931 research outputs found

    Eco–Friendly Dynamic Positioning Algorithm Development

    Get PDF
    This research used the penalty method to develop a dynamic positioning control algorithm object for the purpose of minimizing the fuel consumption and CO2 gas emissions of an offshore platform. The performance of the penalty method was evaluated by comparing it with other conventional methods such as pseudo-inverse, quadratic programming, and genetic algorithm methods. The optimal performance of the penalty method in minimizing fuel consumption and CO2 emissions in both Gulf of Mexico (GOM) 100-year and one-year storm conditions was compared to pseudo-inverse and quadratic-programming methods. A feed-forward control using second-order wave force direct integration was newly applied in this research. The feed-forward control improved both the position maintenance performance and fuel consumption in Gulf of Mexico 100-year and one-year storm conditions. Global motion performance was compared after placing turrets in two locations (mid-ship and bow) and by using a hull-mooring-riser, fully coupled simulation. The results indicated that the mid-turret design reduces heave motion, even though its horizontal motion is unstable. In addition, the dynamic positioning control enhanced the horizontal motion of the mid-ship turret design. To reduce fish-tailing motion in a tandem offloading operation, the dynamic positioning control was employed. Separated Matrix Method based simulations were conducted on a fully coupled hull, mooring, riser, hawser, and thrusters

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Control of an over-actuated nanopositioning system by means of control allocation

    Get PDF
    This Master’s Thesis is devoted to the analysis and design of a control structure for the nanopositioning system LAU based on the dynamic control allocation technique. The objective is to control the vertical displacement with nanometer precision under a control effort distribution criterion among the actuator set. In this case, the pneumatic actuator is used as a passive gravity compensator while the voice coil motor generates the transient forces. The analysis of the system characteristics allows defining the design criterion for the control allocation. In this direction, the proposed dynamic control allocation stage considers a frequency distribution of the control effort. The lower frequency components are assigned to the pneumatic actuator while the higher frequencies are handled by the voice coil drive. The significant actuator dynamics are compensated through a Kalman filter approach. The position controller is based on a feedback linearization framework with a disturbance observer for enhanced robustness. The experimental validation demonstrates the feasibility of the proposed technique.Diese Masterarbeit widmet sich der Analyse und dem Entwurf einer Regelungsstruktur für das Nanopositioniersystem LAU. Dabei werden Methoden untersucht, welche das notwendige Stellsignal auf zwei Aktoren aufteilen. Ziel ist es, die vertikale Verschiebung des LAU mit Nanometerpräzision zu regeln. In diesem Fall wird der pneumatische Aktor als passiver Schwerkraftkompensator verwendet, während die elktromagnetische Tauchspule die transienten Kräfte erzeugt. Die Analyse der Eigenschaften des LAUSystems ermöglicht die Definition der Entwurfskriterien zur Aufteilung der Stellgröße. In dieser Richtung berücksichtigt die vorgeschlagene dynamische Methode eine Aufteilung der Stellgröße bezüglich der Frequenzanteile. Die niederfrequenten Komponenten werden dem pneumatischen Aktor zugeordnet. Dem elektromagnetische Aktor werden die verbliebenen hochfrequenten Anteile zugeordnet. Die signifikanten Effekte der Aktordynamik in Bezug auf die Bewegungsdynamik werden durch einen Kalman- Filteransatz kompensiert. Nichtlineare Streckenanteile werden basierend auf dem Modell und einem Störbeobachter kompensiert, sodass der verbleibende Anteil des Positionsreglers mit linearen Methoden entworfen werden kann. Die experimentelle Validierung zeigt die Effektivität des untersuchten Konzeptes.Tesi

