
ITEM NO: 1929414

FOR 
REFERENCE ONLY



THRUSTER FAULT DIAGNOSIS AND ACCOMMODATION 

FOR OVERACTUATED OPEN-FRAME UNDERWATER 

VEHICLES

Thesis submitted to the University of Wales for the Degree of 

Doctor of Philosophy

by

Edin Omerdic, BSc., MSc. 

Mechatronics Research Centre 

University of Wales College, Newport 

February 2004



Trademarks

Windows 98™, Windows 2000™ and Windows XP™ are trademarks of Microsoft Corporation. 

MATLAB™, Simulink™, Dials & Gauges Blockset™, Aerospace Blockset™, Fuzzy Logic Toolbox™, 

Neural Networks Toolbox™ and Virtual Reality Toolbox™ are trademarks of The Math Works Inc.



Declaration I Statements

DECLARATION

This work has not previously been accepted in substance for any degree and is not being 

concurrently submitted in candidature for any degree. 

Signed .&*fflfa...£dfa (candidate) 

Date

STATEMENT 1

This thesis is a result of my own investigations, except where otherwise is stated.

Other sources are acknowledged by footnotes giving explicit references. A bibliography

is appended.

Signed $fcj&!^..... *$*.. (candidate)

Date

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the tide and summary to be made available to outside

organisations.
Signed QX$**?....%$y.. (candidate)

Date



In memory of my father



Acknowledgements

In retrospect, my journey to the wonderful world of control of marine vessels began in

November 1995 - a discussion with Professor Ljubomir Kuljac'a and Professor Zoran

Vukic (Faculty of Electrical Engineering and Computing, Zagreb, Croatia) about the

subject for my undergraduate thesis opened the door of this mystic world for me. They

told me that my work will be concentrated on the application of fuzzy logic in ship

control. I still remember the astonishment in my reply: "What? Ship? Fuzzy logic?" I

simply did not know anything about ships and fuzzy logic at that time.

Over the past eight years, I resolved many secrets on this voyage. Now it is time to

acknowledge all of those who helped me to finish the important stage of this journey.

First of all, I would like to thank my wonderful mother Hadzira, younger brother Emir

and his wife Nermina for providing inspiration, love and support throughout my

education.

Next, I would like to thank my supervisor, Professor Geoff Roberts, for improving the

thesis by reading early drafts and supplying corrections and critical advices.

Thanks to Professor Tor A. Johansen, Department of Engineering Cybernetics,

Norwegian University of Science and Technology, Trondheim, for fruitful discussion

about limits of the pseudoinverse method.

I am grateful to Professor Marc Bodson, Electrical and Computer Engineering, University

of Utah, and Adjunct Associate Professor Dale Frederick Enns, Aerospace Engineering &

Mechanics, University of Minnesota, for sending copies of their papers about control

allocation to me.

Special thanks to Alex for his encouragement and enthusiasm. After my coming to

Newport, Alex and his girlfriend, Mandi, helped me to understand and adapt to a new

way of life, quite different than my previous experience.

IV



Thanks to Nathan, Tristan and Gurvinder for supplying corrections and constructive

suggestions.

I would also like to thank the other members of the Mechatronics Research Centre

(especially to Mokhtar, Tasos, Fangmin, Eric and Chinese friends) for creating an

enjoyable working environment.

Thanks to Jane, our secretary, for her readiness to help me whenever I needed it.

I would like to thank my housemates (Alfredo, Pernille, Michalis, Karen, Dave and Luca)

who lived with me for the last three years and who were forced sometimes to share with

me sadness when something goes wrong and the joy of new discovery.

I would like to acknowledge the help and support that Pere, Marc, Bianca, Carlos, Joan

and other researchers and friends from Girona provided to me during my stays in this

beautiful town.

Special thanks to Sylvia and Merce, my housemates in Girona, for their patience and

support.

Finally, I would like to thank to Isela (my Bonnie) for providing constant source of love,

support and inspiration. She was my lighthouse on the journey, which inspired me to

persevere in sailing and successfully completing the most important stage of the journey.



Summary

The work presented in the thesis concerns the design and development of a novel thruster 

fault diagnosis and accommodation system (PDAS) for overactuated, open-frame 

underwater vehicles. The remotely operated vehicles (ROVs) considered in this thesis 

have four thrusters for motion in the horizontal plane with three controllable degrees of 

freedom (DoF). Due to the redundancy resulting from this configuration, for the case of a 

partial fault or a total fault in a single thruster it is possible to reallocate control among 

operable thrusters in order that the ROV pilot is able to maintain control of the faulty 

ROV and to continue with missions.

The proposed PDAS consists of two subsystems: a fault diagnosis subsystem (FDS) and a 

fault accommodation subsystem (FAS). The FDS uses fault detector units to monitor 

thruster states. Robust and reliable interrogation of thruster states, and subsequent 

identification of faults, is accomplished using methods based on the integration of self- 

organising maps and fuzzy logic clustering. The FAS uses information provided by the 

FDS to perform an appropriate redistribution of thruster demands in order to 

accommodate faults. The FAS uses a hybrid approach for control allocation, which 

integrates the pseudoinverse method and the fixed-point iterations method. A control 

energy cost function is used as the optimisation criteria. In fault-free and faulty cases the 

FAS finds the optimal solution, which minimises this criteria. The concept of feasible 

region is developed in order to visualise thruster velocity saturation bounds. The PDAS 

provides a dynamic update of saturation bounds using a complex three-dimensional 

visualisation of the feasible region (attainable command set), such that the ROV pilot is 

informed with the effects of thruster fault accommodation, incorporated in the new shape 

of the attainable command set. In this way the ROV pilot can easy adapt to newly created 

changes and continue the mission in the presence of a fault.

The prototype of the PDAS was developed in the MATLAB environment as a Simulink 

model, which includes a nonlinear model of an ROV with 6 DOF, propulsion system and 

a hand control unit. The hand control unit was simulated in hardware using a joystick as 

input device to generate command signals. Different fault conditions are simulated in 

order to investigate the performance of the PDAS. A virtual underwater world was 

developed, which enabled tuning, testing and evaluation of the PDAS using simulations 

of two underwater vehicles (FALCON, Seaeye Marine Ltd. and URIS, University of 

Girona) in a 'realistic' underwater environment.
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The performance of the PDAS was demonstrated and evaluated via tank trials of the 
FALCON ROV in QinetiQ Ocean Basin Tank at Haslar, where the existing control 

software was enhanced with the PDAS algorithm. The results of real-world experiments 

confirmed the effectiveness of the PDAS in maintaining vehicle manoeuvrability and in 

preserving the vehicle mission in the presence of thruster faults.
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Nomenclature

Symbols

Neural networks:

u(fc) - Input vector

y(k) - Actual output vector

F(-,...,-) - General non-linear function

W - Weight matrix

n - System order

AW (-,...,-) - Neural network-based non-linear functional mapping

y(k) - Predicted output vector

r(k) - Residual vector

Direct control allocation:

0 - Attainable Moment Set

m - Moment vector

ii - Set of control constraints

m rf - Desired moment vector

a - Scaling factor

u - True control vector

B - Control effectiveness matrix

k - Number of rows of B

Generalised inverse:

B - Control effectiveness matrix

P - Right generalised inverse

jj+ - Moore-Penrose pseudoinverse of B

W - Positive definite, weighting matrix

B+ - Weighted pseudoinverse of B
W
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- Scaling factor

- Desired virtual control input

Optimisation based methods:

B

- Virtual control input

- Control constraints

- Preferred true control vector

- Control effectiveness matrix

- Criteria

- Adjustable parameter

Fault-tolerant system design of AUV:

X 

Y 

Z

K

M
N

TCM

f
s

Rv

Ka 

HTt

VT, 

x

y 
v

- Generalised vector of total forces and moments exerted by thrusters

- Thruster control matrix

- Vector of individual thruster forces

- sin 45°
- Radial distance from centre to the centre of the vertical thruster

- Radial distance from centre to the centre of the horizontal thruster

- i * horizontal thruster

- / * vertical thruster

- Surge direction in body-fixed frame

- Sway direction in body-fixed frame

- Input voltage

- Thruster force
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Fault tolerant control of an AUV under thruster redundancy:

1 - Generalised position and orientation vector in the Earth-fixed frame

w - Linear and angular velocity vector in the body-fixed frame

M - Inertia matrix, including the rigid body and the added mass terms

C - Matrix of centrifugal and Coriolis terms, including the rigid body

	and the added mass terms

D - Matrix of hydrodynamic drag terms

G - Vector of restoring forces (gravity and buoyancy)

T - Vector of generalised forces, exerted by thrusters

« - Number of thrusters

F, - Vector of thruster forces

E - Thruster configuration matrix

£ - Substitution for C(w )w + D(W )w + G (q)

B - Transformation matrix

x - Position and orientation vector in task space

m — Dimension of task space

J — Jacobian matrix

V - Thruster control matrix

P - Vector of non-linear terms

ji+ - Moore-Penrose pseudoinverse of ft

H^ - Weighted pseudoinverse of u

W - Weighting matrix

<P - Thruster fault matrix

Optimal distribution of propulsion and control forces:

p - Number of control inputs (thrusters)

n - Number of controllable DOF

u - Control vector

n - Propeller angular velocity

T - Vector of forces and moments exerted by thrusters



B 
W

- Thruster control matrix

- Weighting matrix

- Criteria (Control energy cost function)

- Lagrangian

- Lagrange multipliers

- Weighted pseudoinverse of B

- Desired vector of forces and moments exerted by thrusters

ROV model:

O 

CG

'12 = 6

v,=

- Body-fixed frame

- Earth-fixed frame

- Origin of body-fixed frame

- Centre of gravity

- Position and orientation vector

- Position vector

- Orientation vector

- Linear and angular velocity vector

- Linear velocity vector

- Angular velocity vector

- Vector for attitude representation using Euler parameters
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q
w, x, y, z

£1, £2 j c 3 , //

P =
A 

A 

A

' *i'

- Vector for attitude representation using Modified Rodrigues 
	parameters

- Transformation matrix " v, -»£ i),

- Transformation matrix B v2 ->Ei\2

- Quaternion
- Real parameters

- Real parameters

- Imaginary units

- Principal unit vector
- Principal angle

- Point in 3D space

- Transformation matrix B v l -^E i\ l

- Transformation matrix B v2 -»£ e

- Vector of Cayley-Rodrigues parameters

- Vector of Modified Rodrigues parameters

- Transformation matrix ^VJ-^^TJ,

- Transformation matrix B v2 ->£o

- Rigid-body inertia matrix

- Position of CG

- Position of O

- Inertia tensor

- Moments of inertia about Xs , YB and Zfl -axes

- Products of inertia

- Mass density

- Inertia tensor about CG
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( V 
v) - Rigid-body Coriolis and centripetal matrix

m - Mass of the ROV

B t RB — Generalised vector of external forces and moments (including

	control and hydrodynamic forces and moments) 

MA - Added-mass matrix 

M - Inertia matrix (including added mass) 

CA ( fl v) - Added-mass Coriolis and centripetal matrix 

C(B V) - Coriolis and centripetal matrix (including added mass)

D(V - Total hydrodynamic damping matrix
B IE \ gV ij - Vector of restoring (gravitational and buoyant) forces and moments

- Vector of environmental forces and momentsE 
B T - Vector of propulsion forces and moments (exerted by the thrusters)

S - Acceleration due to gravity

P - Fluid (water) density

V - Volume of fluid (water) displaced by the ROV

W - Weight of the ROV

B - Buoyant force

P - Number of thrusters in the general case

'Th - General thruster

'T - Propeller thrust (force)

'Qe - Propeller torque (moment), generated by rotation

'Qr - Propeller torque (moment), generated by 'T

'Q - Total torque (moment), exerted by thruster

'HT - i* horizontal thruster

'VT - ^vertical thruster

'r - Position vector of the thruster Th relative to O

'e - Orientation vector of the thruster 'Th

'c - Spin direction coefficient

a - Distance between thrusters }HT& ZHT ( 4HT& 3HT) (X-shaped 

	thruster configuration)
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b - Distance between thrusters 1 HT& 4HT ( 2HT& 3HT) (X-shaped
thruster configuration) 

# - Angle between horizontal thruster and positive direction of XB axis

(X-shaped thruster configuration) 

R - Radial distance between horizontal thruster and O (cross-shaped
thruster configuration)

Propeller shaft speed models:

n - Propeller shaft speed

T - Propeller thrust

up - Axial flow velocity

7 - Control input (shaft torque)

u - Forward speed

Qe - Propeller torque

Xu - Coefficient of linear laminar skin friction

X., - Coefficient of non-linear quadratic drag

d,0 - Coefficient of linear damping

d , - Coefficient of quadratic damping

«a - Ambient water velocity

w - Wake fraction number

KT , K Q - Non-dimensional thrust and torque coefficients

D - Propeller diameter

P - Water density

J0 - Advance ratio

770 - Open water propeller efficiency

«! , «2 , fa , J32 - Positive non-dimensional coefficients

r, , T , O ! i - Positive coefficients of the bilinear thruster model•l »n' i <1I '*£n|n|'

- Coefficient T^ for n > 0
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rnyn| - Coefficient 7^ for n < 0

M - Control variable

«' - Auxiliary control variable

K - Average coefficient T,,

Full thruster model:

«rf - Desired angular velocity

nd - Desired angular velocity (reduced by GR )

« - Actual angular velocity

" - Actual angular velocity (reduced by GR)

GR - Gear ratio

La - Armature inductance

Ra — Armature resistance

Ua - Armature voltage

KM — Motor torque constant

Jm - Moment of inertia of motor and thruster

6) - Angular velocity if the motor

Qe - Load from the propeller

General control allocation:

v - Virtual control input

\d - Desired virtual control input

u - True control input

v - Total control effect
sys

k - Dimension of the virtual control space

m - Dimension of the true control space

g - Mapping from the true to the virtual control input, performed by the

actuators 

B - Control effectiveness matrix
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m' umax ~ Limits for actuator position constraints

m >Pmax ~ Limits for actuator rate constraints

- Sampling time

- Intersection of hyperplanes defined by Bu = v

- Constrained control subset

- Boundary of Q

£2 - Normalised constrained control subset

- Boundary of a

- Attainable command set

- Boundary of $

- Normalised attainable command set

- Boundary of <&

3 - Solution set (intersection of N and Q)

N - Normal vector to the plane

/ - Line

t - Parameter of the line

u - Preferred position of the actuators

Wn , Wv - Weighting matrices

*P - Set of feasible control inputs that minimise Bu - v

B+ - Pseudoinverse of B

r - Radius of sphere

/ - Norm

b - Element of B

/ - Criteria

£ - Parameter used in /

Q,, Q2 , H, - Temporary parameters used in the fixed-point iterations method

n
Ufl - Initial iteration the fixed-point iterations method

tol - Threshold for stopping the fixed-point iterations method

G - Substitution for W"
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&v - Virtual control space

Qv - Image of <J> V , obtained by applying B+

iie - Image of <fr, obtained by applying B+

4> p - Feasible region for pseudoin verse

^ P - Image of <E> p , obtained by applying B +

B^y - Weighted pseudoinverse of B

u* - Approximation of unfeasible u = B + v

v* - Approximation of v

e - Approximation error

u* — T -approximation of unfeasible u = B+ v

u* - 5 -approximation of unfeasible u = B+ v

u^ - Approximation of unfeasible u = B+v obtained by fixed-point

	iterations

Q - Direction error of approximation

||e| - Magnitude error of approximation

/ - Scaling factor for S -approximation

P - Generalised inverse of B

Direct control allocation:

v - Virtual control input

vd - Desired virtual control input

\d - Unit vector in the direction of vd

u - True control input

a - Scaling factor for direct control allocation

Daisy chain control allocation:

v - Virtual control input

v. - Desired virtual control input

xvu



m - Number of true control inputs

u - True control input

u1 , ..., UM - Partitions of u

B,, ..., BM - Partitions of B

fc - Dimension of v

Control allocation for underwater vehicles:

P - Number of thrusters

T - Thruster configuration matrix

f - Vector of control forces

K - Force coefficient matrix

u' - Control vector

B - Thruster control matrix

T - Total vector of propulsion forces and moments

A - Substitution for —&ina +—cosa
	 2 2

Tx ,Tr ,Tz - Surge, sway and yaw force

^K^M^N ~ R°H' P^h ^ yaw moment

Tm - Maximum thruster force

um ' - Maximum auxiliary control variable

TXm - Maximum surge force

Tj,m - Maximum sway force

tNm - Maximum yaw moment

U'OT - Normalised true control input (horizontal plane)

Twr - Normalised virtual control input (horizontal plane)

gtfr - Control effectiveness matrix (horizontal plane)

Nx , Ny , N^ - Normal vector to the planes xx , tfy and ltN , respectively

X^r - Intersection of the planes ftx , ^ and ttN (horizontal plane)

w - Normalised constrained control subset (horizontal plane)
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3 - Solution set (intersection of K HT and Q,"* , horizontal plane)

<|> wr - Attainable command set (horizontal plane)

Q"T - Virtual control space (horizontal plane)

Q"T - Feasible region for pseudoinverse (horizontal plane)

