68 research outputs found

    A reconfigurable multi-mode mobile parallel robot

    Get PDF

    Single-Loop Full R Joints of Multi-Mode Omnidirectional Ground Mobile Robot

    Get PDF
    In order to solve the problem of loss of locomotion ability due to overturning and instability during the movement of a mobile robot, a multi-mode omnidirectional ground mobile robot with a deformable structure is proposed. Single-loop is used as the unit, and the three-direction geometric deformation can be realized by controlling its R joints in time sharing. The 4-RRRRRR parallel mobile robot formed by two closed-loops orthogonally has four different rolling modes, and each mode can be switched between each other. Once the robot is overturned and unstable during the movement, it can be deformed into other modes and continue to move. After the description of the robot, the DOF (degree-of-freedom) is calculated based on the screw theory. Gait planning and locomotion feasibility analysis indicate that the robot can realize four locomotion modes and their mutual switching. Finally, the simulations and prototype experiments are presented to verify the feasibility of the different locomotion modes and the ability of the obstacle crossing

    Rolling Locomotion Control of a Biologically Inspired Quadruped Robot Based on Energy Compensation

    Get PDF
    We have developed a biologically inspired reconfigurable quadruped robot which can perform walking and rolling locomotion and transform between walking and rolling by reconfiguring its legs. This paper presents an approach to control rolling locomotion with the biologically inspired quadruped robot. For controlling rolling locomotion, a controller which can compensate robot’s energy loss during rolling locomotion is designed based on a dynamic model of the quadruped robot. The dynamic model describes planar rolling locomotion based on an assumption that the quadruped robot does not fall down while rolling and the influences of collision and contact with the ground, and it is applied for computing the mechanical energy and a plant in a numerical simulation. The numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller. The simulation results show that the quadruped robot can perform periodic rolling locomotion with the proposed energy-based controller. In conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the flat ground

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation defines a new class of climbing robots, steering-plane bipeds, which encompasses a large number of existing climbing robots. Three major levels of motion planning are characterized which are common to this class of robots, namely, path planning, step planning, and gait planning. The unified presentation of related motion planning techniques is more generally applicable and more thorough than related algorithms in other literature, while more explicitly identifying limitations and tradeoffs due to alternate design choices within the class of steering-plane bipeds. A novel spline-based method for generating gaits is presented which uses separate path and time rate controls, and explicitly defined foot approach and departure directions that allows 1) a nominal guarantee of collision-free foot trajectories when close to the desired step configuration, 2) independent control of gait shape and speed, and 3) a unified representation of the four gait families of steering-plane bipeds: flipping, inchworm, step-through, and spinning gaits. This dissertation presents a thorough examination of the variations within each gait family, rather than merely presenting a representative instance of each. Concrete case studies applying the techniques of this dissertation are presented for optimizing the gaits for overall speed, energy efficiency, and minimum gripping force and moment. The results highlight that many common gaits in the literature are far from optimal. Results and general rules of thumb for gait planning are extracted that allow guidance for obtaining good results even if using alternate planning techniques without optimization

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article

    Legged locomotion over irregular terrains: State of the art of human and robot performance

    Get PDF
    Legged robotic technologies have moved out of the lab to operate in real environments, characterized by a wide variety of unpredictable irregularities and disturbances, all this in close proximity with humans. Demonstrating the ability of current robots to move robustly and reliably in these conditions is becoming essential to prove their safe operation. Here, we report an in-depth literature review aimed at verifying the existence of common or agreed protocols and metrics to test the performance of legged system in realistic environments. We primarily focused on three types of robotic technologies, i.e., hexapods, quadrupeds and bipeds. We also included a comprehensive overview on human locomotion studies, being it often considered the gold standard for performance, and one of the most important sources of bioinspiration for legged machines. We discovered that very few papers have rigorously studied robotic locomotion under irregular terrain conditions. On the contrary, numerous studies have addressed this problem on human gait, being nonetheless of highly heterogeneous nature in terms of experimental design. This lack of agreed methodology makes it challenging for the community to properly assess, compare and predict the performance of existing legged systems in real environments. On the one hand, this work provides a library of methods, metrics and experimental protocols, with a critical analysis on the limitations of the current approaches and future promising directions. On the other hand, it demonstrates the existence of an important lack of benchmarks in the literature, and the possibility of bridging different disciplines, e.g., the human and robotic, towards the definition of standardized procedure that will boost not only the scientific development of better bioinspired solutions, but also their market uptake

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    변신 바퀴를 이용한 다중 지형 이동 로봇의 설계

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2014. 2. 주종남.In this paper, the design, optimization, and performance evaluation of a new wheel-leg hybrid robot are reported. This robot utilizes a novel kind of transformable wheel for its locomotion to combine the advantages of both circular wheels and legged wheels. To minimize design complexity, this new transformable wheels transformation process is operated passively, which eliminates the need for additional actuators. A new triggering mechanism is also employed to increase the success rate of the transformation. To maximize the climbing ability in the legged-wheel mode, the design parameters of the transformable wheel and the robot are tuned based on behavioral analyses. The performance of our new development is evaluated in terms of stability, energy efficiency, and the maximum height of the obstacle the robot can climb over. By virtue of this transformable wheel, the system could climb over an obstacle 3.25 times as tall as its wheel radius, not compromising its driving ability at 2.4 body lengths per second with the specific resistance of 0.7 on flat surfaces.Abstract Contents List of Figures & Tables 1. Introduction 2. Design of the passive transformable wheel 2.1 Components design for coupled legs 2.2 Transformation mechanism 2.3 Triggering mechanism 2.4 Climbing scenario 3. Design optimization 3.1 Modeling of the passive transformable wheel 3.2 Maximizing the transformation ratio 3.3 Foot design for the higher success rate of the transformation 4. Design of the robotic platform 4.1 Features 4.2 Tuning design parameters for stable climbing 5. Results 5.1 Speed & specific resistance 5.2 Obstacle climbing 5.3 Discussion about mode switch 6. Conclusions References 국문초록Maste

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Motion planning and control methods for nonprehensile manipulation and multi-contact locomotion tasks

    Get PDF
    Many existing works in the robotic literature deal with the problem of nonprehensile dynamic manipulation. However, a unified control framework does not exist so far. One of the ambitious goals of this Thesis is to contribute to identify planning and control frameworks solving classes of nonprehensile dynamic manipulation tasks, dealing with the non linearity of their dynamic models and, consequently, with the inherited design complexity. Besides, while passing through a number of connections between dynamic nonprehensile manipulation and legged locomotion, the Thesis presents novel methods for generating walking motions in multi-contact situations
    corecore