    통합형 무인 수상선-케이블-수중선 시스템의 다물체동역학 거동 및 제어

    Get PDF
    Underwater exploration is becoming more and more important, since a vast range of unknown resources in the deep ocean remain undeveloped. This dissertation thus presents a modeling of the coupled dynamics of an Unmanned Surface Vehicle (USV) system with an Underwater Vehicles (UV) connected by an underwater cable (UC). The complexity of this multi-body dynamics system and ocean environments is very difficult to model. First, for modeling this, dynamics analysis was performed on each subsystem and further total coupled system dynamics were studied. The UV which is towed by a UC is modeled with 6-DOF equations of motion that reflects its hydrodynamic characteristic was studied. The 4th-order Runge–Kutta numerical method was used to analyze the motion of the USV with its hydrodynamic coefficients which were obtained through experiments and from the literature. To analyze the effect of the UC, the complicated nonlinear and coupled UC dynamics under currents forces, the governing equations of the UC dynamics are established based on the catenary equation method, then it is solved by applying the shooting method. The new formulation and solution of the UC dynamics yields the three dimensional position and forces of the UC end point under the current forces. Also, the advantage of the proposed method is that the catenary equations using shooting method can be solved in real time such that the calculated position and forces of UC according to time can be directly utilized to calculate the UV motion. The proposed method offers advantages of simple formulation, convenient use, and fast calculation time with exact result. Some simple numerical simulations were conducted to observe the dynamic behaviors of AUV with cable effects. The simulations results clearly reveal that the UC can greatly influence the motions of the vehicles, especially on the UV motions. Based on both the numerical model and simulation results developed in the dissertation, we may offer some valuable information for the operation of the UV and USV. Secondly, for the design controller, a PD controller and its application to automatic berthing control of USV are also studied. For this, a nonlinear mathematical model for the maneuvering of USV in the presence of environmental forces was firstly established. Then, in order to control rudder and propeller during automatic berthing process, a PD control algorithm is applied. The algorithm consists of two parts, the forward velocity control and heading angle control. The control algorithm was designed based on the longitudinal and yaw dynamic models of USV. The desired heading angle was obtained by the so-called “Line of Sight” method. To support the validity of the proposed method, the computer simulations of automatic USV berthing are carried out. The results of simulation showed good performance of the developed berthing control system. Also, a hovering-type AUV equipped with multiple thrusters should maintain the specified position and orientation in order to perform given tasks by applying a dynamic positioning (DP) system. Besides, the control allocation algorithm based on a scaling factor is presented for distributing the forces required by the control law onto the available set of actuators in the most effective and energy efficient way. Thus, it is necessary for the robust control algorithm to conduct successfully given missions in spite of a model uncertainty and a disturbance. In this dissertation, the robust DP control algorithm based on a sliding mode theory is also addressed to guarantee the stability and better performance despite the model uncertainty and disturbance of current and cable effects. Finally, a series of simulations are conducted to verify the availability of the generated trajectories and performance of the designed robust controller. Thirdly, for the navigation of UV, a method for designing the path tracking controller using a Rapidly-exploring Random Trees (RRT) algorithm is proposed. The RRT algorithm is firstly used for the generation of collision free waypoints. Next, the unnecessary waypoints are removed by a simple path pruning algorithm generating a piecewise linear path. After that, a path smoothing algorithm utilizing cubic Bezier spiral curves to generate a continuous curvature path that satisfies the minimum radius of curvature constraint of underwater is implemented. The angle between two waypoints is the only information required for the generation of the continuous curvature path. In order to underwater vehicle follow the reference path, the path tracking controller using the global Sliding Mode Control (SMC) approach is designed. To verify the performance of the proposed algorithm, some simulation results are performed. Simulation results showed that the RRT algorithm could be applied to generate an optimal path in a complex ocean environment with multiple obstacles.Acknowledgement .................................................................................................. vi Abstract……. ....................................................................................... ………….viii Nomenclature ....................................................................................................... xvi List of Abbreviations ........................................................................................... xxi List of Tables ...................................................................................................... xxiii List of Figures ..................................................................................................... xxiv Chapter 1: Introduction ......................................................................................... 1 1.1 Background .................................................................................................. 1 1.1.1 Unmanned Surface Vehicles (USVs) ...................................................... 1 1.1.2 Umbilical Cable ....................................................................................... 4 1.1.3 Unmanned Underwater Vehicles (UUVs) ............................................... 5 1.1.4 Literature on Modeling of Marine Vehicles ............................................ 9 1.1.5 Literature on Control and Guidance of Marine Vehicles ...................... 