W^ - Weighting matrix (horizontal plane)

sfr - Normalised saturation (constraint) bound for 'HT (horizontal plane)

wf1 - Weight for 'HT (horizontal plane)
fj-r WT

B^m - Weighted pseudoinverse of B (horizontal plane)

tzn - Maximum heave force

W^ - Weighting matrix (vertical plane)

W]1T - Weight for 'VT (vertical plane)

B^ — Control effectiveness matrix (vertical plane)

BjjJ£ - Weighted pseudoinverse of Bn (vertical plane)

Fault diagnosis and accommodation system:

T* - Desired vector of propulsion forces and moments, generated by the

	HCU

T,, - Filtered T*rf

f - Total fault indicator vector

fi - Fault indicator (output of the FDU for lTh)

Tar - Partition of Td (horizontal plane)

T VT - Partition of T^ (vertical plane)
—d

U'HT - Pseudoinverse solution (horizontal plane)

uiVT - Pseudoinverse solution (vertical plane)

U <* HT - Approximation of u'aT

jj.*"7" - Approximation of ull/r

u 1* - Composition of u'* and u'*
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n - Normalised vector of desired thruster velocities

n - Transformed n

n - Actual velocity of the motor shaft

nd - Desired velocity of the motor shaft

/ - Motor current

x - Feature vector

h - Logical function

0 - Number of closest BMUs to x from each SOM prototype

*BMU; - f BMU in SOM k

kd - Euclidian distance between x and*BMUj

M - Matrix of distances kdj

m - Vector of minimum values in columns of M

m - Mean of m

b - Vector of indices of minimum values in columns of M

B - Buffer
	4

w - Substitution for ^ wfr
	1=1

ix »!r>Iz' IN ~ Normalised surge, sway and yaw force and yaw moment

V - Volume
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Acronyms & abbreviations

AI - Artificial Intelligence

AMS - Attainable Moment Set

ANN - Artificial Neural Network

ATC - Advanced Thruster Control

AUV - Autonomous Underwater Vehicle

CG - Centre of Gravity

DP - Diagnosis Part

DOF - Degree of Freedom

EKF - Extended Kalman Filter

EPSRC - Engineering Physical Science Research Council

FAS - Fault Accommodation Subsystem

FCM - Fuzzy C-Means clustering

FCT - Fault Code Table

FDAS - Fault Diagnosis and Accommodation System

FDI - Fault Detection and Isolation

FDS - Fault Diagnosis Subsystem

FDU - Fault Detector Unit

FPI - Fixed-Point Iterations

FTC - Fault Tolerant Control

GI - Generalised Inverse

HCU - Hand Control Unit

HT - Horizontal Thruster

IFAC - International Federation of Automatic Control

IMPROVES - IMproving the Performance of Remotely Operated VEhicleS

IMU - Inertial Measurement Unit

LDV - Laser-Doppler Velocimeter

MMP - Model Matching Part

NEROV - Norwegian Experimental Remotely Operated Vehicle

ODIN - Omni Directional Intelligent Navigator

PCA - Principal Component Analysis
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PIV - Particle Image Velocimeter

ROV - Remotely Operated Vehicle

RPI - Redistributed Pseudo Inverse

SISO - Single Input Single Output

SNAME - Society of Naval Architects and Marine Engineers

SOM - Self-Organising Map

SUT - Society for Underwater Technology

TCM - Thruster Control Matrix

TCU - Thruster Control Unit

UUV - Unmanned Underwater Vehicle

URV - Unmanned Robotic Vehicle

VRML - Virtual Reality Modelling Language

VT - Vertical Thruster
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Chapter 1: Introduction

'1 begin my story for nothing, without benefit for myself or anyone else, from a need stronger than benefit or 

reason. I must leave a record of myself, the chronicled anguish of my inner conversations, in the vague hope 

that a solution will be found when all accounts have been settled (if they may ever be), when I have left my 

trail of ink on this paper, which lies in front of me like a challenge."

Mesa Selimovic, Death and the Dervish
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Chapter 1: Introduction

1.1 Background

This thesis is a partial contribution to the IMproving the Performance of Remotely 

Operated VEhicleS (IMPROVES) project. The IMPROVES project is an Engineering 

Physical Science Research Council (EPSRC) funded collaboration between three UK 

universities and Seaeye Marine Ltd. of Fareham, UK. The Universities involved are: 

University of Wales College, Newport, University of Southampton and University of 

Plymouth. IMPROVES intends to improve the dynamic performance of advanced, multi- 

mission remotely operated vehicles (ROVs) used for submarine tasks by the offshore 

industry. Improvements are made through the design and development of a new and 

robust predictive control system, enhanced with the on-line fault diagnosis and 

accommodation features. Performance is currently limited by the harsh nature of the 

environment, the dynamic properties of the vehicles and the delay introduced by the 

distance between the vehicle and operator. The part of the IMPROVES project 

undertaken by the research fellowships in Newport addresses the following issues:

• modelling the underwater vehicle,

• design of the fault diagnosis and accommodation system.

• development of the thruster test rig.

This thesis is focused on the design of thruster fault diagnosis and accommodation system 

for underwater vehicles. In order to avoid any misunderstanding with the terminology, it 

is necessary to give some basic definitions. In the Encyclopaedia Britannica, submerged 

vehicles are defined as following:

Submarine: "any naval vessel that is capable of propelling itself beneath the water as 

well as on the water's surface. This is a unique capability among warships, and 

submarines are quite different in design and appearance from surface ships."
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Chapter 1: Introduction

Underwater Vehicle: "small vehicle that is capable of propelling itself beneath the water 

surface as well as on the water's surface. This includes unmanned underwater vehicles 

(UUV), remotely operated vehicles (ROV), autonomous underwater vehicles (AUV) and 

underwater robotic vehicles (URV). Underwater vehicles are used both commercially and 

by the navy. "

Hence, submarines are clearly distinguished from underwater vehicles. The same 

separation is kept throughout this thesis: when the term underwater vehicle(s) is used, it 

excludes submarine(s).

A large number of open-frame underwater vehicles have no other actuators except for 

thrusters. This thesis introduces a new approach associated with thruster fault diagnosis 

and accommodation for this class of underwater vehicles. Torpedo-shaped vehicles are 

not covered in this thesis, since they use control surfaces as well as thrusters, but the same 

fault diagnosis and accommodation concept can be extended to cover this class of 

underwater vehicles by including new actuators into control architecture and 

reformulating the control allocation problem.

Underwater vehicles are liable to faults or failures during underwater missions. Thrusters 

are one of the most common and most important sources of faults. In all but the most 

trivial cases the existence of a fault may lead to cancelling the mission. The implication of 

small faults can be very expensive and time consuming. Although good design practice 

tries to minimize the occurrence of faults and failures, there is a certain probability that 

faults will occur. Recognition that such events do occur enables system designers to 

develop strategies by which the effect they exert is minimised. A large number of open- 

frame underwater vehicles represent overactuated control systems, i.e. they have four or 

more horizontal thrusters for the motion in the horizontal plane in three DOF (surge, sway 

and yaw). This thesis demonstrates that, for this class of vehicle, in the case of a partial or
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total fault in a horizontal thruster, it is possible to reconfigure the control system in an 

optimal manner, in order to maintain a high level of manoeuvrability of the faulty vehicle 

and complete the mission.

Two ROVs (FALCON, SeaEye Marine Ltd. and URIS, University of Girona) with 

different thruster configurations are used throughout the thesis to test the algorithms 

presented in Chapter 5. Technical specifications of these two vehicles are given in 

Appendix A.

1.2 Motivation

Underwater vehicles are used for commercial purposes (marine off-shore inspections, 

surveying, repairs, etc.) or by research groups to investigate navigation guidance and new 

control techniques. Figure 1.1 displays pictures captured by ROV on-board camera during 

typical underwater mission. Close proximity of pipes and underwater structures 

demonstrate the harsh nature of the environment in which underwater vehicles operate. 

Despite the preventive measures undertaken by manufacturers to protect the on-board 

equipment, components like actuators, sensors, etc. are liable to faults, mainly due to 

inhospitable operational environment.

Figure 1.1 Pictures captured by ROV on-board cameras showing the harsh nature of the 

operational environment. Courtesy of Seaeye Marine Ltd.

Conversations with researchers from other universities and representatives of Seaeye 

Marine Ltd. confirmed that they all experienced some kind of thruster fault during
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operations. In a few cases the propeller was jammed by seaweed, kelp or rope. In other 

cases the water penetrated inside the thruster control electronics. In the last case, thruster 

fault occurred during the operation with FALCON (spring 2003, South Africa), when a 

defect in manufacturing of the gearbox produced a failure that damaged the Hall sensors. 

In most cases the mission was aborted and the vehicle was recovered for repair. In many 

cases spare parts were not available on the mothership, leading to a total abortion of the 

mission. In some cases the ROV pilot tried (unsuccessfully) to navigate the faulty vehicle 

and continue the mission.

The main motivation for this thesis is to overcome these problems by designing a system 

that is able to detect and isolate thruster faults, automatically redistribute the control 

energy among operable thrusters in the case of a fault in a thruster and inform the ROV 

pilot or the main controller about changes and their effects. In such a way, the risk of 

more serious damage is minimised and the framework for mission continuation and 

completion is provided, with a minimal loss of control performance.

1.3 Aims and objectives

The aim of the research is development of thruster fault diagnosis and accommodation 

system for overactuated, open-frame underwater vehicles, which fulfil the following 

requirements:

• In fault-free case, optimal control allocation must be guaranteed for all possible 

command inputs, which minimises a control energy cost function, the most 

suitable criteria for underwater applications. Minimising control energy means 

maximising operational battery life, which is very important issue for future 

development of autonomous underwater vehicles.

• In faulty situations, any malfunction of a thruster must be immediately recognised 

and remedial actions must be performed to isolate the fault and to prevent further
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damage. At the same time, the control allocation must be automatically updated to 

accommodate the fault and to provide a framework for continuation of the 

mission, with a minimal loss of control performance. 

The specific objectives of the thesis are:

• Explore the existing methods for fault diagnosis and accommodation in dynamic 

systems.

• Identify which of these methods are applicable to meet requirements and specific 

implementation issues, defined in the IMPROVES project.

• Develop module for detection of thruster faults.

• Formulate and solve the control allocation problem for fault-free case.

• Extend the algorithm to cover faulty situations.

• Develop the simulation model to test the algorithm.

• Verify the performance of the algorithm with real-world applications.

1.4 Overview of chapter contents

Chapter 2, "Literature Review", provides an overview of traditional and modern 

approaches to fault diagnosis and accommodation of dynamic systems. Different 

approaches for fault diagnosis and accommodation are presented in a systematic way. 

Due to similarity between the control allocation problem for underwater vehicle and 

aircraft, this chapter includes recent advances in the field of control allocation for aircraft. 

Previous work on fault diagnosis and accommodation for underwater vehicles is 

discussed in more detail at the end of the chapter.

Chapter 3, "Models for ROV & Propulsion System", provides background into modelling 

and simulation of ROVs. The development of a non-linear ROV dynamic model in 6 

DOF is described, including three different attitude representations. This chapter ends

with the discussion of different models for thrusters and thruster control units.
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Chapter 4, "Control Allocation", is devoted to gaining insight into the geometry of the 

general control allocation problem. The general formulation of the control allocation 

problem is used to establish the criteria for separation of the system control architecture 

into two independent tasks (control law and control allocation), thereby allowing the 

control allocation to be considered separately from the control law. Existing methods for 

solution are presented and their performance is compared using the same example, where 

the control allocation problem is formulated for the two-dimensional virtual control space 

and the three-dimensional true control space, enabling easy visualisation and geometric 

interpretation. The hybrid approach for control allocation, based on the integration of the 

pseudoinverse and the fixed-point iteration method, is gradually introduced, providing an 

easy extension of the concept to higher-dimensional cases.

Chapter 5, "Fault Diagnosis and Accommodation System", proposes thruster fault 

diagnosis and accommodation system (PDAS) for overactuated, open-frame underwater 

vehicles. The hybrid approach for control allocation, introduced in Chapter 4, is extended 

for the case of the three-dimensional virtual control space and the four-dimensional true 

control space and used as a foundation to build an enhanced control allocator, with fault 

detection and accommodation capabilities. The feasible region concept is developed in 

order to visualise thruster velocity saturation bounds. Implementation issues are discussed 

at the end of the chapter.

Chapter 6, "Testing and Evaluation of the PDAS", evaluates the performance of the 

PDAS and highlights its key features using simulation and real-world application. In 

essence, this chapter effectively combines the material presented in previous chapters into 

a collection of representative examples, in order to examine the behaviour of the PDAS in 

fault-free and faulty conditions. The PDAS was used in a real-world application, where 

the performance of the FALCON ROV was examined in different, artificially generated
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fault conditions in the thrusters. Preliminary results from these tests are presented at the

end of the chapter.

Chapter 7, "Conclusions and Further Work", reviews the thesis, lists and describes the

contributions and makes suggestions for further work.

The approach adopted in most chapters is to present "overview-type" material in the main

body and to cover more detailed explanations and analysis of particular aspects through

the use of appropriate appendices, which are included at the end of the thesis. Description

of individual appendices is given in the following.

Appendix A contains technical details and specifications for FALCON and URIS.

Appendix B provides some results from optimal control theory.

Appendix C presents some results from 3D geometry.

Appendix D describes the ROV simulator.

Appendix E contains a list of published and submitted papers produced during the course

of the work described in the thesis and a list of awards received in international

conferences. Copies of published papers are also included.

1.5 List of main contributions

The main contributions of the work presented in this thesis are summarised as follows:

• Development of the on-line fault detector units, able to detect external and internal 

thruster faults.

• Development of the hybrid approach for control allocation, able to allocate 

optimal solutions of the control allocation problem in fault-free and faulty 

situations.

• Visualisation of thruster velocity saturation bounds using the feasible region 

concept.

• Formulation of the control problem in normalised form.

1-8



Chapter 1: Introduction

• Development of a method to compensate for non-symmetrical propeller T -curve.

• Design of a simulation model with virtual reality display. 

These contributions are discussed throughout the thesis and summarised in section 7.3.
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'With a shriek birds flee across the black sky, people are silent, my blood aches from waiting..."

Mesa Selimovic
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2.1 Introduction

This chapter provides an overview of classic and modern approaches to fault diagnosis 

and accommodation of dynamic systems. The purpose is to present a subset of different 

approaches for fault diagnosis in a systematic way, such that the reader could obtain a 

global picture about a palette of possible methods. The problem of fault accommodation 

for underwater vehicles is closely related to the control allocation problem for aircrafts. 

The latter problem has gained much wider interest in the research community than the 

former. Because both problems can be solved using the same techniques, outlines of the 

main methods and recent advances in the field of control allocation for aircraft are given 

in this chapter, while a full mathematical description of these methods, with numerical 

examples, can be found in Chapter 4. Previous work on fault diagnosis and 

accommodation for underwater vehicles is presented at the end of the chapter. 

The chapter is organised as follows: section 2.2 introduces a basic concepts of fault 

diagnosis. Section 2.3 describes fault diagnosis terminology, and fault diagnosis 

methodology is described in section 2.4. General classification of the fault diagnosis 

methods is given in section 2.5. A short overview of recent fault diagnosis approaches is 

given in section 2.6. Section 2.7 addresses the usage of fuzzy logic in fault diagnosis. 

Pattern recognition methods used in fault diagnosis are presented in section 2.8. Control 

allocation techniques for aircraft are described in section 2.9. Special attention is devoted 

to fault diagnosis approaches applied for underwater vehicles, which are described in 

section 2.10. The concluding remarks are presented in section 2.11 and a list of 

references, used for the compilation of the chapter and cited in the text, is provided in 

section 2.12.
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2.2 Basic concepts of fault-tolerant control

Faults in dynamic systems can cause undesired reactions and behaviour of a plant, and the 

consequences could be damage to technical parts of the plant, to personnel and/or the 

environment (Blanke, et al, 2000b). One way to cope with faulty situations is to use 

Fault-Tolerant Control (FTC). Blanke (2001) defines FTC as a set of techniques 

developed to handle faults autonomously, prevent that simple faults develop into serious 

failure, increase plant availability and reduce the risk of safety hazards. The FTC 

combines fault detection, isolation and identification (fault diagnosis) with control 

methods (fault accommodation) to handle faults in an intelligent way. The first stage in 

this process is fault diagnosis. The early detection of the occurrence of a fault and its 

isolation and identification is critical in avoiding product deterioration, performance 

degradation, major damage to the machinery itself and damage to human health or even 

loss of lives (Gertler, 1998). Fault diagnosis is followed by fault accommodation, which 

includes automatic condition assessment and calculation of appropriate remedial actions 

to avoid certain consequences of a fault. Fault diagnosis and accommodation techniques 

have been the subject of research over the last two decades, and this field has gained wide 

interest in the research community (Patton and Chen, 1999; Gertler, 1998; Isermann, 

1997; Koppen-Seliger and Frank, 1996; Pouliezos and Stavrakakis, 1989).

