1,398 research outputs found

    DEVELOPMENT OF A SOFT PNEUMATIC ACTUATOR FOR MODULAR ROBOTIC MECHANISMS

    Get PDF
    Soft robotics is a widely and rapidly growing field of research today. Soft pneumatic actuators, as a fundamental element in soft robotics, have gained huge popularity and are being employed for the development of soft robots. During the last decade, a variety of hyper-elastic robotic systems have been realized. As the name suggests, such robots are made up of soft materials, and do not have any underlying rigid mechanical structure. These robots are actuated employing various methods like pneumatic, electroactive, jamming etc. Generally, in order to achieve a desired mechanical response to produce required actuation or manipulation, two or more materials having different stiffness are utilized to develop a soft robot. However, this method introduces complications in the fabrication process as well as in further design flexibility and modifications. The current work presents a design scheme of a soft robotic actuator adapting an easier fabrication approach, which is economical and environment friendly as well. The purpose is the realization of a soft pneumatic actuator having functional ability to produce effective actuation, and which is further employable to develop modular and scalable mechanisms. That infers to scrutinize the profile and orientation of the internal actuation cavity and the outer shape of viii the actuator. Utilization of a single material for this actuator has been considered to make this design scheme convenient. A commercial silicone rubber was selected which served for an economical process both in terms of the cost as well as its accommodating fabrication process through molding. In order to obtain the material behavior, \u2018Ansys Workbench 17.1 R \u2019 has been used. Cubic outline for the actuator aided towards the realization of a body shape which can easily be engaged for the development of modular mechanisms employing multiple units. This outer body shape further facilitates to achieve the stability and portability of the actuator. The soft actuator has been named \u2018Soft Cubic Module\u2019 based on its external cubic shape. For the internal actuation cavity design, various shapes, such as spherical, elliptical and cylindrical, were examined considering their different sizes and orientations within the cubic module. These internal cavities were simulated in order to achieve single degree of freedom actuation. That means, only one face of the cube is principally required to produce effective deformation. \u2018Creo Perametric 3.0 M 130\u2019 has been used to design the model and to evaluate the performance of actuation cavities in terms of effective deformation and the resulting von-mises stress. Out of the simulated profiles, cylindrical cavity with desired outcomes has been further considered to design the soft actuator. \u2018Ansys Workbench 17.1 R \u2019 environment was further used to assess the performance of cylindrical actuation cavity. Evaluation in two different simulation environments helped to validate the initially achieved results. The developed soft cubic actuator was then employed to develop different mechanisms in a single unit configuration as well as multi-unit robotic system developments. This design scheme is considered as the first tool to investigate its capacity to perform certain given tasks in various configurations. Alongside its application as a single unit gripper and a two unit bio-mimetic crawling mechanism, this soft actuator has been employed to realize a four degree ix of freedom robotic mechanism. The formation of this primitive soft robotic four axis mechanism is being further considered to develop an equivalent mechanism similar to the well known Stewart platform, with advantages of compactness, simpler kinematics design, easier control, and lesser cost. Overall, the accomplished results indicate that the design scheme of Soft Cubic Module is helpful in realizing a simple and cost-effective soft pneumatic actuator which is modular and scalable. Another favourable point of this scheme is the use of a single material with convenient fabrication and handling

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大

    Rehabilitation Technologies: Biomechatronics Point of View

    Get PDF

    Concept for a large master/slave-controlled robotic hand

    Get PDF
    A strategy is presented for the design and construction of a large master/slave-controlled, five-finger robotic hand. Each of the five fingers will possess four independent axes each driven by a brushless DC servomotor and, thus, four degrees-of-freedom. It is proposed that commercially available components be utilized as much as possible to fabricate a working laboratory model of the device with an anticipated overall length of two-to-four feet (0.6 to 1.2 m). The fingers are to be designed so that proximity, tactile, or force/torque sensors can be imbedded in their structure. In order to provide for the simultaneous control of the twenty independent hand joints, a multilevel master/slave control strategy is proposed in which the operator wears a specially instrumented glove which produces control signals corresponding to the finger configurations and which is capable of conveying sensor feedback signals to the operator. Two dexterous hand master devices are currently commercially available for this application with both undergoing continuing development. A third approach to be investigated for the master control mode is the use of real-time image processing of a specially patterned master glove to provide the respective control signals for positioning the multiple finger joints