11 1.2 Our System Architecture ........................................................................... 12 1.3 Motivation ................................................................................................. 13 1.4 Contribution ............................................................................................... 16 1.5 Publications Associated to the Dissertation .............................................. 17 1.6 Structure of the Dissertation ...................................................................... 18 Chapter 2: Mathematical Model of Unmanned Surface Vehicle (USV) ......... 20 2.1 Basic Assumptions .................................................................................... 20 2.2 Three Coordinate Systems ......................................................................... 20 2.3 Variable Notation ...................................................................................... 22 2.4 Kinematics ................................................................................................. 23 2.5 Kinetics ...................................................................................................... 26 2.5.1 Rigid Body Equations of Motion ........................................................... 26 2.5.2 Hydrodynamic Forces and Moments ..................................................... 28 2.5.3 Restoring Forces and Moments ............................................................. 31 2.5.4 Environmental Disturbances .................................................................. 32 2.5.5 Propulsion Forces and Moments ........................................................... 35 2.6 Nonlinear 6DOF Dynamics ....................................................................... 35 2.7 Mathematical Model of USV in 3 DOF .................................................... 36 2.7.1 Planar Kinematics .................................................................................. 36 2.7.2 Planar Nonlinear 3 DOF Dynamics ....................................................... 38 2.8 Configuration of Thrusters ........................................................................ 40 2.9 General Structure and Model Parameters .................................................. 41 2.9.1 Structure of USV ................................................................................... 41 2.9.2 Control System of USV ......................................................................... 42 2.9.3 Winch Control System ........................................................................... 43 Chapter 3: Mathematical Model of the Umbilical Cable (UC) ........................ 45 3.1 Basic Assumptions for UC ........................................................................ 45 3.2 Analysis on Forces of UV ......................................................................... 47 3.3 Relation for UC Equilibrium ..................................................................... 50 3.4 Catenary Equation in the Space Case ........................................................ 51 3.5 Shooting Method ....................................................................................... 55 3.6 Boundary Conditions ................................................................................. 57 3.7 Cable Effects ............................................................................................. 58 3.8 Model Parameters and Simulation ............................................................. 59 Chapter 4: Mathematical Model of Underwater Vehicle (UV) ........................ 63 4.1 Background ................................................................................................ 63 4.1.1 Basic Assumptions................................................................................. 63 4.1.2 Reference Frames .................................................................................. 64 4.1.3 Notations ................................................................................................ 65 4.2 Kinematics Equations ................................................................................ 66 4.3 Kinetic Equations ...................................................................................... 67 4.3.1 Rigid-Body Kinetics .............................................................................. 67 4.3.2 Hydrostatic Terms ................................................................................. 69 4.3.3 Hydrodynamic Terms ............................................................................ 70 4.3.4 Actuator Modeling ................................................................................. 75 4.3.5 Umbilical Cable Forces ......................................................................... 75 4.4 Nonlinear Equations of Motion (6DOF) ................................................... 76 4.5 Simplification of UV Dynamic Model ...................................................... 77 4.5.1 Simplifying the Mass and Inertia Matrix ............................................... 78 4.5.2 Simplifying the Hydrodynamic Damping Matrix.................................. 79 4.5.3 Simplifying the Gravitational and Buoyancy Vector ............................ 80 4.6 Thruster Modeling ..................................................................................... 80 4.7 Current Modeling ...................................................................................... 83 4.8 Dynamic Model Including Ocean Currents ............................................... 84 4.9 Complete Motion Equations of AUV (6DOF) .......................................... 89 4.10 Dynamics Model Parameter Identification ................................................ 91 4.11 Numerical Solution for Equations of Motion ............................................ 93 4.12 General Structure and Model Parameters .................................................. 94 4.12.1 Structure of AUV ............................................................................... 94 4.12.2 Control System of AUV ..................................................................... 96 Chapter 5: Guidance Theory ............................................................................... 97 5.1 Configuration of GNC System .................................................................. 