitions are becoming an important means for advancing research in verification technology. TOOLympics 2019 is an event to celebrate the achievements of the various competitions, and to understand their commonalities and differences. This volume is dedicated to the presentation of the 16 competitions that joined TOOLympics as part of the celebration of the 25th anniversary of the TACAS conference
    corecore