2.3 Fault diagnosis terminology

The terminology in the literature of the field of fault diagnosis is not consistent. This 

makes it difficult to understand the goals of the particular contributions and to compare 

the different approaches. The terminology used in this thesis is consistent with 

SAFEPROCESS terminology, established by the IFAC Technical Committee: 

SAFEPROCESS (Blanke, et al., 2000b; Patton and Chen, 1999).
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States and signals

• Constraint: A functional relation between variables and parameters of a system. 

Constraints may be specified in different forms, including linear and non-linear 

differential equations, and tabular relations with logic conditions between 

variables.

• Fault: An unpermitted deviation of at least one characteristic property or 

parameter of the system from the acceptable (usual, standard) condition.

• Failure: A permanent interruption of a system's ability to perform a required 

function under specified operating conditions. The term "failure" suggests 

complete breakdown of a system component or function, whilst the term "fault" 

may be used to indicate that a malfunction may be tolerable at its present stage.

• Residual: A fault indicator, based on a deviation between measurements and 

model-equation-based computations.

• Symptom: A change of an observable quantity from normal behaviour. 

Systems

• Controlled system: A physical plant under consideration with sensors and 

actuators used for control.

• Fail-operational system: A system, which is able to operate with no change in 

objectives or performance, despite of any single failure.

• Fail-safe system: A system, which fails to a state that is considered safe in the

particular context. 

Functions

• Fault accommodation: Change in controller parameters or structure to avoid the 

consequences of a fault. The input-output between controller and plant is
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unchanged. The original control objective is achieved although performance may 

degrade.

• Fault detection: Determination of the faults present in a system and the time of 

detection. Produces a binary decision - either that something has gone wrong or 

that everything is fine.

• Fault isolation: Determination of the kind, location and time of detection of a 

fault. Follows fault detection.

• Fault identification: Determination of the size and time-variant behaviour of a 

fault. Follows fault isolation.

• Fault diagnosis: Determination of the kind, size, location and time of detection of 

a fault. Includes fault detection, isolation and identification.

• Fault tolerance: The ability of a controlled system to maintain control objectives, 

despite the occurrence of a fault. A degradation of control performance may be 

accepted. Fault-tolerance can be obtained through fault accommodation or through 

system and /or controller reconfiguration.

• Reconfiguration: Change in input-output between the controller and plant 

through change of controller structure and parameters. The original control 

objective is achieved although performance may degrade.

• Supervision: The ability to monitor whether control objectives are met. If not, 

obtain/calculate a revised control objective and a new control structure and 

parameters that make a faulty closed-loop system meet the new modified 

objective. Supervision should take effect if faults occur and it is not possible to 

meet the original control objective within the fault-tolerant scheme.
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2.4 Fault diagnosis methodology

As mentioned in section 2.2, a wide range of fault diagnosis approaches have been 

proposed in the literature. Patton, et al (2000a) suggest that these approaches can be 

divided into model-based techniques, knowledge-based methods and signal processing 

techniques.

There are two main classes of model-based approaches. In the first class, quantitative 

models are used, such as differential equations, transfer functions, state-space methods, 

etc. These methods are based upon parameter estimation, state estimation or parity space 

concepts. The core of the approach is that a fault will cause changes to certain physical 

parameters and measurements, which will lead to change in some model parameters or 

states. Fault detection and isolation is then possible by monitoring the estimated 

parameters or states. In order to apply this approach, it is essential to have a priori 

knowledge about the relationships between the system, faults and model 

parameters/states. This is not easy task, since comprehensive theoretical models for 

complex systems (e.g., chemical processes) are difficult to obtain and in some situations 

impossible to derive. Artificial Intelligence (AI) methods are used in the second class of 

the model-based techniques. Some methods use qualitative reasoning and qualitative 

modelling. Essentially, qualitative models of the process are used to predict the behaviour 

of the process under normal operating conditions and also during various faulty 

conditions. Fault detection is then performed by comparing the predicted behaviour with 

the actual observations. Other methods within the AI domain, applicable to dynamic 

systems, use neural networks, fuzzy decision-making and neuro-fuzzy methods. These 

methods are attractive, since explicit mathematical model of the monitored plant is not 

required to be known in advance. Implicit models of the plant ("data-based models") are 

provided by applying soft-computing techniques (the neural network training and fuzzy
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rule design) to raw plant data. The relationship between faults and their causes can be 

identified and stored as network weights during training phase of the neural network. 

After training, the network can be used to diagnose faults by associating the observed 

malfunctions with the corresponding fault. Fuzzy-logic methods, which belong to AI rule- 

based approaches, extract diagnostic rules from process structure and unit functions 

(Patton, efa/.,2000a).

Knowledge about the process structure, functions of the process units and their qualitative 

models under various faulty conditions are required for knowledge-based methods. A 

disadvantage of this approach is that the development of a knowledge-based diagnostic 

system demands considerable time and effort to be really effective. To reduce the 

development time, a large amount of research effort has been dedicated to integrate 

knowledge-based and neural networks-based approaches.

Signal processing methods belong to model-free methods, i.e. methods that do not require 

a process model. Different tests on the statistical properties of signals are applied in order 

to detect faulty situations. In practical applications, process control charts are used for 

monitoring the statistical state of a process.

2,5 Classification of fault diagnosis methods

The methods of fault diagnosis may be classified into two major groups, as shown in 

Figure 2.1 (Patton and Chen, 1999; Gertler, 1998; Gertler, 1997; Frank 1990):

• those which do not utilise the mathematical model of the plant (Model-Free 

Methods),

• those which utilise the mathematical model (Model-Based Methods).
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Figure 2.1 Classification of fault diagnosis methods.

2.5.1 Model-free methods

Model-free methods range from physical redundancy and special sensors through limit- 

checking and spectrum analysis to logical reasoning (Gertler, 1998).

Physical redundancy. In this approach, the same physical quantity is measured by 

multiple sensors. Any serious discrepancy between the measurements indicates a 

sensor fault. With only two parallel sensors, fault isolation is not possible. With three 

sensors, a voting scheme can be utilised, which isolates the faulty sensor. 

Disadvantages of the approach are that physical redundancy involves extra hardware 

cost and extra weight, the latter representing a serious concern in aerospace and 

underwater applications.

Special sensors. Special sensors can be installed explicitly for fault detection and 

diagnosis. These may be limit sensors (measuring e.g., temperature or pressure), which
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perform limit checking (see below) in hardware. Other special sensors may measure 

some fault-indicating physical quantity, such as sound, vibration, elongation, etc. 

Limit checking. This approach is widely used in practice. The first step consists in 

establishing thresholds for the plant variables. In the next step, plant measurements are 

compared to preset thresholds. Exceeding the threshold indicates a fault situation. In 

many systems, there are two levels of alarms; the first serves for a pre-warning 

purpose, while the second is for triggering an emergency reaction. The limit checking 

approach is simple and straightforward, but it suffers from two serious drawbacks:

• Since the plant variables may vary widely due to normal input variations, the 

test thresholds need to be set quite conservatively. Also, noisy data or change 

of operating point may trigger false alarms.

• The effect of a single component fault may propagate to many plant variables 

and cause many system signals to exceed their limits and appear as multiple 

faults, making isolation extremely difficult.

Spectrum analysis. Another method that is applicable for fault detection and isolation 

is spectrum analysis of plant measurements. Most plant variables exhibit a typical 

frequency spectrum under normal operating conditions. Any deviation from this can be 

interpreted as abnormality. Certain types of faults may even have their characteristic 

signature in the spectrum, facilitating fault isolation.

Logic reasoning. These techniques are complementary to the methods outlined above, 

in the sense that they use detection hardware or software to evaluate the symptoms. 

The simplest techniques consist of trees of logical rules of the "IF-symptom-AND- 

symptom-THEN-conclusion" type. Each rule produces the conclusion, which can serve 

as a symptom in the next rule, until the final conclusion is reached. The system may be 

configured to process the information presented by the detection hardware/software
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standalone or may interact with a human operator in such a way that operator supervise 

the entire logical process and make decision how to cope with particular symptoms.

2.5.2 Model-based methods

Model-based fault diagnosis methods utilise an explicit mathematical model of the 

monitored plant. There are two main trends of quantitative model-based fault detection 

and diagnosis methods, namely analytical redundancy and parameter estimation.

Analytical redundancy. Most of the model-based fault detection and diagnosis 

methods rely on the concept of analytical redundancy. These methods share the 

common characteristic that determination of faults is obtained from the comparison of 

available system measurements with a priori information represented by the system's 

mathematical model, through generation of residual quantities and their analysis. Plant 

measurements, provided by sensors, are compared to analytically computed values of 

the corresponding variables. This is in contrast to physical redundancy, where 

measurements from parallel sensors are compared to each other. 

Figure 2.2 illustrates the hardware and analytical redundancy concepts (Patton and 

Chen, 1999). The major problems encountered with hardware redundancy are the extra 

equipment, weight, maintenance cost and the additional space required to 

accommodate the equipment. The concept of analytical redundancy uses redundant 

analytical (or functional) relationships between various measured variables. In 

analytical redundancy scheme extra hardware is not required and, therefore, additional 

hardware faults are avoided.

Figure 2.3 shows a schematic description of the model-based fault diagnosis scheme 

(Patton and Chen, 1999). The process model is a quantitative or a qualitative 

description of the normal (fault-free) process dynamic and steady behaviour, which is 

obtained using well-established process modelling techniques.
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Figure 2.3 Model-based fault diagnosis scheme (analytical redundancy). 

The process and process model are driven by the same inputs. The process model 

delivers an estimation of the measured process variables and comparing the estimated 

one with the measured one yields the residual. Residual quantities represent the 

difference between the measured signals and signals generated by the mathematical 

model. A residual is a fault indicator, which reflects the faulty situation of the 

monitored system. In the ideal case where there are no unknown inputs and an exact
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process modelling is possible, the residual should be zero-valued when the system is in 

normal (fault-free) state, and should diverge from zero when a fault occurs in the 

system. No one technical process can be modelled exactly and there often exist 

unknown inputs. This means that a further processing of residuals is necessary to 

distinguish the faults from the model uncertainty and unknown inputs. 

The general structure of a model-based fault diagnosis system consists of two main 

stages: residual generation and residual evaluation.

• Residual generation: Its purpose is to generate a fault-indicating signal - 

residual, using available input and output information from the monitored 

system. The algorithm used to generate residuals is called a residual generator. 

Hence, residual generation is a procedure for extracting fault symptoms from 

the system, with the fault symptom represented by the residual signal.

• Residual evaluation: The generation of residuals is followed by residual 

evaluation, with the goal of fault detection and, if possible, fault isolation. The 

residuals are examined for the likelihood of faults, and a decision rule is then 

applied to determine if any faults have occurred. A decision process may 

consist of a simple threshold test on the instantaneous values or moving 

averages of the residuals or it may consist of methods of statistical decision 

theory.

The commonly known approaches for residual generation can basically be divided into 

two categories of signal-based and model-based concepts with a further subdivision as 

shown in Figure 2.4 (Koppen-Seliger and Frank, 1999). The main research emphasis of 

the last two decades has been placed on the development of model-based approaches 

starting from analytical models and leading to the recently employed data-based 

models, such as neural networks.
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Figure 2.4 Classification of different residual generation concepts.

The concepts of Parity space, Diagnostic observers and Kalman filter are described in 

the following, while fuzzy and neural concepts are covered in sections 2.7 and 2.8.1, 

respectively.

• Parity space. Parity relations are rearranged direct input-output model 

equations, subjected to a linear dynamic transformation. The transformed 

residuals serve for detection and isolation. The design freedom provided by the 

transformation can be used for disturbance decoupling and fault isolation 

enhancement. Also, the dynamics of the response can be assigned, within the 

limits dictated by the requirements of causality and stability.

• Diagnostic observers. Different types of diagnostic observers are developed for 

residual generation. "Unknown input" design techniques may be used to 

decouple the residuals from (a limited number of) disturbances. The freedom in 

the design of the observer can be utilised to enhance the residuals for isolation. 

The dynamics of the fault response can be controlled, within certain limits, by 

placing the poles of the observer.
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• Kalman filter. The innovation (prediction error) of the Kalman filter can be 

used as fault detection residual; its mean is zero if there is no fault (and 

disturbance) and becomes non-zero in the presence of faults. Since the 

innovation sequence is white, statistical tests are relatively easy to construct. 

However, fault isolation is somewhat awkward with the Kalman filter: it is 

necessary to run a bank of "matched filters", one for each suspected fault and 

for each possible arrival time, and check which filter output can be matched 

with the actual observations.

Residual evaluation techniques can be principally divided into threshold decisions,

statistical methods and classification approaches (Figure 2.5).

Constant Adaptive Pattern 
Recognition

Analytical Fuzzy

Figure 2.5 Classification of different residual evaluation concepts.

Parameter estimation. Parameter estimation is a natural approach to the detection and 

isolation of parametric (multiplicative) faults. The first step is to identify the plant in a 

fault-free situation and obtain reference model. Then the parameters are repeatedly 

recalculated on-line. Deviations from the reference model serve as a basis for detection 

and isolation. Parameter estimation may be more reliable then the analytical
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redundancy methods, but it is also more demanding in terms of on-line computation 

and input excitation requirements (Gertler, 1998).

2.6 Some of recent fault diagnosis approaches

Fault diagnosis has received great attention in the research community during the last two 

decades. Recent developments in communication and instrumentation technologies have 

made possible to collect a large amount of real-time plant data. The existing control 

systems can be enhanced with fault diagnosis and accommodation modules, able to utilize 

this wealth of information in an intelligent way, to minimise plant downtime and to 

optimise plant operations. This section provides an overview of the recent approaches and 

new concepts in fault diagnosis. The main ideas are given herein, while more details can 

be found in referenced papers.

A sensor fault diagnosis and accommodation method, based on analytical redundancy, is 

proposed in (Theilliol, et al, 2000). This method makes it possible the compensation of 

additive or multiplicative sensor faults in closed-loop control. When a sensor fault occurs, 

the control law tries to cancel the static error created by the corrupted output. Sensor fault 

tolerance control is achieved by computing a new control law using a fault-free 

estimation of the faulty element. In addition, a robust residual generation using unknown 

input observer is used for fault isolation. The performance of the approach was tested 

using simulated non-linear process (a three-tank system). Results showed that the 

proposed method was successful in detection, isolation and compensation of sensor faults. 

An approach to sensor fault detection and isolation, based on using Principal Component 

Analysis (PCA), is proposed in (Harkat, et al, 2000). PCA is a statistical modelling 

technique, which finds the directions of significant variability in the data by analyzing the 

eigen vectors of the correlation matrix. PCA is used to model normal process behaviour 

and faults are then detected by referencing the observed behaviour against this model.
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Process fault detection using PCA is performed by monitoring the residuals. An abnormal 

situation is flagged whenever this residual is statistically significant. A sensor validity 

index is calculated for isolation purpose. A test on the last principal components is 

proposed for the detection and the localisation of sensor failure, in order to overcome 

sensitivity to model errors. The proposed approach was successfully applied to air 

monitoring networks in Lorraine, France.

A model-based method for the detection and isolation of faults in an industrial gas turbine 

system is presented in (Patton, et al, 2000b). The diagnosis system uses an output 

observers designed in both deterministic and stochastic environments. Identification 

procedures are used to obtain a model of the process under investigation. Residual 

analysis and statistical tests are used for fault detection and isolation, respectively. The 

proposed designs have been evaluated using non-linear simulation, based on gas turbine 

data.

Jakubek and Jorgl (2000) proposed an observer-based approach for sensor fault diagnosis 

that utilizes only one observer (Kalman filter). A parity check is performed on the 

observation errors such that even in the case of multiple simultaneous sensor faults 

correct fault detection, isolation and identification can be achieved. The method has been 

evaluated on industrial turbo-charged combustion engine power plant. 

A combined qualitative and quantitative approach for fault isolation in continuous 

dynamic systems is proposed in (Manders, et al., 2000). This scheme uses qualitative 

fault isolation to narrow down possible fault hypothesis and then uses a focused 

quantitative parameter estimation scheme to identify the true fault. The authors claimed 

that this approach provides a number of advantages over purely quantitative Fault 

Detection and Isolation (FDI) scheme.
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The method for process condition monitoring, based on integration of fuzzy inference 

system and Self-Organising Map (SOM), is proposed in (Cuadrado, et al, 2001). The 

method identifies regions in the SOM visualisation space, corresponding to different 

conditions of a monitored process by means of a fuzzy rule system, which incorporates 

expert knowledge about the process in the procedure of region identification. 

The majority of papers in the literature, related with the problem of fault diagnosis, 

concern linear systems and far fewer non-linear dynamic systems (Zhirabok, 1997; 

Seliger and Frank, 1991; Zhirabok and Shumsky, 1987). The FDI of bilinear systems (a 

special class of non-linear systems) is considered in (Shields, 1996). The author proposes 

two main methods: Bilinear Fault Detection Observer (focused on the problem of 

decoupling the unknown inputs from the residuals) and Parity Space Method for Bilinear 

Systems (robust, but computationally expensive).

An interesting approach to observer-based fault diagnosis of a certain class of non-linear 

dynamic systems is proposed in (Zhirabok and Usoltsev, 2002). The main idea is 

replacing the initial non-linear system by certain linear logic-dynamic system, obtaining 

the bank of linear logic-dynamic observers, and transforming these observers into the 

non-linear ones. The authors developed the procedure of the linear logic-dynamic 

observer synthesis.