97 5.1.1 Guidance ................................................................................................ 98 5.1.2 Navigation .............................................................................................. 98 5.1.3 Control ................................................................................................... 98 5.2 Maneuvering Problem Statement .............................................................. 99 5.3 Guidance Objectives ................................................................................ 100 5.3.1 Target Tracking ................................................................................... 100 5.3.2 Trajectory Tracking ............................................................................. 100 5.4 Waypoint Representation ........................................................................ 101 5.5 Path Following ......................................................................................... 102 5.6 Line of Sight (LOS) Waypoint Guidance ................................................ 102 5.6.1 Enclosure-Based Steering .................................................................... 104 5.6.2 Look-ahead Based Steering ................................................................. 105 5.6.3 LOS Control......................................................................................... 106 5.7 Cubic Polynomial for Path-Following ..................................................... 107 Chapter 6: Control Algorithm Design and Analysis ....................................... 110 6.1 Proportional Integral Differential (PID) Controller ................................ 110 6.1.1 General Theory .................................................................................... 110 6.1.2 Stability of General PID Controller ..................................................... 112 6.1.3 PID Tuning .......................................................................................... 114 6.1.4 Nonlinear PID for Marine Vehicles ..................................................... 116 6.1.5 Nonlinear PD for Marine Vehicles ...................................................... 117 6.1.6 Stability of Designed PD Controller .................................................... 117 6.2 Sliding Mode Controller .......................................................................... 118 6.2.1 Tracking Error and Sliding Surface ..................................................... 119 6.2.2 Chattering Situation ............................................................................. 120 6.2.3 Control Law and Stability .................................................................... 121 6.3 Allocation Control ................................................................................... 124 6.3.1 Linear Quadratic Unconstrained Control Allocation Using Lagrange Multipliers ................................................................................................ 125 6.3.2 Thruster Allocation with a Constrained Linear Model ........................ 127 6.4 Simulation Results and Discussion ......................................................... 131 6.4.1 Berthing (parking) Control of USV ..................................................... 133 6.4.2 Motion Control of UV ......................................................................... 136 Chapter 7: Obstacle Avoidance and Path Planning for Vehicle Using Rapidly-Exploring Random Trees Algorithm.................................................................. 168 7.1 Path Planning and Guidance: Two Interrelated Problems ....................... 168 7.2 RRT Algorithm for Exploration .............................................................. 171 7.2.1 Random Node Selection ...................................................................... 172 7.2.2 Nearest Neighbor Node Selection ....................................................... 173 7.2.3 RRT Exploration with Obstacles ......................................................... 174 7.3 RRT Algorithm for Navigation of AUV ................................................. 176 7.3.1 Basic RRT Algorithm .......................................................................... 176 7.3.2 Biased-Greedy RRT Algorithm ........................................................... 178 7.3.3 Synchronized Biased-Greedy RRT Algorithm .................................... 179 7.4 Path Pruning ............................................................................................ 182 7.4.1 Path Pruning Using LOS ..................................................................... 182 7.4.2 Global Path Pruning ............................................................................. 183 7.5 Summarize the Proposed RRT Algorithm ............................................... 185 7.6 Simulation for Path Following of AUV .................................................. 187 Chapter 8: Simulation of Complete USV-UC-UV Systems ............................ 196 8.1 Simulation Procedure .............................................................................. 196 8.2 Simulation Results and Discussion ......................................................... 201 8.2.1 Dynamic Behaviors of Complete USV (Stable)-Cable- AUV (Turning Motion) ..................................................................................................... 201 8.2.2 Dynamic Behaviors of Complete USV (Forward motion)-Cable- AUV (Turning Motion) ...................................................................................... 207 8.2.3 Applied Controller to Complete USV -Cable- AUV ........................... 215 Chapter 9: Conclusions and Future Works ..................................................... 238 9.1 Modeling of Complete USV-Cable-AUV System .................................. 238 9.2 Motion Control ........................................................................................ 239 9.3 Cable Force and Moment at the Tow Points ........................................... 239 9.4 Path Planning ........................................................................................... 239 9.5 Future Works ........................................................................................... 240Docto