    EVALUATION OF STATE-OF-THE-ART MANIPULATORS AND REQUIREMENTS FOR DOE ROBOTICS APPLICATIONS

    Full text link

    Pouch Motors: Printable Soft Actuators Integrated with Computational Design

    Get PDF
    We propose pouch motors, a new family of printable soft actuators integrated with computational design. The pouch motor consists of one or more inflatable gas-tight bladders made of sheet materials. This printable actuator is designed and fabricated in a planar fashion. It allows both easy prototyping and mass fabrication of affordable robotic systems. We provide theoretical models of the actuators compared with the experimental data. The measured maximum stroke and tension of the linear pouch motor are up to 28% and 100 N, respectively. The measured maximum range of motion and torque of the angular pouch motor are up to 80° and 0.2 N, respectively. We also develop an algorithm that automatically generates the patterns of the pouches and their fluidic channels. A custom-built fabrication machine streamlines the automated process from design to fabrication. We demonstrate a computer-generated life-sized hand that can hold a foam ball and perform gestures with 12 pouch motors, which can be fabricated in 15 min.National Science Foundation (U.S.) (1240383)National Science Foundation (U.S.) (1138967)United States. Department of Defens

    Test Frame Design for Characterization of Additive Manufacturing Compliant Materials

    Get PDF
    With the application of using surrogate models with General Purpose Graphics Processing (GPGPU) computing to meet the need for “real-time” characterization of nonlinear anisotropic material systems and the growing work of using multiaxial robotic test frames for material characterization, there has been a solution for a specific application towards additive manufacturing materials, specifically polymers. Traditional testing using uniaxial and biaxial test machines has proven insufficient in characterizing the material properties of additive manufacturing materials, therefore developing a need for a multiaxial testing machine for characterization that can dynamically excite strain states for a more in-depth look at the material properties. This design report presents the design of a multiaxial robotic test frame that incorporates a Stewart-Gough (SG) platform design to allow 6 degrees-of-freedom for multiple and combined loading applications. This solution is the next generation multiaxial machine focusing on additive manufacturing materials, specifically polymers. The problem statement is the following: Design and fabricate a multiaxial robotic test frame that can test additive manufacturing materials, focusing on polymers and some metals, in 6 degrees-of-freedom while improving on performance and cost over the CSM design

    Third-order robust fuzzy sliding mode tracking control of a double-acting electrohydraulic actuator

    Get PDF
    In the industrial sector, an electrohydraulic actuator (EHA) system is a common technology. This system is often used in applications that demand high force, such as the steel, automotive, and aerospace industries. Furthermore, since most mechanical actuators' performance changes with time, it is considerably more difficult to assure its robustness over time. Therefore, this paper proposed a robust fuzzy sliding mode proportional derivative (FSMCPD) controller. The sliding mode controller (SMC) is accomplished by utilizing the exponential law and the Lyapunov theorem to ensure closed loop stability. By replacing the fuzzy logic control (FLC) function over the signum function, the chattering in the SMC controller has been considerably reduced. By using the sum of absolute errors as the objective function, particle swarm optimization (PSO) was used to optimize the controller parameter gain. The experiment results for trajectory tracking and the robustness test were compared with the sliding mode proportional derivative (SMCPD) controller to demonstrate the performance of the FSMCPD controller. According to the findings of the thorough study, the FSMCPD controller outperforms the SMCPD controller in terms of mean square error (MSE) and robustness index (RI)

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    Scalable Three-Dimensional Grasping Mechanism

    Get PDF
    In this work, we develop a scalable end-effector mechanism for grasping three- dimensional objects with sizes ranging from micrometer to millimeter scale. The design architecture of the gripper comprises an array of identical fingers patented in a circular fashion. Each finger is designed from a novel linkage mechanism whose end effector is manipulated by two independent actuators. In this research, we study three finger gripper device, where each is obtained from a 3 - linkage mechanism. The device is controlled by three independent piezo actuators, and one electro-magnetic solenoid common to each mechanism. The gripping capability depends on how fingers are controlled collectively and on the mechanical flexibility, which together provide variety of gripping performances that are necessary to handle a wide variety of objects. The gripping performance is defined here by grasping force at contact, motion range, and bandwidth. Optimization is done to design the link lengths for the best Geometric Advantage (GA), and the functionality evaluated using finite element analysis software, ANSYS
    corecore