Another recent paper that addresses the fault diagnosis problem of non-linear systems is 

(Szigeti, et al, 2002). The main contribution of the paper is an algorithm, which can be 

used for the calculation of the system inverse. Using the idea of input reconstruction by 

means of dynamic inversion, the authors first discuss the properties of fault observability 

in linear systems. The results are extended to non-linear systems, together with a 

mathematical framework, which provides calculation of the inverse system in finite 

algorithmic steps.
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2.7 Fuzzy logic in fault diagnosis

A disadvantage of the analytical approach to fault diagnosis is that under real conditions 

no accurate mathematical models of the system of interest can be obtained. The robust 

analytical techniques described, for example, in (Patton and Chen, 1999) can overcome 

this deficiency only to a certain degree and with great effort. This consideration, together 

with the evolution of fuzzy and neural techniques, has led to the development of 

knowledge models and data-based models. In both approaches fuzzy logic can be 

integrated as depicted in Figure 2.4. In contrast to the qualitative approach, which utilise a 

rule-based model, a data-based fuzzy approach consist of a fuzzy relational module. The 

parameters of this module are trained by input-output data following a given performance 

criterion. Fuzzy logic tools can also be applied for residual evaluation in the form of a 

classifier as shown in Figure 2.5. One possibility is the combination of this qualitative 

approach with a quantitative residual generating algorithm. In the following section two 

different approaches using fuzzy logic in a fault diagnosis system are described.

2.7.1 A Fuzzy filter for residual evaluation

In practice, analytical models often exist only for parts of the plant - submodels. In 

general, the connections between the submodels are not specified analytically, and the 

analytical model-based methods cannot be used as a fault diagnosis tools for the entire 

plant. However, there always exists some useful qualitative or heuristic knowledge of the 

plant, which may not be very detailed but suitable to characterise, in linguistic terms, the 

connections between the existing analytical submodels. This means that, for the 

submodels, quantitative model-based techniques can be used, while the qualitative and 

heuristic knowledge of the connections can be used for the fault symptom generation of
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the complete system. The advantages of using such a combined quantitative/knowledge- 

based approach can be summarised as follows (Koppen-Seliger and Frank, 1999):

• It is not necessary to build an analytical model of the complete process; it is 

sufficient to have only analytical submodels.

• The connections between the submodels can be described by qualitative or 

heuristic knowledge. Some qualitative or heuristic description of the plant or the 

interconnections between the submodels is usually available.

• The mathematical effort, compared to using the analytical model of the complete 

plant, is significantly reduced.

• The causes and effects of the faults can be transferred more easily into the fault

diagnosis concept.

Fuzzy residual evaluation is a process that transforms quantitative knowledge (residuals) 

into qualitative knowledge (fault indications). Residuals, generated by analytical 

submodels, represent the inputs of the Fuzzy Filter (Figure 2.6), which consists of the 

three basic components: fuzzification, inference and presentation of the fault indication.

F 

Inpu
^^^^

Ur 
aults /i 1 In

u 1 
—— J Process

L*.

known 
puts v

Output y

Generation
' .-..,.-.•.:.,• . », ... a

Residual r Fuzzy
* l-ilter

M

Figure 2.6 General structure of the fuzzy-filter-based diagnostic concept.

• Fuzzification: In this step, a knowledge base has to be built, which includes the 

definition of the faults of interest, the measurable residuals (symptoms), the 

relations between the residuals and the faults in terms of IF THEN rules and the
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representation of the residuals in terms of fuzzy sets, for example, "normal" and 

"not normal".

• Inference: The process of inference includes determination of indication signals 

for the faults from the given rule base, with the aid of an inference mechanism. 

The result of inference is a fault indication signal found from a corresponding 

combination of residuals as characterised by the rules. This fault indication signal 

is called Fuzzy Fault Indication Signal (FFIS) and is in a fuzzyfied format.

• Presentation of the fault indication: The final task of the proposed FDI concept 

is the proper presentation of the fault situation to the operator, who has to make 

the final decision about the appropriate fault handling. Each FFIS is, by its nature, 

a singleton, the amplitude of which characterises the degree of membership to 

only one, preassigned fuzzy set "faultm". This degree is characterised by the FFIS, 

i.e., the signal obtained as a result of the inference.

2.7.2 Fuzzy model-based parity equations for fault isolation

In this approach, a local linear fuzzy model of the process is used for the generation of 

structured parity equations (Balle, 1999). The model is run both in parallel and in series- 

parallel to the process, which leads to residuals with different sensitivities. The 

sensitivities of the parallel and series-parallel residuals are compared, and the most 

sensitive residuals are selected for fault detection and isolation.

2.8 Pattern recognition in fault diagnosis

Many data-driven, analytical and knowledge-based fault diagnosis methods incorporate 

pattern recognition techniques to some extent (Chiang, et al., 2001; Russel, et al., 2000). 

Some pattern recognition methods use the relationship between the data patterns and fault 

classes without modelling the internal process states or structure explicitly. These
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approaches include Artificial Neural Networks (ANN) and Self-Organising Maps (SOM). 

Reviews of pattern recognition approaches are given in (Micheli, 1999; Schalkoff, 1992). 

Two of the most popular pattern recognition approaches (artificial neural networks and 

self-organising maps) are described in more detail in the following subsections.

2.8.1 Neural networks

This section discusses how artificial neural networks can be used in FDI. A neural 

network is used to model a multi-input and multi-output non-linear dynamic system. 

After training, the neural network can give very accurate estimation of the system output. 

Using the residual generation concept developed in model-based fault diagnosis, the 

weighted difference between actual and estimated output is used as a residual to detect 

faults. When the magnitude of this residual exceeds a pre-defined threshold, it is likely 

the system is faulty. In order to locate faults in the system (fault isolation) reliably, a 

secondary neural network is used to examine features in the residual. A particular feature 

would correspond to a specific fault location. Based on feature extraction and 

classification principles, the second neural network can locate (or isolate) faults reliably.

Neural networks as models of non-linear dynamic systems

The feed-forward neural network is a static non-linear mapping from input to output

space. Without modification, the feed-forward network cannot be used to represent 

dynamic systems. The simplest approach in representing non-linear dynamic systems is to 

use a combination of a feed-forward network with some time delay units (Patton and 

Chen, 1999). Assume that a non-linear dynamic system is described as:

y(k) = F(y(k-l),...,y(k-n),u(k\-Mk~n)) (2.1)

where u(fc)69T is the input vector, y(fe)e 9T is the output vector and F(-,...,-) 

represents a general non-linear function. A feed-forward network with weight matrix W
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can now be used to represent this static non-linear function, with output

where n is the system order and NN (-,...,-) denotes a neural network-based non-linear 

functional mapping. This model, illustrated in Figure 2.7, is called the one step prediction 

model ,, .,
u(k)

u(k

n Delay Units

-n)j u(k-\)\

n-\ Delay Units

-KBt* •••-*[!:]-[
\ y(k-2) \ y(k-n)

x- -s
Multi- Layer 

Feed-Forward O><Q Input Layer 
Neural Network CxT^T) Hidden Layer 
,, v „ , urr5 Output Layer

C """ J

Figure 2.7 The neural network model of a non-linear dynamic system.

Neural networks as classifiers

After the residual has been generated, a decision-making mechanism must be used to

determine fault occurrence and location. TraditionaDy, decision-making is implemented 

via threshold logic using either fixed or adaptive thresholds or statistical testing methods. 

The main task in decision-making is to classify the residuals into a number of 

distinguishable patterns corresponding to different faulty situations. Hence, decision- 

making can be based on the pattern recognition principle. Pattern recognition implies 

initiating certain actions based on the observation of input data.

Feature Extraction Pattern Classifier

Normal State

••»[ Fault

H Fault 3 - ___ •-- •-

I Residuals
Figure 2.8 Decision-making mechanism in fault diagnosis system using pattern classifier.
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Figure 2.8 shows decision-making mechanism, based on pattern classification. The input 

representing a pattern is known as the measurement or feature vector. The function 

performed by a pattern recognition system is the mapping of the input feature vector into 

one of the various decision classes. In fault diagnosis, these decision classes are the 

different types (or locations) of faults occurring in the system. One of the advantages of 

neural networks is their ability to partition the pattern space for classification problems. 

Hence, a neural network can be used as a classifier (or pattern recogniser) to partition 

residual patterns and activate alarm signals. It can therefore detect and isolate the faults 

accordingly. In the training of neural networks to classify faults, output node values of 0.1 

and 0.9 are typically used to indicate fault-free and faulty cases, respectively. In the 

application to fault diagnosis, output values above 0.5 indicate a fault. If fault patterns are 

known to occur for specific faults, this information could be stored in the neural network 

by choosing the training set of the neural network to coordinate with known faults.

Fault diagnosis scheme based on neural networks

The neural networks-based FDI scheme, taken from (Patton and Chen, 1999), is

illustrated in Figure 2.9. This scheme comprises two stages: residual generation and 

decision-making. The residual generation scheme described here is based on the 

comparison of actual and anticipated system responses. The anticipated system response 

is generated by a neural network-based prediction model, shown in Figure 2.7. The 

difference between actual and predicted outputs gives rise to a residual vector 

r(k} = y(k}- y(k], where y(k) is the actual output and y(k) is the predicted output, 

defined by equation (2.2). The residuals generated in this way should be independent of 

the system operating state under nominal plant operating conditions. In the absence of 

faults, the residual is only due to unmodelled noise and disturbance. When a fault occurs 

in the system, the residual deviates from zero in characteristic ways.
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• powerful non-linear mapping properties,

• noise tolerance,

• self-learning,

• parallel processing capabilities.

2.8.2 Self-organising maps

Neural network models can also be used for unsupervised learning using a SOM, in 

which the neural network learns some internal features of the input vectors. A SOM maps 

the non-linear statistical dependencies between high-dimensional data into simple 

geometric relationships, which preserve the most important topological and metric 

relationships of the original data. This allows the data to be clustered without knowing the 

class memberships of the input data.

Process monitoring using SOM

Figure 2.10 shows how the input vectors of the SOM are formed and manipulated when

the monitored process is an industrial process (Alhoniemi, et al, 1998; Simula and 

Kangas, 1995). Input and output measurements as well as process parameters are 

collected into a data buffer, where data is processed. Inputs, outputs and process 

parameters are concatenated to form a feature vector, which is used as an input to the 

SOM. Due to the topology preserving property of the map, similar features corresponding 

to similar states of the process are mapped close to each other resulting in clusters on the 

map. 

In process monitoring, two different approaches can be distinguished:

1. The SOM may be applied in on- or off- line process analysis. In this case, the

SOM provides analysis of normal operation of the process, without fault diagnosis

capabilities.
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2. The SOM may be used to detect (and possible identify) faults occurred in the 

process. Now the situation is opposite to one above: effect of faults is emphasised

and variations in the normal operation are less important.

Feature Vector

Training
Mi

Labelling

Input
Input Measurements __

Process Output

Output '

Data 
Buffer

Processing

Process Parameters
Self-Organising Map 

Figure 2.10 Application of the SOM in industrial process monitoring: 

(1) Data processing, (2) Map training, (3) Validation, (4) Visualisation.

Process analysis using SOM

In on-line use, the SOM is used to form a display of the operational states of die process.

The operation point (i.e., the current process state) and its history in time can be 

visualised as a trajectory on the map, which makes it possible to track the process 

dynamics. The SOM facilitates understanding of processes so that several variables and 

their interactions may be inspected simultaneously. In off-line analysis, the SOM is also a 

highly visual data exploration tool. In (Kasslin, et al, 1992) a SOM was used to monitor 

the state of a power transformer and to indicate when the process was entering a non- 

desired state represented by a "forbidden" area on the map. In (Tryba and Goser, 1991) a 

SOM was applied for monitoring of a distillation process and discussed its use in 

chemical process control in general.

Fault diagnosis using SOM

Another important application of the SOM is in fault diagnosis. The map can be used in

two ways:

1. to detect the fault,
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2. to isolate the fault.

In practical applications, it is possible to distinguish between two different situations: 

whether measurements of the faulty situations are a priori available or not. In the learning 

space, the map is trained to recognise only those states of the process that are covered by 

the measurements. Thus, the state space is divided into two parts:

• the possible operation space,

• its complementary space.

Therefore, only the situations included into the training data can be recognised by the 

labelled map. In the case when the training data contains no measurements from faulty 

situations, the operation space on the map covers only normal situations. Fault detection 

can now be based on the quantisation error. A faulty situation can be detected by 

monitoring the quantisation error (distance between actual feature vector and its Best 

Matching Unit (BMU)). If the quantisation error is greater than a predetermined threshold 

the process is in a faulty situation i.e. the operating point belongs to the complementary 

space, not covered by the training data. Therefore, the situation has not occurred before 

and something is possibly going wrong.

The problem of fault detection and isolation is more difficult. The SOM should be trained 

using all possible data describing the process: both normal and abnormal situations should 

be present in the training data set. If necessary, measurements describing simulated faults 

may be added. Map units representing faulty states of the process may be marked 

(labelled) according to known samples. In these cases, clusters corresponding to certain 

faults are created on the map and these clusters can be considered as "forbidden" areas. 

The fault can now be easily identified by following the trajectory of the operating point. If 

the trajectory moves to a forbidden area the fault will be identified. Hence, location of the 

operating point on the map indicates the process state and the possible fault type.
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2.9 Control allocation techniques for aircraft

Significant efforts have been undertaken in research community over last two decades to 

solve the control allocation problem for modern aircraft. Different methods for problem 

solution are briefly described here, while more details with precise mathematical 

formulation and examples can be found in Chapter 4. These methods are important, 

because the control allocation problems for an aircraft and an underwater vehicle are very 

similar. In both cases, the control allocation problem can be defined as the determination 

of the actuator control values that generate a given set of desired or commanded forces 

and moments. Publications on control allocation problem are almost exclusively 

application driven, which results in different notion and terminology, depending on 

particular application. In aerospace applications, the term control effector is used as a 

common name for control surface (elevator, ailerons, rudder, etc.) or force/moment 

generator (for example, thrust vectoring vane) of the aircraft. In order to reflect the ability 

of the control effectors to generate effects in addition to moments, a set of desired 

(commanded) forces and moments is referred as a set of objectives (Beck, 2002). A 

typical modern aircraft has many more effectors than objectives and the control allocation 

problem has many solutions. Multiple solutions provide the extra freedom and 

redundancy in the case of damage in one or more effectors. The similar case appears in 

solving the control allocation problem for underwater vehicles with overactuated control 

system in the horizontal plane, where the number of effectors (thrusters) is four and the 

number of objectives (desired surge and sway forces and yaw moment) is three. Some 

kind of criteria must be employed to extract the best solution from the infinite set of 

solutions. Bordignon (1996) summarised much of the history and early work on the 

control allocation problem in his dissertation. He described several methods, including 

various ad hoc schemes, direct control allocation methods, methods that belong to the
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general group of generalised inverse methods and methods which daisy chain groups of 

controls. In the following, these methods are briefly reviewed.

2.9.1 Ad hoc methods

The common characteristic of the ad hoc methods, cited by Bordignon (1996), is that the 

control designer uses engineering judgment to assign individual control effectors to 

specific moment commands. The serious drawback of these methods is that these systems 

are unable to make use of the individual effector's capabilities to generate moments in 

axes other than that chosen by the designer.

2.9.2 Direct control allocation

Direct control allocation, proposed in (Durham, 1994a; 1993), is an approach based on 

the concept of the Attainable Moment Set1 (AMS). The AMS (denoted by *) is the set of 

all moment vectors, m, that are achievable within a set of control constraints (denoted by 

Q). The motivation behind this method was the recognition that current solution methods 

to the control allocation problem, although sometimes computationally simple, were 

restrictive, i.e. the full set of moment-generating capability of the aircraft controls was not 

realisable by existing schemes. In contrast, direct control allocation, while 

computationally expensive, allows the entire attainable moment set to be used. The vector 

u is called a control vector and its components are called controls. Direct control 

allocation solves the problem employing the following steps (Leedy, 1998):

1. Determine the actual AMS,

2. Search and solve for the intersection m* = amd of the AMS and the half-line in 

the direction of md ,

Duihara uses the term moment because he discusses the problem from the aircraft control perspective.
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3. Find unique vector of controls u* , which produce the vector m* ,

4. Scale the result by the inverse scaling factor from step 2. i.e. compute

The method is based on the fact that, for overactuated systems, the linear mapping 

m ~ Bu,me <J>,U€ H is many-to-one on the interior of <I> and one-to-one on the 

boundary of 4> , under assumption that any k columns of the control effectiveness matrix 

B are linearly independent (linear independency condition), where k is the number of 

rows of B . The equivalent interpretation of this condition is that no k actuators produce 

coplanar vectors. The direct control allocation concept can be extended to cover the 

systems that do not satisfy the linear independence condition (see Petersen and Bodson, 

2000). Another difficulty of the direct allocation formulation is that the construction of 

solution requires that the lower and higher constraints of the control vector have opposite 

signs. This condition could be violated in the case of rate-limited actuators (see section 

4.3,1). The original algorithm (Durham, 1993) was slow and difficult to implement. An 

elegant approach, proposed in (Durham, 1994b) reduced considerably the number of 

computations. Petersen and Bodson (1999) proposed a fast implementation using 

spherical coordinates and look-up tables.