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    Dynamic Positioning System as Dynamic Energy Storage on Diesel-Electric Ships

    Get PDF
    Abstract-A dynamic positioning (DP) system on a dieselelectric ship applies electric power to keep the positioning and heading of the ship subject to dynamic disturbances due to the winds, waves and other external forces using electric thrusters. Vice versa, position and heading errors can be allowed in order to implement energy storage in the kinetic and potential energy of the ship motion using the DP control system to convert between mechanical and electrical power. New simple formulas are derived in order to relate the dynamic energy storage capacity to the maximum allowed ship position deviation, as a function of the frequency of the requested dynamic energy storage. The benefits of DP dynamic energy storage are found to be reduced diesel-generator maintenance need, reduced fuel consumption and emissions, reduced risk for blackout, and increased operational flexibility allowing power-consuming operations such as drilling and lifting to be safely prioritized over DP for short periods of time

    Deep-Sea Model-Aided Navigation Accuracy for Autonomous Underwater Vehicles Using Online Calibrated Dynamic Models

    Get PDF
    In this work, the accuracy of inertial-based navigation systems for autonomous underwater vehicles (AUVs) in typical mapping and exploration missions up to 5000m depth is examined. The benefit of using an additional AUV motion model in the navigation is surveyed. Underwater navigation requires acoustic positioning sensors. In this work, so-called Ultra-Short-Baseline (USBL) devices were used allowing the AUV to localize itself relative to an opposite device attached to a (surface) vehicle. Despite their easy use, the devices\u27 absolute positioning accuracy decreases proportional to range. This makes underwater navigation a sophisticated estimation task requiring integration of multiple sensors for inertial, orientation, velocity and position measurements. First, error models for the necessary sensors are derived. The emphasis is on the USBL devices due to their key role in navigation - besides a velocity sensor based on the Doppler effect. The USBL model is based on theoretical considerations and conclusions from experimental data. The error models and the navigation algorithms are evaluated on real-world data collected during field experiments in shallow sea. The results of this evaluation are used to parametrize an AUV motion model. Usually, such a model is used only for model-based motion control and planning. In this work, however, besides serving as a simulation reference model, it is used as a tool to improve navigation accuracy by providing virtual measurements to the navigation algorithm (model-aided navigation). The benefit of model-aided navigation is evaluated through Monte Carlo simulation in a deep-sea exploration mission. The final and main contributions of this work are twofold. First, the basic expected navigation accuracy for a typical deep-sea mission with USBL and an ensemble of high-quality navigation sensors is evaluated. Secondly, the same setting is examined using model-aided navigation. The model-aiding is activated after the AUV gets close to sea-bottom. This reflects the case where the motion model is identified online which is only feasible if the velocity sensor is close to the ground (e.g. 100m or closer). The results indicate that, ideally, deep-sea navigation via USBL can be achieved with an accuracy in range of 3-15m w.r.t. the expected root-mean-square error. This also depends on the reference vehicle\u27s position at the surface. In case the actual estimation certainty is already below a certain threshold (ca. <4m), the simulations reveal that the model-aided scheme can improve the navigation accuracy w.r.t. position by 3-12%
    corecore