501 research outputs found

    Mechatronic design solution for planar overconstrained cable-driven parallel robot

    Get PDF
    Cable-driven parallel robots (CDPRs) combine the successful features of parallel manipulators with the benefits of cable transmissions. The payload is divided among light extendable cables, resulting in an energy-efficient system that can achieve high end-effector acceleration over a huge workspace. A CDPR is formed by a set of actuation units, and a mobile platform, working as an end-effector (EE). The cables, driven by the actuation units, are guided inside the robot workspace using a guidance system and then connected to the mobile platform. The variation of cable lengths is responsible for the EE displacement throughout the robot workspace. These features result in easily reconfigurable systems where the workspace can be modified by relocating the actuation and guidance units. Nevertheless, the use of CDPRs in industrial environments is still limited, due to the drawbacks of employing flexible cables. Indeed, cables impose unilateral constraints that can only exert tensile forces and, consequently, the EE cannot withstand any arbitrary external action. To enhance the robot’s controllability, CDPRs can be overconstrained by employing a number of cables higher than the degrees of freedom of the EE. This allows cables to pull one against the other and to keep the overall system controllable over a wide range of externally applied loads. In this thesis, an eight-cable, planar, overconstrained CDPR is designed: the robot has the deployable and reconfigurable features required by the task. In particular, this CDPR has its actuation units installed into the EE mobile platform, and the frame anchor points can be rearranged to obtain a discrete reconfiguration. The cable arrangement, location of anchor points and mechanical design have been studied, by implementing a hybrid optimisation procedure. The genetic algorithm is combined with a local minimum optimiser, maximizing the CDPR volume index and deriving a mechanical design for the prototype

    Rogue Rotary - Modular Robotic Rotary Joint Design

    Get PDF
    This paper describes the design process from ideation to test validation for a singular robotic joint to be configured into a myriad of system level of robots

    On adaptive robot systems for manufacturing applications

    Get PDF
    System adaptability is very important to current manufacturing practices due to frequent changes in the customer needs. Two basic concepts that can be employed to achieve system adaptability are flexible systems and modular systems. Flexible systems are fixed integral systems with some adjustable components. Adjustable components have limited ranges of parameter changes that can be made, thus restricting the adaptability of systems. Modular systems are composed of a set of pre-existing modules. Usually, the parameters of modules in modular systems are fixed, and thus increased system adaptability is realized only by increasing the number of modules. Increasing the number of modules could result in higher costs, poor positioning accuracy, and low system stiffness in the context of manufacturing applications. In this thesis, a new idea was formulated: a combination of the flexible system and modular system concepts. Systems developed based on this new idea are called adaptive systems. This thesis is focused on adaptive robot systems. An adaptive robot system is such that adaptive components or adjustable parameters are introduced upon the modular architecture of a robot system. This implies that there are two levels to achieve system adaptability: the level where a set of modules is appropriately assembled and the level where adjustable components or parameters are specified. Four main contributions were developed in this thesis study. First, a General Architecture of Modular Robots (GAMR) was developed. The starting point was to define the architecture of adaptive robot systems to have as many configuration variations as possible. A novel application of the Axiomatic Design Theory (ADT) was applied to GAMR development. It was found that GAMR was the one with the most coverage, and with a judicious definition of adjustable parameters. Second, a system called Automatic Kinematic and Dynamic Analysis (AKDA) was developed. This system was a foundation for synthesis of adaptive robot configurations. In comparison with the existing approach, the proposed approach has achieved systemization, generality, flexibility, and completeness. Third, this thesis research has developed a finding that in modular system design, simultaneous consideration of both kinematic and dynamic behaviors is a necessary step, owing to a strong coupling between design variables and system behaviors. Based on this finding, a method for simultaneous consideration of type synthesis, number synthesis, and dimension synthesis was developed. Fourth, an adaptive modular Parallel Kinematic Machine (PKM) was developed to demonstrate the benefits of adaptive robot systems in parallel kinematic machines, which have found many applications in machine tool industries. In this architecture, actuators and limbs were modularized, while the platforms were adjustable in such a way that both the joint positions and orientations on the platforms can be changed

    Novel Reconfigurable Delta Robot Dual-Functioning as Adaptive Landing Gear and Manipulator

    Get PDF
    In this work a novel dual-functioning rotorcraft undercarriage is developed. The design is a reconfigurable delta robot which allows for transformation between Adaptive Landing Gear for vertical take-off and landing and 3DOF Aerial Manipulation mode. To reconfigure between operation modes without reaching singularities, a guideline to find a singularity-free geometry is presented. An adaptive landing control was developed and validated on a test-stand. For the 3DOF manipulation of the delta-structure, a third-order smooth trajectory was presented and integrated. The prototype, also depicted in the accompanying video, is then presented in free flight experiments demonstrating the advantages of the dual-functioning system

    A Review of Current and Historical Research Contributions to the Development of Ground Autonomous Vehicles for Agriculture

    Get PDF
    In this study, a comprehensive overview of the available autonomous ground platforms developed by universities and research groups that were specifically designed to handle agricultural tasks was performed. As cost reduction and safety improvements are two of the most critical aspects for farmers, the development of autonomous vehicles can be of major interest, especially for those applications that are lacking in terms of mechanization improvements. This review aimed to provide a literature evaluation of present and historical research contributions toward designing and prototyping agricultural ground unmanned vehicles. The review was motivated by the intent to disseminate to the scientific community the main features of the autonomous tractor named BOPS-1960, which was conceived in the 1960s at the Alma Mater Studiorum University of Bologna (UNIBO). Jointly, the main characteristics of the modern DEDALO unmanned ground vehicle (UGV) for orchard and vineyard operations that was designed recently were evaluated. The basic principles, technology and sensors used in the two UNIBO prototypes are described in detail, together with an analysis of UGVs for agriculture conceived in recent years by research centers all around the world

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Design, analysis and kinematic control of highly redundant serial robotic arms

    Get PDF
    The use of robotic manipulators in industry has grown in the last decades to improve and speed up industrial processes. Industrial manipulators started to be investigated for machining tasks since they can cover larger workspaces, increasing the range of achievable operations and improving flexibility. The company Nimbl’Bot developed a new mechanism, or module, to build stiffer flexible serial modular robots for machining applications. This manipulator is a kinematic redundant robot with 21 degrees of freedom. This thesis thoroughly analysis the Nimbl’Bot robot features and is divided into three main topics. The first topic regards using a task priority kinematic redundancy resolution algorithm for the Nimbl’Bot robot tracking trajectory while optimizing its kinetostatic performances. The second topic is the kinematic redundant robot design optimization with respect to a desired application and its kinetostatic performance. For the third topic, a new workspace determination algorithm is proposed for kinematic redundant manipulators. Several simulation tests are proposed and tested on some Nimbl’Bot robot designs for each subjects

    Robotic System Development for Precision MRI-Guided Needle-Based Interventions

    Get PDF
    This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein
    • …
    corecore