2.9.3 Generalised inverse

For systems with equal number of effectors and objectives, the obvious method to solve 

the control allocation problem is to invert the control effectiveness matrix, B . The 

extension of this approach for overactuated (under-determined) systems is to use a 

Generalised Inverse (GI) matrix. A right generalised inverse of a matrix B is any matrix 

P satisfying
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BP = I (2.3)

A solution of the control allocation problem m = Bu can be found using P as follows:

m = Bu => BPm = Bu => u = Pm (2.4) 

The most common choice for a GI is the Moore-Penrose pseudoinverse,

P = B+ =B7 (BB T JT (see Appendix B). In the absence of constraints on the control 

vector, this inverse minimises the /2 norm of u, i.e. |u|2 . Control efforts of individual

effectors can be weighted by minimising the weighted norm, |ju|w = VurWu , where W 

is a positive definite, weighting matrix, usually diagonal. The resulting pseudoinverse 

matrix has the form B^ = W"'BT (B\V"1Br )T1 (see Appendix B). Fossen (1995) used this 

approach to determine optimal distribution of propulsion forces with the minimal control 

effort (see page 2-52). GI solutions have the advantages of being relatively simple to 

compute and allowing some control in distribution of control energy among available 

effectors. However, handling of constrained controls is the most difficult problem for GI 

approach. In some cases, the solution obtained by generalised inverse approach is not 

feasible, i.e. it does not belong to Q . Durham (1993) demonstrated that, except in certain 

degenerate cases, a general inverse cannot allocate controls inside Q that will map to all 

of 4>, i.e. only subset of & can be covered. Bordignon (1996) suggested two methods to 

handle unfeasible solutions, i.e. cases where attainable objectives cannot be allocated2. 

The first approach calculates a GI solution and truncates any controls which exceed their 

limits. The second approach maintains the direction of the objective command by finding 

the largest scaling factor, a (0 < a < l), which satisfies u = aB +y d without violating the

2 The PDAS uses terms truncation and scaling for the first and the second type of approximation, 

respectively.
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control constraints. Even if the controls do not saturate, care must be taken in choosing 

the GI. When weighted pseudo-inverse solutions are used for problems where the control 

effectors are measured in different physical dimensions, the elements of the weighting 

matrix must be chosen carefully if the resulting solution is desired to be invariant to 

changes in units and coordinate systems (Doty, et al, 1993). The PDAS overcomes this 

problem by performing normalisation, such that all physical parameters are removed from 

the B matrix and included in limit constraints, which are used during normalisation 

process to scale individual components of vectors on interval [- l,l].

2.9.4 Daisy chain method

In the general case the standard GI approach is not able to yield admissible control for all 

AMS. This means that there is some control power available to improve the accuracy of 

solution, even when some of the effectors are saturated, i.e. instead of using any of two 

GI approaches mentioned in the previous section, it is possible to find even better 

solution, which uses this additional power (Beck, 2002; Bordignon, 1996). A daisy chain 

allocator partitions the control effectors into two sets, so that objectives unattainable by 

the first set are allocated with the second set. The method can be used for any type of 

control allocation scheme, although it was firstly proposed as improvement of GI method. 

The main idea of the daisy chain method is partitioning of control effectors into two 

groups using prioritising scheme, where a second set of effectors is used only when the 

first set is unable to meet the demands. Figure 2.11 illustrates the daisy chain approach. 

Primary set of controls is allocated first, and then the secondary set is (optionally) 

allocated using the residual objective y d2 =y d -Bu,. Daisy chaining control allocation 

enables limiting the usage of certain control effectors. The most important drawback is 

the inability to allocate controls for some portions of 3> (Bordignon, 1996; Durham,

1993).
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J d

I Control allocator: u, a^ Control allocator: u,

Figure 2.11 Daisy chain allocation method.

Another drawback is demonstrated in (Berg, et al, 1996). The authors showed that there 

is a phase delay in the output of a daisy chain, in response to inputs that rate saturate the 

individual sets of controls in rate-limited systems.

2.9.5 Optimisation based methods

In the past, many optimisation based methods were not attractive for solution of the 

control allocation problem, because of their high demand for computational power. But, 

fast development of computer hardware and increasing of computational performance 

made these methods more suitable for control allocation. The control allocation problem 

can be pragmatically seen as a determination of feasible control vector u for a given 

vector of objectives y, such that Bu = y . If the solution is not unique, the best one must 

be found. If the solution does not exist, vector u has to be determined such that Bu 

approximates y as well as possible. In light of this pragmatic interpretation, three 

mathematical formulations of the control allocation problem are proposed in (Bodson, 

2002):

Error Minimisation Problem
Given a matrix B and a vector y, find a vector u, which minimise

/=Bu-y (2.5)

subject to
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«mm5uS Umax 3 (2.6)

Control Minimisation Problem

Given a matrix B , a vector u p and a vector u, such that u^ < u, <, u max , find a vector

u which minimise

(2-7) 

subject to

Bu = Bu, (2.8) 

and (2.6).

Mixed Optimisation Problem

Given a matrix B , a vector y and a vector u p , find a vector u which minimise

(2.9) 

subject to (2.6).

The error minimisation problem is the most commonly encountered formulation of the 

control allocation problem. The 12 norm is typically used in (2.5), although the /, norm 

has also been proposed in order to use linear programming techniques (Dceda and Hood, 

2000; Enns, 1998; Lindfors, 1993). In most cases, a weighting matrix is inserted in the 

norm to prioritise the axes.

The control minimisation problem is a secondary optimisation objective to be satisfied if 

the solution of the primary objective is not unique. The vector u^ represents preferred 

position of the effectors (for example, zero deflections). The primary objective is to find 

the minimum error solution (2.5). If this solution is not unique, the secondary objective is

' Vectors are compared on component-to-component basis.
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to pick, among all these solutions, the solution with minimum deviation from the 

preferred position.

The mixed optimisation problem combines the error and control minimisation problems 

into a single problem through the use of a small, weighting parameter e. If the parameter 

£ is small, priority is given to error minimisation over control minimisation, as desired. 

Often, the combined problem can be solved faster than the error and control minimisation 

problem solved separately and with better numerical properties.

Recently, some authors reformulated the constrained control allocation problem as a 

Quadratic Programming (QP) problem. QP generally refers to the numerical solution of 

the optimisation problems with an 12 norm. An explicit solution approach is developed by 

T0ndel, et al. (2001). An on-line algorithm is presented in (T0ndel, et al. 2003), while the 

application to marine vessels is given in (Johansen, et al, 2002). An alternative to the 

explicit solution is to use an iterative solution to solve the QP problem. The drawback 

with the iterative solution is that several iterations may have to be performed at each 

sample in order to find the optimal solution. An advantage of the iterative approach is that 

there is more flexibility for on-line reconfiguration. Computational complexity is also 

greatly reduced by a "warm start", i.e. the numerical solver is initialised with the solution 

of the optimisation problem from the previous sample (Fossen, 2002).

2.10 Fault diagnosis and accommodation for underwater vehicles

Recent advances and approaches in fault diagnosis and accommodation for underwater 

vehicles are given in this section. The approach adopted is to use the key words from the 

title of the paper as subsection heading. Approaches proposed by Yang, et al, (1999; 

1998), Fodder, et al, (2000) and Fossen (1995) are described in more detail, because the 

main ideas of these approaches were used as a foundation for development of the novel 

thruster fault diagnosis and accommodation system, described in Chapter 5.
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Model-based approach for self-diagnosis of AUV (Takai and Ura, 1999)

Takai and Ura (1999) proposed a model-based approach for self-diagnosis of an AUV. 

The performance of the proposed system was examined through tank tests using a test- 

bed AUV called a "Twin-Burger", with two horizontal thrusters (HT1 and HT2) and one 

vertical thruster (VT), A key element of the self-diagnosis scheme was a recurrent neural 

network representation of the dynamics of the AUV. The proposed self-diagnosis system 

consists of two subsystems (see Figure 2.12): Model Matching Part (MMP) and 

Diagnosis Part (DP). The MMP includes a dynamic model that represents the 

characteristics of the vehicle's motion. The MMP produces index values that result from 

the comparison between sensor and model outputs. In the DP, the index values from the 

MMP are used to identify the defective component of the vehicle. When the information 

for accurate identification of the defective component is insufficient, the DP selects an 

appropriate predefined control sequence for the vehicle ("Active Diagnosis"), in order to 

acquire more information for identification. When a sensor failure is identified, then the 

outputs of the dynamics model are used instead of sensor outputs for control purpose 

("Substituting Control").

As shown in Figure 2.12, the proposed self-diagnosis system introduces two diagnosis 

procedures ("Routine Diagnosis" and "Mission Diagnosis") in accordance with the 

situation when the diagnosis is carried out. The vehicle executes the routine diagnosis 

before starting a mission in order to check the hardware. A predefined control sequence, 

called "Diagnosis Motion Sequence", is applied to drive the actuators. The mission 

diagnosis is introduced to supervise the hardware condition of the AUV during the 

mission. The MMP continuously compares the model outputs with the sensor outputs 

during the mission and the DP verifies whether a fault exists or not. The example of a 

pattern table, used in the Diagnosis Part, is given in Table 2.1.
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Routine Diagnosis Mission Diagnosis
Diagnosis Motion 

uences Mission

Model
Matching
Part

Robot

Sensor outputs Model outputs

Calculation of 
index values

Diagnosis 
Part Binary 

transformation
Be.

Thresholds

Pattern 
classification Pattern table

Pattern 
classification 
completed?

Active 
diagnosis

Selection of an appropriate
action scheme

(Dispatch of Emergency Signal,
Substituting Control etc.)

Figure 2.12 Self-diagnosis system for AUV, proposed in Takai and Ura (1999).

State
0 - normal, 1 - abnormal

••£££• Surae
^^^^1 velocity

0
1
2

3

4

0

1

1

0

0

Yaw
rate

0
1
0
1

0

•KJcCTT^H Defective component
velocity ^^^^^^^^^^^^^^^^H

0
0
0
0
1

Nothing
HT1 or HT2

Sensor (Surge velocity)
Sensor (Yaw rate)

VT or Sensor (Heave velocity)

Table 2.1 Example of a pattern table.
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When a fault is detected, the system selects an appropriate action in order to cope with the 

fault e.g. interrupt the mission or carry out the routine diagnosis to identify the fault. The 

proposed scheme was implemented on a test bed AUV, and results showed its ability to 

cope with sensor and actuator failures. The results of the experiment showed that the 

proposed self-diagnosis system was able to identify the fault and complete the mission, 

using Substituting Control.

On-line damage detection for AUV (Rae and Dunn, 1994)

The problem of on-line damage detection for AUV is addressed in (Rae and Dunn, 1994). 

Several expected system failures, examples of their occurrence, categories to which they 

belong and probable responses are listed in Table 2.2. For example, the creeping failure 

could be a motor seizing up or the loss of pressure in a ballast system, leading to slower 

response times, and reduced response magnitudes.

Damage Type Time of event Result

Breaking

Jamming

Slipping

Creeping failure

Control failure

Instantaneous

Instantaneous

Intermittent

Gradual

Instantaneous

Instant

Instant

Intermittent

Persistent

Any

Zero response

Permanent offset

Intermittent

Decreasing response

Random

Table 2.2 Damage types.

The authors introduced the concept of "damage level", the amount of system degradation. 

A damage level of 0.0 indicates no damage, while 1.0 means total failure. Figure 2.13 

displays three typical types of damage (Instantaneous, Gradual and Intermittent Failure). 

Damage to the system must be associated with the level over which the problem occurred, 

because of the existing discrepancy in time lengths of different activity levels (mission, 

sub-mission, task, manoeuvre). For example, consider the case where an instantaneous 

failure occurs during a task (typical length 10 minutes). This is equivalent to a gradual

failure during a manoeuvre (typical length 1 minute).
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Figure 2.13 Types of damage.

Damage detection has been implemented and tested for three Single Input Single Output 

(SISO) systems (Rudder - Yaw, Sternplane - Depth and RPM - Speed). The non-linear 

simulation was developed on a Silicon Graphics IRIS. Recent changes in vehicle 

performance are determined by comparing two constantly updated models. These changes 

are indicated by differences in the coefficients of the two ("fast" and "slow") models. The 

information is extracted by performing several levels of manipulation on the coefficient 

difference time history. The authors proposed a hierarchical approach in order to monitor 

systems for slowly changing problems: slow models are used in a low level, while fast 

models are used in a higher level. Simulation results demonstrated that the proposed 

damage detection system was able to detect four typical failures in an AUV (slip of speed 

sensor, jam in the paddlewheel sensor, total depth-system failure, wind-up error in the 

compass).

Fault detection of actuator faults in UUV using bank of estimators 
(Alessandri, etaL, 1999)

A fault-diagnostic system for unmanned underwater vehicles was designed and tested in 

real operating conditions by (Alessandri, et al, 1999). They considered total and partial 

actuator faults. An approximate model of the vehicle was used. A simple PID controller
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has been designed to perform auto heading. A fault in a thruster acts on the dynamics of 

the vehicle as a virtual disturbance, for which the controller tries to compensate. Fault 

detection and diagnosis was accomplished by evaluating any change in the normal 

behaviour of the system by comparing the state, the parameters and other related 

quantities of the observed process with those of the normal and faulty processes. On the 

basis of the healthy and faulty models, a bank of estimators was used for the nominal 

plant, the left and the right actuator fault (see Figure 2.14).
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Figure 2.14 An observer-based fault-diagnostic scheme.

Extended Kalman filters (EKF) were implemented in the process of residual generation 

for each actuator fault type, including the no-fault case. This scheme showed effective 

isolation, at the cost of greater computational efforts. Experimental results proved the 

effectiveness of the proposed approach. Test trials were undertaken in pool with the Roby 

2 vehicle. A right thruster fault was introduced by switching off the right propeller. The 

residuals of the EKF based on the model of the right propeller fault became smaller, while 

the residuals of the other two EKF became bigger. The residual evaluation involves three 

steps: (i) collect the residuals, (ii) compute the required quantities as functions of the 

residuals, (iii) choose the thresholds for each filter. It was found that unprocessed (non- 

filtered) residuals produced false fault alarms, which were eliminated by low-pass 

filtering. The authors mentioned that the evaluation of the residuals can be improved by
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integrating all the available information, such as the external conditions of the 

environment or information related to the dynamics but not included in the model of the 

residual generator (Zhuang and Frank, 1997). For instance, the revolution rate and the 

current absorption of the propulsors are useful in monitoring the performance of the 

vehicle in cases of thruster malfunctions. If a leakage occurs in the canister containing 

one of the DC motors, an abnormal increase in the current is measured.

Fault-tolerant system design of AUV (Yang, et al., 1999; 1998)

A fault-tolerant system for use in an experimental AUV was outlined in (Yang, et al, 

1999; 1998). The system was subdivided into individual fault-tolerant subsystems for 

dealing with thruster and sensor failures separately. The thruster subsystem consisted of a 

rule base for detection and isolation purposes, and an algorithm for reconfiguring the 

thruster control matrix by eliminating the corresponding column to accommodate the 

failure. Only a total fault (failure) of the thruster was considered. The authors used a 

constraint-based method instead of the pseudo-inverse method to compute the inverse of 

the thruster configuration matrix. An experimental investigation was conducted on a 6 

DOF AUV, Omni Directional Intelligent Navigator (ODIN) at the University of Hawaii 

to evaluate the performance of the proposed approaches and experimental results showed 

that the overall system was capable of performing effectively. More details about these 

interesting works are given in the following.

ODIN is 6 DOF spherically shaped, underwater vehicle with four horizontal thrusters 

(HT1, HT2, HT3 and HT4) and four vertical thrusters (VT1, VT2, VT3 and VT4, see 

Figure 2.15). The vertical thrusters allow instantaneous coupled motions of pitch, roll and 

heave. The four horizontal thrusters allow instantaneous coupled motions of sway, surge 

and yaw. From the eight-thruster configuration, the vehicle possesses inherent thruster
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redundancy, because the 6 DOF motion is possible with only six thrusters (three 

horizontal and three vertical thrusters).

It is assumed that the origin of the body-fixed frame {#} is located in the centre of the 

sphere. The relationship between the vector of individual thruster forces f and vector of 

total forces and moments T , exerted by thrusters, is given by:

t = TCM f (2.10)

Figure 2.15 ODIN in the underwater environment.

where

r = [X Y Z K M Nj is a generalised vector of total forces and moments,

exerted by thrusters,

f = [#7^ HT2 HT3 HT4 VT, VT2 VT} VT4f is vector of individual thruster

forces,

2-42



Chapter 2: Literature Review
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5 = sin 45°,

Rv is the radial distance from centre to the centre of the vertical thruster,

RH is the radial distance from centre to the centre of the horizontal thruster.

