5,851 research outputs found

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA

    Optimal load shedding for microgrids with unlimited DGs

    Get PDF
    Recent years, increasing trends on electrical supply demand, make us to search for the new alternative in supplying the electrical power. A study in micro grid system with embedded Distribution Generations (DGs) to the system is rapidly increasing. Micro grid system basically is design either operate in islanding mode or interconnect with the main grid system. In any condition, the system must have reliable power supply and operating at low transmission power loss. During the emergency state such as outages of power due to electrical or mechanical faults in the system, it is important for the system to shed any load in order to maintain the system stability and security. In order to reduce the transmission loss, it is very important to calculate best size of the DGs as well as to find the best positions in locating the DG itself.. Analytical Hierarchy Process (AHP) has been applied to find and calculate the load shedding priorities based on decision alternatives which have been made. The main objective of this project is to optimize the load shedding in the micro grid system with unlimited DG’s by applied optimization technique Gravitational Search Algorithm (GSA). The technique is used to optimize the placement and sizing of DGs, as well as to optimal the load shedding. Several load shedding schemes have been proposed and studied in this project such as load shedding with fixed priority index, without priority index and with dynamic priority index. The proposed technique was tested on the IEEE 69 Test Bus Distribution system

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments

    PCA-RECT: An Energy-efficient Object Detection Approach for Event Cameras

    Full text link
    We present the first purely event-based, energy-efficient approach for object detection and categorization using an event camera. Compared to traditional frame-based cameras, choosing event cameras results in high temporal resolution (order of microseconds), low power consumption (few hundred mW) and wide dynamic range (120 dB) as attractive properties. However, event-based object recognition systems are far behind their frame-based counterparts in terms of accuracy. To this end, this paper presents an event-based feature extraction method devised by accumulating local activity across the image frame and then applying principal component analysis (PCA) to the normalized neighborhood region. Subsequently, we propose a backtracking-free k-d tree mechanism for efficient feature matching by taking advantage of the low-dimensionality of the feature representation. Additionally, the proposed k-d tree mechanism allows for feature selection to obtain a lower-dimensional dictionary representation when hardware resources are limited to implement dimensionality reduction. Consequently, the proposed system can be realized on a field-programmable gate array (FPGA) device leading to high performance over resource ratio. The proposed system is tested on real-world event-based datasets for object categorization, showing superior classification performance and relevance to state-of-the-art algorithms. Additionally, we verified the object detection method and real-time FPGA performance in lab settings under non-controlled illumination conditions with limited training data and ground truth annotations.Comment: Accepted in ACCV 2018 Workshops, to appea
    corecore