To calculate the required input voltages for the thrusters, the force requirement for

individual thruster must be obtained by inverting thruster control matrix

f = TCM'T (2.11) 

Matrix TCM is non-square 6x8 matrix and cannot be inverted in standard way. Instead 

of using the pseudo-inverse method for a non-square matrix TCM, the authors 

introduced the constraint-based method. Firstly, the TCM is separated into two 3x4 

matrices (separated relationships for horizontal and vertical thrusters):

horizontal TCM :

vertical TCM :
Z 
K
M

s -s -s s 
s s -s -s

HT
(2.12)

-1 -I -1 -1
Rvs Rvs -Rvs -Rv
Rvs -Rvs -Rvs Rvs

VT/ 
VT2 
VT3

(2.13)

During normal operation, without any thruster failure, each of 3x4 matrices can be 

modified to a 3x3 matrix by applying a proper constraint to one of the thrusters (one 

horizontal and one vertical thruster).
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constraint on horizontal thrusters (normal operation): HT2 =-HT4 (2.14) 

constraint on vertical thrusters (normal operation): VT2 = VT3 (2.15) 

These constraints were chosen based on the fact that minimising the yaw capability by 

allowing only two thruster involvement is more efficient than minimising thruster 

involvement for the local x (surge) or local y (sway) directions. After introducing the 

constraints (2.14) & (2.15) in (2.12) & (2.13) respectively, modified relationships are:

modified horizontal TCM ;

modified vertical TCM :

The final relationships for the force requirements are
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(2.18)

(2.19)

To obtain the relationship between the input voltage and the output force of the thruster, 

an experiment using the single-thruster system set-up was conducted (Tsukamoto, et al, 

1999) and the following relationship between input voltage V and thruster force FT was 

obtained (for both rotation directions):
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453.6Fr +18.978 _ . ——————————, FT > 0
y = 505.05

1 453.6Fr -48.3l2 _ A ———————— -, Fr <0
624.7 

The thruster fault detection subsystem was built with the following assumptions:

• The maximum number of failed thrusters during the mission is two: one horizontal 

and one vertical thruster.

• Once a faulty thruster is detected, the thruster is assumed to be completely out of

service throughout the operation.

The first assumption guarantees that fault accommodation will not produce the loss in 

controllable DOF i.e. after accommodation the vehicle will still possess 6 controllable 

DOF. Each thruster is equipped with a Hall-effect sensor for measurement of shaft 

velocity. The main premise for the fault detection is that if errors between the input 

voltage (desired voltage calculated by the controller and TCM) and output voltage 

(measurement of Hall-effect sensor) do not stay within a tolerable limit inside predefined 

tolerance time, the thruster is concluded to be faulty. Values for tolerance 0.06 and 

tolerance time 3.05 were obtained by experiments. After the first stage, where the fault 

detection-isolation scheme detects and isolates a fault, the next stage is thruster fault 

accommodation, based on reconfiguration of the TCM. Because of inherent thruster 

redundancy, accommodation is performed by eliminating the corresponding column of 

the TCM . For example, if VT, is detected to be faulty, the control program reconfigures 

the vertical TCM (2.13) by eliminating corresponding (first) column in the matrix and 

reducing it to a 3x3 matrix. The reduced matrix is non-singular and can be inverted in 

the standard way. Hence, in the case of fault in a thruster, it is not needed to apply any 

constraints to obtain an invertible matrix, as in the normal (fault-free) case (2.18) & 

(2.19). Hence, proposed thruster fault-tolerant algorithm involves these steps:
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1. Obtain fault signal from detection scheme,

2. Eliminate the corresponding column in the TCM,

3. Invert the resulting matrix to obtain the required thrust for each thruster,

4. Calculate the voltage input signal (2.20).

In order to evaluate proposed thruster fault-tolerant system, test trials were undertaken at 

University of Hawaii. Fault in a vertical thruster 2 was realised with a pre-programmed 

Hall-effect sensor to generate zero output in the case of fault. When the output reads 0V 

and the error residual exceeds its tolerance limit 0.06 for tolerant time 3.0s, the 

detection scheme decides that the thruster is faulty. The fault signal is sent to the control 

program and the proper accommodation automatically takes place. In the first experiment 

the fault was injected during the steady-state and after some fluctuation the control 

system stabilized the vehicle with two thrusters and maintained the desired depth. 

Vertical thruster 4, symmetrical to faulty thruster 2, is immediately switched off after the 

accommodation period and voltage inputs to thrusters 1 and 3 become doubled compared 

to time before fault occurred, to compensate the loss of force of thrusters 2 and 4. A 

similar experiment was repeated but this time a fault was injected in vertical thruster 1 

during a depth-changing manoeuvre. The behaviour of the proposed thruster detection, 

isolation and accommodation system was similar as in steady-state case, except for the 

larger oscillations in roll and pitch motions that caused a large deviation from the desired 

trajectory. This was expected since a thruster failure during the diving motion would 

result in increased roll and pitch motions due to the moments created by the water 

turbulence; when two thrusters are switched off, the external moments cannot be 

immediately counterbalanced, resulting in oscillations. However, at steady state, ODIN 

retained the desired depth. The authors developed a voting technique with redundant 

sensors for accommodation of sensor faults, which compares the signals of two actual
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sensors and signal of a virtual sensor. Experimental results demonstrated that the 

presented approaches could effectively detect, isolate and accommodate thruster and 

sensor failures, thereby allowing the vehicle to accomplish the initially given task.

ROV actuator fault diagnosis through servo-amplifiers' monitoring (Bono, et 

aL, 1999)

A fault detection, isolation and accommodation system, based on operationally 

experienced faults in ROV actuators, is proposed in (Bono, et al, 1999). The authors 

designed a fault management system for underwater vehicles, able to satisfy the basic 

requirement of handling experienced faults (e.g. flooded thruster) and conventional zero 

output failures treated in the literature. In addition, the fault management system had to be 

easily integrated within the hierarchical control architectures. The authors published 

experience from the sea trials, when the water penetrated inside the thruster and modified 

the internal electrical connections in such a way that the actual angular speed was higher 

than the desired one, and current consumption was higher than normal. In particular, the 

salt water caused a dispersion, which reduced the feedback signal of the motor revolution 

rate from the tachometer to the servo-amplifier. Fault detection was performed by 

monitoring the servo-amplifiers residuals, while fault isolation required the vehicle to 

execute steady-state manoeuvres. Actuator fault accommodation was performed by 

inhibiting the faulty thruster and by reconfiguring the distribution of the control actions 

cancelling the corresponding column in the Thruster Control Matrix (TCM).

Fault tolerant control of an AUV under thruster redundancy (Fodder, et aL, 

2000)

The problem of optimal distribution of propulsion forces for overactuated underwater 

vehicles is addressed in (Fodder, et al., 2000). The authors investigate how to exploit the 

excess number of thrusters to accommodate thruster faults. First, a redundancy resolution
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scheme is presented, which takes into account the presence of an excess number of 

thrusters along with any thruster faults and determines the reference thruster forces to 

produce the desired motion. In the next step, these reference thruster forces are utilized in 

the thruster controller to generate the required motion. This approach resolves the thruster 

redundancy in the Cartesian space and allows the AUV to track the task-space trajectories 

with asymptotic reduction of the task-space errors. Results from both computer 

simulations and experiments were provided to demonstrate the viability of the proposed 

scheme. The paper is a development of the preliminary concept proposed in (Fodder and 

Sarkar, 1999). This concept is described below in more detail. 

The dynamic equation of motion of an AUV can be written in the following form:

Mw + C(w)w + D(wV + G(q) = T (2.21) 

where

q,^, is the generalised position and orientation vector in the Earth-fixed frame, 

w6xl is the linear and angular velocity vector in the body-fixed frame, 

M6x6 is the inertia matrix of the AUV which includes both the rigid body and the added 

mass terms, 

C^ is the matrix of centrifugal and Coriolis terms which includes both the rigid body

and added mass terms,

D6X6 is the matrix of hydrodynamic drag terms,

G6xl is the vector of restoring forces (gravity and buoyancy),

T6xl is the vector of generalised forces, exerted by thrusters.

It is assumed that n (number of thrusters) is greater than 6 . The relationship between T

and F, is given by
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t = EF, (2.22) 

where

E6xn is the thruster configuration matrix, 

F(nxl is the vector of thruster forces.

The matrix E captures the geometry of the AUV and its thruster positions and 

orientations to transform the individual thruster force into generalised forces and 

moments. Substituting (2.22) in (2.21) yields

w = M-'(EF,-0 (2.23) 

where

£ = C(w)w + D(w)w + G(q) (2.24)

The relationship between q and w is given by linear transformation

q = Bw (2.25)

where B6x6 is the transformation matrix. Differentiation of (2.25) leads to

q=Bw+Bw (2.26)

The task space (i.e. the Cartesian space) velocity and the derivative of the generalised

coordinates are related by the following relation:

x-Jq (2.27)

where

x«xi is position and orientation vector in the task space (m < 6),

Jmx6 is the Jacobian matrix.

Differentiating (2.27) and combining with (2.25) & (2.26) leads to

(2.28)

2-49



Chapter 2: Literature Review

Finally, substituting w from (2.23) into (2.28) gives the following relationship between 

the task-space acceleration and the thruster forces

x = I*F, + p (2.29) 

where

^mxn = JBM~'E is the thruster control matrix, 

Pmxi - (JB + JBjw - JBM~'£ is the vector of nonlinear terms.

The Moore-Penrose Generalised Inverse of the non-square matrix n was employed to 

obtain the unique least-norm solution for the thruster force

F,=ji+ (x-p) (2.30)

where |i+ = nr ((ifir ) is the pseudoinverse of n (see Appendix B). 

The author developed a method of thruster forces redistribution (reallocation) in the 

presence of a fault in one or more thrusters, without going into details of the possible 

nature of thruster faults and how they can be detected. The objective is that, when a fault 

in a thruster occurs, thruster forces should be redistributed among the functioning 

thrusters in such a way that the AUV still follows the desired task-space trajectories. The 

weighted pseudoinverse ji^, of the thruster control matrix ji is introduced, in order to 

incorporate the thruster faults into the mathematical formulation of the problem (Ben- 

Israel and Greville, 1974):

Vr (2.31) 

where Wnxn is a symmetric and positive definite weight matrix. 

The weighted least-norm solution for the thruster force is defined by

F = + (x-p) (2-32)
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The individual components of the thruster force vector F, can be modified by changing

the weights in the weighting matrix W. The authors introduced Thruster Fault Matrix 

Vnxn , defined as

•P = W' (2.33) 

where W = Inxn is identity matrix. In the normal case, without any faults,

¥ = W"1 = I"1 = I and equation (2.32) becomes equation (2.30). In the case of failure in a 

thruster 7), the associated weight w>, in the matrix W becomes equal to infinity and 

corresponding diagonal element \l/t of the matrix *P becomes equal to zero and equation 

(2.32) becomes different than equation (2.30).

Rewriting (2.32) in terms of thruster fault matrix it is possible to obtain an expression for 

the allocation of thruster forces subject to thruster faults:

~'(x-p) (2.34) 

Equation (2.34) allows determining a thruster force allocation in the presence of thruster 

faults.

Computer simulations and underwater experiments with ODIN, University of Hawaii, 

were undertaken in order to evaluate the proposed approach. The thruster faults were 

simulated by imposing zero voltages to the relevant thrusters. Results from two cases 

were presented. The first case was trajectory following task without any fault in thrusters. 

Both (simulation and experimental) results for all six trajectories matched corresponding 

desired trajectories within reasonable limits. In the second case, the same trajectory 

following task was performed, but this time with thruster faults. Firstly, a fault was 

injected in a horizontal thruster and then, after some time, in a vertical thruster. Both 

faulty thrusters were located at the same thruster bracket of ODIN. Thus this situation is 

one of the worst fault conditions. The only visible consequence of the faults was in yaw
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response, where a small error was visible at the last part of the trajectory. Beside that, 

there was small perturbation after the second fault, from which the controller quickly 

recovered. The authors observed that, besides a lot of similarity, there was discrepancy 

between simulation and experimental results. In particular, discrepancy was visible for 

responses of vertical thrusters. Several reasons for explanation of these differences were 

highlighted (ODIN is not perfectly spherical, thruster model is not perfect, presence of 

unexpected disturbance from water current in swimming pool, presence of the noise in the 

sonar navigation system, effects of the cable are neglected).

Optimal distribution of propulsion and control forces (Fossen, 1995)

If the number of control inputs p is equal to or more than the number of controllable 

DOF n, it is possible to find an "optimal" distribution of the control energy, which 

minimises the quadratic energy cost function i.e. a measure of the control effort (Fossen, 

1995). The quadratic energy cost function is defined as

/ = -urWu (2.35)
2

where u pxl is control vector defined as

i=lj (2.36) 

and nt is angular velocity (propeller revolution) of the thruster Tl . The relation between 

force vector T and control vector u is determined by affine thruster model

T = Bu (2-37) 

where Bnx is thruster control matrix. The problem can be formulated as follows: find u , 

which minimise criteria (2.35) subject to constraint (2.37). W is a positive definite 

matrix, usually diagonal, weighting the control energy. The solution of the problem is 

given in Lema B.2 (Appendix B).
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Hence, if desired force vector td is known, then required control vector u, which should 

be applied to actuate thrusters can be computed from

« = BwTrf (2.38) 

If control vector u (2.38) is applied to actuate the thrusters, the force vectorT = Bu, 

exerted by thrusters, is equal to desired force vector td in the ideal case, neglecting 

possible thruster velocity saturation. However, in real applications saturation always 

exists and must be taken into account.

2.11 Concluding remarks

The intention of the chapter was to undertake a literature survey to explain fundamental 

approaches to fault diagnosis and accommodation of dynamic systems. Special attention 

was devoted to the control allocation techniques for aircraft and fault diagnosis 

approaches applied to underwater vehicles. It is possible to summarise the weak points of 

latter approaches as follows:

• The assumption that a faulty sensor generates a zero output is not realistic in 

practical applications,

• The problem of the accommodation of a partial thruster fault is mentioned, but not

fully solved.

The work presented in this thesis addresses these issues and provides an original, practical 

solution to the problem, which is integrated into a novel thruster fault diagnosis and 

accommodation system, described in Chapter 5.
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Chapter 3: Modelling of ROV & Propulsion System

3.1 Introduction

Experimenting with a real ROV is time consuming and expensive. A dynamic model is 

useful for simulation purposes and investigation of different control algorithms. In order 

to investigate different approaches for the design of the fault diagnosis and 

accommodation system, it is necessary to use realistic models of the vehicle and the 

propulsion system. In this chapter the development of non-linear dynamic models of 

thrusters and an ROV in 6 degrees of freedom (DOF) is described. 

The chapter is organised as follows: reference frames for the description of the ROV 

motion are defined in section 3.2, and kinematic equations are given in section 3.3. 

Dynamic equations of motion are given in section 3.4. Forces and moments acting on the 

ROV are described in section 3.5, and diagrams for simulation of ROV dynamics and 

kinematics are given in section 3.6. Section 3.7 discusses the propulsion system and, 

particularly, thruster models and the thruster control unit. Section 3.8 summarizes 

concluding remarks, and a list of references, cited in text, is provided in section 3.9.

3.2 Coordinate frames

Considering a ROV as a rigid body with six DOF, two approaches can be used in deriving 

the equations of motion:

• The Newton-Euler approach, related to the forces and moments acting on the 

body,

• The Lagrangian approach, related to the vehicle's total energy. 

When analysing the motion of ROV in 6 DOF it is convenient to define two coordinate 

frames as indicated in Figure 3.1 (Ridao et al, 2001; Fossen, 1995). The moving 

coordinate frame {#} is body-fixed and its origin O is usually chosen to coincide with 

the centre of gravity (CG ) of the ROV. The motion of the body-fixed frame is described
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relative to the Earth-fixed frame {f}, which can be considered as inertial1 , as the effect of 

the Earth's motion on the low speed ROV is negligible. This suggests that the position 

and orientation of the ROV should be described relative to the {#}, while the linear and 

angular velocities of the ROV should be expressed in {#}.

: * ' «v {B} - Body-fixed frame 
O

(PITCH] q 2. 

(SWAY) yg - Earth-fixed frame

Figure 3.1 Body-fixed and Earth-fixed coordinate frames for ROV.

3.3 Kinematic equations of motion

The kinematic model describes the geometric relationship between Earth-fixed and body- 

fixed reference frames. These equations are described by the vectors E i\ and B v:

',-
E - position and orientation vector relative to {E}

- position vector relative to

1 An inertial frame of reference is any set of coordinates at rest or moving with constant velocity. The laws 

of physics are unchanged in any one of the inertial frame of reference. For most purpose, Earth is a good 

inertial frame of reference in spite of its rotation and revolution, (http://www.atlans.org/elements/force)

3-3



Chapter 3: Modelling of ROV & Propulsion System

'12 = - orientation vector relative to {£}. This nomenclature is used in the case of

Euler angle attitude representation; for Euler parameters (Unit quaternion) 

representation vector E i\2 is replaced by vector ee (see section 3.3.2); for 

Modified Rodrigues parameters representation vector E i) 2 is replaced by 

vector £ o (see section 3.3.3);

N.
''•>,'

- linear and angular velocity vector relative to {fi}

v,= - linear velocity vector relative to

- angular velocity vector relative to {#}

3.3.1 Euler angles representation

For rigid-bodies in 6 DOF the non-linear dynamic equations of motion have a systematic 

structure that becomes apparent when applying vector notation (Fjellstad and Fossen, 

1994b). These equations are usually separated into translational and rotational motion. 

Position is specified by a 3x1 vector, while various representations of the attitude have 

been discussed in the literature. The most frequently applied representation is Euler angle 

representation. The popularity of the Euler angle representation can be explained by its 

easily understood physical interpretation and the fact that the Euler angles can be 

measured directly with sensors (gyros). There are also some disadvantages, as mentioned 

below. Euler angle representation belongs to the family of 3-parameter representations 

and therefore it must contain singular points (Stuelpnagel, 1964). The orientation of a
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rigid-body is usually represented by means of the Euler angles: roll (0), pitch (0) and yaw 

(#). If vectors fl v, and B \2 are known, then it is possible to find time derivatives of

vectors E H{ and £ ij2 using linear transformations:

(3.1)

(3.2)

where J,(£ il2 ) and J 2 (£ ii2 ) are transformation matrices, defined as:

sin^costf cosj/cos^+sin^sintfsin^ -cos(csin< 
-sin 8 cos 9 sin </> cos 6 cos </>

(3-3)

-SU10 (3-4)

Notice that J^ifc) is undefined for a pitch angle 6 = ±90° and becomes ill conditioned 

when the pitch angle approaches ±90° (Silpa-Anan, 2001). For ROVs, which operate 

close to this singularity, it can be a problem. Other disadvantages of the Euler angles 

representation are extensive computations with trigonometric functions. One solution is to 

use Euler parameters (see section 3.3.2) or Modified Rodrigues parameters (see section 

3.3.3). Another solution is to use the kinematics equations described by two Euler angle 

representations with different singularities (Fossen, 1995; Fjellstad and Fossen, 1994b). 

Relations (3.1) & (3.2) can be represented in a compact form:

0'3X3

03x3
(3.5)
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3.3.2 Euler parameters (Unit quaternion) representation

An alternative to the Euler angle representation is a 4-parameter method based on unit 

quaternions (Fossen, 1995; Fjellstad and Fossen, 1994a; 1994b; 1994c; Chou, 1992).

Definition 3.1 (Quaternion)

A quaternion q is defined as a complex number

q = w + xi + yj+zk (3.6) 

where w, x, y and z are real parameters, and i, j and k mutually orthogonal 

imaginary units.

Hence, quaternions are an extension of complex numbers. Instead of just one imaginary 

unit i, there are three different, mutually orthogonal, imaginary units, labelled as i, j and 

k, defined as

i i = -l
j j = -l (3-7)
k k=-l

When two of these units are multiplied together, they behave similarly to cross products 

of the unit basis vectors:

i j = -j i = k
jk=-k j = i (3.8)
k i = -i k-j

The conjugate and magnitude of the quaternion q = w + xi + yj + zk are found in much 

the same way as complex conjugate and magnitude:

Conjugate: q'= w - xi - yj - zk (3.9)

Magnitude: ||q|| = V^T = Jrf + x? + y2 + z 2 <3 - 10) 

Quaternions are associative ((qrq2 )-q3 = qr(q2 -Qs))' but not commutative
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Definition 3.2 (Unit Quaternion)

A quaternion q w called unit quaternion if |q| = 1.

The inverse of a quaternion refers to the multiplicative inverse (or 1/q) and can be 

computed by

Inverse: q"1 = " -

For unit quaternion |q| = 1 => q"1 = q'.

Rotation about unit vector X = [/?, A, 

unit quaternion

(3.11)

by an angle /? can be computed using the

q =
cos—

2
Xsin-^-

2.

cos—
2
£ /i, sin-^—
2

. . ft /Lsin-5—
2

Asin— 
. 2.

(3.12)

If position of the point p in the 3D space is represented by quaternion P = [0 pf , then 

position of the same point after rotation about unit vector k by an angle p is given by 

quaternion

P^q-P-q" (3-13) 

Quaternions are very powerful in the case when two consecutive rotations of the object 

are required. Suppose q, and q2 are unit quaternions representing two rotations. Rotation 

q, should be performed first and then q2 . To achieve this, q2 is first applied to the result 

of q, . Then the product is regrouped using associativity and the composite rotation is 

written in a standard way:

3-7



Chapter 3: Modelling of ROV & Propulsion System

A matrix product, typical for the Euler angles representation, requires many more 

operations than a quaternion product. Therefore, considerable computational time can be 

saved and numerical accuracy can be preserved by using quaternions instead of matrices. 

Nomenclature for the quaternions is not consistent in the literature. For example, the unit 

quaternion in (Fjellstad and Fossen, 1994a; 1994b; 1994c) is defined as 

q = [?7 £} £2 £3 f, while it is defined as q = [f, £2 e^ r/J in (Fossen, 1995). In 

the following the nomenclature proposed in (Fossen, 1995) will be used. 

Let ft denote the principal angle and let X denote the principal axis associated with 

Euler's Theorem (Fossen, 1995), which states that several rotations about different axis 

passing through a fixed point are equivalent to a single rotation about an axis passing 

through this fixed point (tools.ecn.purdue.edu/~me597k/Homework/hwk03.pdf). The 

Euler parameters representing the attitude are defined as:

V
e = | 1= - (3-15)

where

7 = cos A 0</?<2;r (3.17)

The Euler parameters satisfy the unit quaternion constraint, that is:

e +£ + r 2 =l (3.18)

The transformation relating the linear velocity vector £ f|, to the velocity B v { can be 

expressed as:
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where

E,N=[(,72 -^ + 2^-2,78(4 = (3.20)

Definition 3.3 (Skew-Symmetrical Operator)

Operator S:9t3 -^SR3 x9l3 w skew-symmetrical operator defined as

b
0 -c b
c 0 -a

-& a 0

An important property of the operator S is that if v = [a b cj and w =[d e fj 

are two vectors from SR3 , then the cross product vx w can be expressed as

vxw =
a
b
c

X

~d

e
./.

A
=

'bf-ce'

cd-af
ae-db

—
"0 -c b '

c 0 -a
-b a 0

'd

e
f.

= S(v)w (3.21)

The angular velocity transformation (attitude representation) can be expressed as:

where

rj -

(3.22)

(3.23)

Hence, the attitude representation with Euler parameters (3.23) is defined for any valid 

unit quaternion e and the singularity, typical for any 3-parameter representation, is 

avoided. Finally, the kinematic equations of motion can be expressed by means of Euler 

parameters (unit quaternions) as follows
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(3.24)

3.3.3 Modified Rodrigues parameters

The attitude representation in unit quaternions is a 4-parameter representation and, 

therefore, it is non-minimal (Boskovic and Krstic, 1999). Introducing a new set of 

coordinates (Cayley-Rodrigues parameters) defined as ratio of unit quaternions

A=f' ' = ^ (3 ' 25) 

the constraint (3.18) is eliminated. The vector p = [/71 /?2 /?3 F *s related to the 

principal vector X and the principal angle /? as

p = Xtan-£ (3.26)

The introduction of minimal 3-parameter representations is mainly motivated by their 

potential advantages in stabilisation and control related problems. Unfortunately, as 

mentioned in section 3.3.1, all 3-parameter representations contain singularity points. One 

can see from equation (3.26) that this representation has a singularity at /? = # , i.e. the 

classical Cayley-Rodrigues parameters cannot be used for describing eigenaxis rotations 

of more than 180° . If (3.25) is replaced by

=U (3.27)t --, 
1 + 17

it can be easily verified that the Modified Rodrigues parameter vector o = [ff, <T2 <73 ] 

is related to the principal vector and principal angle as

(3.28)
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It is obvious from equation (3.28) that the Modified Rodrigues parameters are superior to 

any other 3-parameter representation. Firstly, all eigenaxis rotations in the range 

0 < yS < 360° are well defined. Secondly, unlike other 3-parameter representations (Euler 

angles or Cayley-Rodrigues parameters), which eliminate an infinity number of possible 

orientation configurations due to singularity, this parameterisation eliminates only one 

attitude configuration being singular (namely, 0 = 360° implies 77 = -! and (3.18)

implies s - [0 0 Of ).

The transformation relating the linear velocity vector £ ij, to the velocity "\ l is given by

(3.29)

where

s(° s(o) "" (3 '30)

The angular velocity transformation is given by

where

(3.31)

(3.32)

Finally, the compact representation of the kinematics described with the Modified 

Rodrigues parameters is given by

J,N oM TN
.«« J2NJK. (3.33)
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3.3.4 Comments on representation alternatives

In the previous sections Euler angles, Euler parameters and Modified Rodrigues 

parameters have been suggested as candidates to describe the orientation (attitude) of the 

ROV. The Euler angle representation is attractive to use, since it is a 3-parameter set 

corresponding to well-known quantities like the roll, pitch and yaw angle of the vehicle. 

However, the roll-pitch-yaw representation, like any other 3-parameter representation, has 

a singularity. In particular, it is not defined for a pitch angle 0 = ±90°. However, during 

practical operations with ROVs, the vehicle's orientation of Q = ±90° is not likely to be 

obtained. This is due to the metacentric restoring forces (Fossen, 1995). Another problem 

with the Euler angle representation is the so-called "wraparound" problem, which implies 

that the Euler angles may be integrated up to values outside the normal ± 90° range of 

pitch and ±180° range of roll and yaw. In order to avoid discontinuities, some 

normalisation procedure must be performed. One way to avoid singularities and 

"wraparound" problems is by applying a 4-parameter representation based on Euler 

parameters. Another advantage of Euler parameters is computational efficiency. The 

Euler angles are computed by numerical integration of a set of non-linear differential 

equations. This procedure involves computation of a large number of trigonometric 

functions, which can be time-consuming. The Modified Rodrigues parameters 

representation is also computationally effective, but still has one singularity. Although it 

is not easy to generalise, computational efficiency and accuracy suggests that Euler 

parameters are the best choice. However, Euler angles are more intuitive and therefore 

more used.
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3.4 Dynamic equations of motion

In the general case, when the origin O of the body-fixed frame does not coincide with 

CG (see Figure 3.2), general 6 DOF equations of motion can be written in a compact 

form as (Silpa-Anan, 2001; Boskovic and Krstic, 1999; Fossen, 1995):

MflB *v + CJM (B v)B v=B T JM (3.34) 

or in the regular form as

msv, +ms v,,xa r,, WvXv, +m B\2 x(B \2xB rG }=B v, (3.35)l 2 . G21

(3.36)

where

{#} - Body-fixed frame

Figure 3.2 General case: centre of gravity CG does not coincide with the origin O.

is a rigid-body inertia matrix (M RB = M^ > 0, M^ = 0)

vr +m B\2xB rG (3.37)

-mS(flrJ]_

m 
0 
0 
0

mza 
-mya

0 
m 
0

-mz0 
0

0
0
m

nya
mxG
0

0
-mza
myG
I,

- 1*
-I*

mis
0

-mxG
- ]v

Iy
-*«

-myG
mxG

0

XZ

-^
'«

(3.38)

m is mass of ROV,
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5 rG is centre of gravity CG , with respect to the body-fixed frame {fi}

I0 is inertia tensor of the ROV, with respect to the body-fixed frame

/.,, 7y and Iz are the moments of inertia about the XB , YB and ZB -axes

IK = la and 7^ = Iy are the products of inertia

=\zypAdV =1

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

where pA is the mass density of the body.

It is possible to simplify the general dynamic equations of motion by applying the

following theorem (Fossen, 1995):
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Theorem 3.1 (Parallel Axes Theorem)

The inertia tensor I0 about an arbitrary origin O can be calculated from the relation

(3.47)

where I3x3 is the identity matrix and Ic is the inertia tensor about the centre of gravity 

CG.

The first simplification can be obtained if origin O coincides with the CG . In that case 

BAG ~ IP 0 OF and I0 = I c . The second simplification can be obtained if the body axes 

coincide with the principal axes of inertia or the longitudinal, lateral and normal 

symmetry axes of the ROV. In that case the origin O can be chosen such that the inertia 

tensor In is a diagonal matrix.

C M (B v) is a skew-symmetrical parameterisation of the rigid-body Coriolis and 
centripetal matrix (C RB ( B v) = -C^(fl v)> 0)

+mB\2 x (B v2xfl ro ) (3.48)
'v2 x(l/v2 )+mB rG x(B v2x%1 )J

There are a large numbers of parameterisations for the C RB (sv) matrix, which satisfy 

condition (3.48). Two common used parameterisations, proposed in (Fossen, 1995) are 

given below:

"iVf ..«^ V Tjy .. ——— y-y . 2/ -u I |

0 0 0
000
000

0 m(w+yap-xcq) m(- v + zGp - xBr) 
-m(w+ycp-xGq) 0 m(u + zGq - yGr)
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.r - mzau + mxn w +1' p -1y q +1 y.r 
+ 
0

B,, B, 03X3

000" 

000 

000

yGq) m(w-xGq) m(-v-xGr) 
-m(w+yGp) m(zG r + xa p] m(u-ycr)

-m(zar+yaq) m(w+yap)
-m(w-xGq) -m(zGr + xGp)
-m(-v-xGr) -m(u-yar) -

. ) 0 ltp-Ivq-lar 
>) -(hP-**4-lar} 0

nsv2xB v,+m B v2 x(B v 2xB rc ) ]_

(3.50)

mq(\v+yGp-xGq)+mr(- 
mp(- w-yc p + xGq}+ mr(u + zGq - y0r) 
mp(v -ZGp- xar)+ mq(- u-zeq + yG r)

m(vyG p + wzG p- qyGu - rz0u)- ql^p-I^q1 + ql,r+ rlys p - rlyq + Iy 
m(uxGq + wzaq - pxGv - rzG v)+ l^p1 + plyq -plz r+ rlfp - rltyq -1

IRB is a generalised vector of external forces and moments (including control and 
hydrodynamic forces and moments)
This vector will be described in more detail in the following section.
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3.5 Forces and moments acting on ROV

The general dynamic equation of motion of the ROV in 6 DOF in the body-fixed frame is 

given in compact form by

- B flfi£ £ +')T

where

M is inertia matrix (including added mass)

Mm is rigid-body inertia matrix

M A is added-mass matrix

C(B v) is Coriolis and centripetal matrix (including added mass)

CRB (B v) is rigid body Coriolis and centripetal matrix

C (B v) i & added-mass Coriolis and centripetal matrix

D(B V) is total hydrodynamic damping matrix

B a(E n) is vector of restoring (gravitational and buoyant) forces

and moments 

B i is vector of environmental forces and moments

* T is vector of propulsion forces and moments (exerted by the

thrusters)

From (3.34) & (3.51) the following expression for the generalised vector of external 

forces and moments can be found:

*TM^*+*T-M/v-CA (*v)B v-D('v)B v-a g(*i|) (3.52) 

Various forces and moments act on the ROV whilst moving through a fluid (water): 

1 . Hydrodynamic rigid-body-like added mass forces and moments - M A B v ,

2. Hydrodynamic Coriolis-like added mass forces and moments - C A (B vf v ,
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3. Hydrodynamic damping and lift forces and moments - D(B v)fl v,

4. Restoring (gravitational and buoyant) forces and moments -ag(£ ii),

5. Environmental forces and moments B rE .

6. Propulsion forces and moments (exerted by the thrusters) B T , 

| M A (added-mass matrix) and CA (s v) (added-mass Coriolis and centripetal matrix)

The concept of added mass is usually misunderstood to be a finite amount of water 

connected to the vehicle such that the vehicle and the fluid represents a new system with 

mass larger than the original vehicle. This is not true, since the vehicle motion will force 

the whole fluid to oscillate with different fluid particle amplitudes in phase with the 

forced harmonic motion of the vehicle (Fossen, 1995). However, the amplitudes will 

decay far away from the body and may therefore be negligible. Added (virtual) mass 

should be understood as pressure-induced forces and moments due to a forced harmonic 

motion of the body, which are proportional to the acceleration of the body. Consequently, 

the added mass forces and the acceleration will be 180° out of phase to the forced 

harmonic motion. If the ROV moves at low-speed and has (almost) three planes of 

symmetry, then the following expressions for MA and CA (fl v) are obtained (Fossen, 

1995):

M u M B ]_
M 2 , M B J

-3X
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0

0

0
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(3.53)
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®3X3 .... ...

-s(M,i'v,+M 21 'v2 ) -S(M 2I %,+M22 S V 2 )J
0 0 0 0 -Z> Yfv 1 (3 - 54>
000 Z,.w 0 -A>
ooo -y> x> o
0 -Z,.iv j;v 0 -Ntr M^q

-Y.v X.u 0 -M;,q -KA p 0

The notation of SNAME (the Society of Naval Architects and Marine Engineers, 1950) is 

used in expressions (3.53) & (3.54). For instance, the hydrodynamic added mass force YA 

along the y -axis due to an acceleration u in the x -direction is written as

(3.55)

where

y*=^T (3-56)

The diagonal structure is highly attractive since off-diagonal elements are difficult to 

determine from experiments as well as theory. In practice, the diagonal approximation is 

found to be quite good for many applications.

D(S V) (total hydrodynamic damping matrix) i

In the general case, the damping of a ROV moving in 6 DOF at high-speed is highly non­ 

linear and coupled. One rough approximation considers the ROV is performing a non- 

coupled motion, where terms higher than second order are negligible (Fossen, 1995). This 

suggests a diagonal structure of D(S V) with only linear and quadratic damping terms on 

the diagonal:

D(*v)=-

'X.+X^u 000
o y,+y^v o o 
o o z,+z^H o
000 K.p +K.f^p\
oooo
0000

0 
0

0

0 
0

0

(3.57)
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fl gri) (restoring (gravitational and buoyant) forces and moments)

The gravitational force fG is induced by the weight, W of the ROV and acts through the

centre of gravity B rG = B [xa y0 zc f of the ROV. The buoyant force fB is induced by

the buoyancy, B and acts through the centre of buoyancy B rB =B [xB yB zB J of the

ROV. Restoring forces in the Earth-fixed frame {£} are shown in Table 3.1, where

W = mg is weight of the ROV,

m is mass of the ROV,

S is the acceleration due to gravity,

B = pgV is buoyant force,

P is the fluid (water) density,

V is the volume of fluid (water) displaced by the ROV.

Earth-fixed frame {E}

Gravitational force

Buoyant force
0
0

-B

Table 3.1 Restoring forces in the Earth-fixed frame.

Vector of restoring forces and moments can be transformed to the body-fixed frame 

representation using equations given in Table 3.2 (Euler angles representation), Table 3.3 

(Euler parameters representation) and Table 3.4 (representation with Modified Rodrigues 

parameters).
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Body-fixed frame {B}

Gravitational force

Buoyant force

H-
Restoring forces and 

moments

(z(:W - z

Table 3.2 Restoring forces and moments in the body-fixed frame for the attitude representation
with Euler angles (see section 3.3.1).

Body-fixed frame {B}

Gravitational force

Buoyant force

Restoring forces and 
moments

- r

Table 3.3 Restoring forces and moments in the body-fixed frame for the attitude representation 
with Euler parameters (see section 3.3.2).

Body-fixed frame {B}

Gravitational force

Buoyant force

Restoring forces and 
moments

Table 3.4 Restoring forces and moments in the body-fixed frame for the attitude representation 
with Modified Rodrigues parameters (see section 3.3.3).
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A neutrally buoyant ROV satisfies the condition:

W = B (3.58)

%

| B T £ (environmental forces and moments) ; 

The main environmental forces to be considered for ocean vehicles are:

• surface waves,

• wind,

• ocean currents.

For the ROV moving at a depth more than 20 meters, the effects of surface waves can be 

neglected. Moreover, the wind has an effect only when the ROV is moving on the 

surface. Therefore, the only perturbations to be considered are those due to ocean 

currents.
p.- . , . . . , ,...„.„. J,.^, J ,., n ._. ., ...,.,... .... .,...„. ,..., „ ... ..^^WI^^HS

i B t (propulsion forces and moments (exerted by the thrusters))

In the general case an ROV has p thrusters ^Th^Th^.^Th . Each thruster 'Th, i = l^p 

exerts thrust (force) 'T and torque (moment) 'Q,, (Figure 3.3). Depending on propeller 

spin direction, vectors *T and 'Qc have the same direction (for clockwise rotation 

looking from the back of the propellers) or opposite direction (for counter clockwise 

rotation). The thrust 'T also generates moment 'Qr =! rxf T, so that the total moment 

vector exerted by the thruster is given by ; Q='Q e +'Qr . Contributions of each thruster are 

summed together to form vector of propulsion forces and moments T :

(a) Clockwise. (b) Counter clockwise. 
Figure 3.3 Thrust and torque, exerted by a thruster, for two possible propeller spin directions.
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T = 1'Q (3.59)

More information about thruster configuration and propulsion system can be found in 

section 3.7.

3.6 Simulation diagrams for ROV dynamics and kinematics

In order to construct the simulation diagram, the first step is to find the expression for B v 

from (3.51):

B v = M-'( fl T+ BT£ -(C(%)+ D(B v))"v-a g(£ i|)) (3.60) 

Depending on the choice of the attitude representations, there are three alternatives to 

represent ROV kinematics. The first alternative is shown in Figure 3.4 (Euler angles 

attitude representation). The second alternative (Euler parameters attitude representation) 

is shown in Figure 3.5. Finally, Figure 3.6 displays a simulation diagram for attitude 

representation with Modified Rodrigues parameters.

'12 J

Figure 3.4 Simulation diagram for ROV dynamics and kinematics, where the attitude is
represented with Euler angles.
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n(o)

(Eq.(3.24)) 

ROV kinematics

Figure 3.5 Simulation diagram for ROV dynamics and kinematics, where the attitude is 

represented with Euler parameters.

(Eq.(3.33» 

ROV kinematics

Figure 3.6 Simulation diagram for ROV dynamics and kinematics, where the attitude is 

represented with Modified Rodrigues parameters.

These simulation diagrams can be used to simulate ROV dynamics using MATLAB & 

Simulink. In particular, the diagram shown in Figure 3.4 is transformed to functionally 

equivalent S -function and implemented in the ROV simulator as a Simulink block with 

an associated dialog box for setting of model parameters.
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3.7 Propulsion system

This section discusses propulsion system of the open-frame underwater vehicle. Since the 

majority of open-frame underwater vehicles use thrusters for propulsion, the focus will be 

on propeller thrust and torque modelling.

3.7.1 Thruster configuration

As stated in Chapter 1, two underwater vehicles (FALCON, SeaEye Marine Ltd. and 

URIS, University of Girona, see Figure 3.7.) with different thruster configurations are 

used to demonstrate the performance of the PDAS, described in Chapter 5. More 

technical details about the vehicles can be found in Appendix A. In order to examine the 

performance of the PDAS, which require that control system for motion in horizontal 

plane is overactuated, the original thruster configuration of URIS, with two horizontal and 

two vertical thrusters, is transformed into a configuration with four horizontal thrusters, 

without any vertical thruster. This modification was possible, because the tank for test 

trials at University of Girona was very shallow and there was no space and need for 

motion in vertical plane. A three-dimensional view of the FALCON moving in a virtual 

underwater world is shown in Figure 3.7 (a) - top. This picture is taken from the ROV 

simulator, as well as the picture of URIS, shown in Figure 3.7 (b) - top. Plan view of the 

vehicles with corresponding configuration of the horizontal thrusters is shown in bottom 

part of Figure 3.7. The origin of the body-fixed reference frame {B} is chosen to coincide 

with the CG. The axes are chosen to coincide with the principal axes of inertia and they 

are defined as:

• XB - longitudinal axes (directed to front side),

• yB - transversal axes (directed to starboard),

• ZB - normal axes (directed from top to bottom, perpendicular to the paper).
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The FALCON has four horizontal thrusters, denoted as 'HT,i = 14 and one vertical 'VT 

(not shown in Figure 3.7 (a) - bottom). The URIS has only four horizontal thrusters, 

denoted in the same way. In the following, the discussion is concentrated on horizontal 

thrusters, although the same principle is valid for vertical thrusters.

X-shaped configuration Cross-shaped configuration 

(a) FALCON. (b) URIS. 

Figure 3.7 Two common configurations of the horizontal thrusters.

The nomenclature for vertical thrusters can be derived by replacing HT with VT in 

corresponding symbols for horizontal thrusters. In addition, the nomenclature 'Th refers 

to any thruster, while 'HT ('VT) refers to a horizontal (vertical) thruster. 

The thruster 'HT exerts thrust (force) 'THT and torque (moment) 'Qe/ff (see Figure 3.3).

The position vector 'rwr = [rx 'ry ! r: JHT determines the position of the point of attack
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of the force "T^., relative to the {B}. The force 'T^ also generates the moment 

'Qrtf7- =' rtfrx' Tffr> so the total moment vector exerted by the thruster 1 HT is given by 

'Qtfr ='Qe«r+'Qr/ff. The orientation of the thruster 'HT relative to the [B] is defined by 

the unit vector 'ewr = [ex 'ey 'ej^. The vector 'eHT shows the positive direction of 

the force 'Twr . This means that, if the propeller angular velocity is positive, it will exert 

the force 'T^. in the direction of 'e^. Otherwise, the force J TOT is opposite to l eHT . The 

relationship between propeller spin direction and direction of the thrust and the torque 

vector is described in previous section (see page 3-22). An elegant way to describe this 

relationship is to introduce a spin direction coefficient 'CHT : the value l cHT =+l(-l) 

means that the force vector 'THr and the torque vector 'QeliT have the same (opposite) 

direction. 

Example 3.1 (Propeller spin direction)

Assume that propeller angular velocity is positive and that blades are chosen such that 

propeller spin direction is clockwise (looking from the back of the propellers, see Figure 

3.8(a)). The direction of the torque vector 'QellT is determined using the right hand rule. 

In this case the force vector lrtm and the torque vector 'Qi eHT have the same direction as 

the vector 'etfr and l cm - +1. If the propeller spin direction is counter clockwise (Figure 

3.8(b)), then vectors Twr and 'e^. have the same direction, while vectors 'Q^ and

'€„, have the opposite direction and 'CHT = -1.

Position vectors for different configurations are given in Table 3.5, while Table 3.6 shows 

orientation vectors. Parameters a, b, a and R can be obtained from the technical 

specifications of the vehicles.
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(a) Clockwise (cm = +l). (b) Counter clockwise ( ! C HT - -l). 

Figure 3.8 Relationship between propeller spin direction and direction of the thrust and the torque

vector2 .

Horizontal thrusters

X-shaped 
configuration

(FALCON)

Cross-shaped 
configuration

(URIS)

b/2
-a/2 

0

0 
-R

0

b/2
a/2

0

-b/2

a/2
0

-b/2

-a/2 
0

-R

0
0

Vertical 
thruster

'/v

Table 3.5 Position vectors for different thruster configurations.

X-shaped 
configuration

(FALCON)

Cross-shaped 
configuration

(URIS)

cos a
sin or

0

cos or
-sin#

0

cosor
sin or

0

cos or
-sin or

0

Table 3.6 Orientation vectors for different thruster configurations.

1 Figure 3.8 displays front side of propellers.
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3.7.2 Propeller shaft speed models

Short descriptions of one-, two- and three-state dynamic models for propeller shaft speed 

are given in this section, while more information can be found in cited papers.

One-state model

A one-state model with propeller shaft speed n as state and propeller thrust T as output 

was proposed in (Yoerger, et al, 1991). The model can be written as:

T = Tn,up (3.62) 

where up is the axial flow velocity in the propeller disc and T is the control input (shaft 

torque). It is common to assume that up = 0 when computing T . However, up can be

measured by using special devices, such as a Laser-Doppler Velocimeter (LDV) system 

or a Particle Image Velocimeter (PIV) system. Fossen and Blanke (2000) designed a state 

observer for reconstruction of u p , where up is treated as an unmeasured state. The main

drawback of the one-state model is its inability to describe overshoots in thrust, which are 

observed in experimental data.

Two-state model
Healey, et al (1995) have modified the one-state model to include possibility to describe

overshoots in thrust. They proposed a two-state model with n and u p as states:

(3.63)

(3.64) 

= T(n,up } (3.65)
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where u is the forward speed of the vehicle and Qe is the propeller torque. The model 

was obtained by modelling a control volume of water around the propeller as a mass- 

damper system. Experimental verifications of the one- and two-state models are given in 

(Whitcomb and Yoerger, 1999).

Three-state model

A more general model is the three-state model proposed by Blanke, et al. (2000), with n,

uf and u as states:

Jmn + Knn = T-Qe (3.67)

mfuf + df(ju p +df \u !,\(u /,-ua ) = T (3.68)

(m - X . >l - Xuu - Xu^u\u\ = (l-t}T (3.69)

T = T(n,up ) (3.70)

Qf = Qe (n,up } (3.71)

where damping in surge is modelled as the sum of linear laminar skin friction, — Xuu

and non-linear quadratic drag, - X,uM\U\ . Similarly, linear damping, dfaup , is included

in the axial flow model, since quadratic damping, df u/l \u l> , alone would give an 

unrealistic response at low speeds. Linear skin friction gives exponential convergence to 

zero at low speeds (Fossen, 2002). 

The ambient water velocity ua is computed by using the steady-state condition:

ua = (l-w)u (3.72) 

where w,0 < w < 1 is the wake fraction number.
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3.7.3 Propeller thrust and torque modelling

For a fixed pitch propeller the shaft torque Qe and force (thrust) T depend on the forward 

speed u of the vehicle, the advance speed ua (ambient water speed) and the propeller 

rate n (Fossen, 2002). In addition, other dynamic effects, due to unsteady flows, 

influence the propeller thrust and torque. The following unsteady flow effects are 

significant (Carlton, 1994; Newman, 1977):

• air suction,

• cavitation,

• in-and-out-of-water effects (Wagner's effect),

• wave influenced boundary layer effect,

• Kuessner effect (gust).

For a deeply submerged vehicle, the first four effects can be neglected. The Kuessner 

effect, caused by a propeller in gust, appears as a rapid oscillating thrust component. 

These fluctuations are usually small compared to the total thrust in dynamic regime. 

Under these assumptions, the thrust and torque models can be modelled using a quasi- 

steady representation.

Quasi-steady thrust and torque

Quasi-steady modelling of thrust and torque is usually performed in terms of lift and drag

curves, which are transformed to thrust and torque by using the angle of incidence. The 

lift and drag are usually represented as non-dimensional thrust and torque coefficients KT 

and KQ computed from self-propulsion tests (Fossen, 1995; Fossen and Sagatun, 1994):

*^)= <3 -73)
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where D is the propeller diameter, p is the water density and

'"H* (3 '75) 

is the advance ratio. The numerical expressions for KT and KQ can be found by open 

water tests, usually performed in a cavitation tunnel or a towing tank. In this tests 

unsteady flow effects are neglected and steady-state values of T , Qe and n are used. 

From (3.73) & (3.74) the thrust T and the torque Qe can be expressed as

(3.76)

(3.77)

The open water propeller efficiency in undisturbed water is given as the ratio of the work 

done by the propeller in producing a thrust force to the work required to overcome the 

shaft torque (Fossen, 2002). Consequently: 

u pT J0 KT~
Typical curves for KT , KQ and JJ0 are shown in Figure 3.9. They are taken from (Fossen 

and Sagatun, 1991) and represent results obtained by open water test, performed with the 

Norwegian Experimental Remotely Operated Vehicle (NEROV) thruster in the towing 

tank at the Norwegian Marine Technology Research Institute in Trondheim. For positive 

values of /„ experiments showed that KT and KQf are linear in /0 , while the results for 

negative values of 70 show a non-linear behaviour. Linear approximation of experimental 

curves for KT and KQ< for positive J0 yields

(3.79)
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where at and ft (i = 1,2) are four positive non-dimensional coefficients.

(3.80)

0.00
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 3.9 Non-dimensional coefficients KT , KQt and TJQ as a function of the positive advance

ratio 70 .

Substituting (3.79) & (3.80) into (3.76) & (3.77) yields

(3.81)

(3.82)

where

(3.83)

are positive propeller coefficients, given by the propeller characteristics. Expressions 

(3.81) & (3.82) are known as a bilinear thruster model (Fossen, 1995).
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T u<0 u=0 M.. >0

Figure 3.10 Propeller thrust (force) T as a function of propeller revolution n and ambient water
velocity ua (bilinear thruster model).

Figure 3.10 displays typical T -curves as a function of propeller angular velocity n and 

the ambient water velocity ua . Typical parabolic shape is deformed, depending on the 

size and sign of ua . For example, for the same angular velocity n , the propeller will 

generate a larger force in the case ua = 0 than for ua > 0 . This can be confirmed in the 

ROV simulator (Appendix D) by changing the thruster model (bilinear/affine) and 

monitoring force responses.

However, in practical applications, the bilinear thruster model (3.81) - (3.82) can be 

approximated by an cffine thruster model (3.84) - (3.85), assuming ua = 0 :

(3 ' 85)
It is important to note that the efficiency of the propeller may not be the same for both 

possible spin directions, i.e. for the same propeller revolution fa\ = \n2 \) the
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corresponding thrusts (forces) may not be equal (J7]| > |r2 |) (Figure 3.11). This means that, 

in real applications, the T -curve is not symmetrical, i.e. T(n) is not a odd function of n . 

In order to include non-symmetry in the model, the function T(n) can be rewritten as

(3.86)

Figure 3.11 Propeller thrust (force) T as a function of propeller revolution n (affine thruster
model).

where 7^, and 7^ (7^ > 7^ > 0) are curve coefficients in the first and the third 

quadrant, respectively. In addition, it can be observed from Figure 3.11 that JT^J > |Tmin |, 

although l/wH"™!- Commands, generated by an ROV pilot, are interpreted as desired 

forces and moments and it would be very useful, from pilot's point of view, to have 

symmetrical command space, where JT^J = fTVj.
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The original solution for this problem is presented in the following. The first step is to 

introduce a new control variable u 3

M = "H (3.87) 

Equation (3.86) can be rewritten as

r^Hr-C «<o (3 ' 88)

In this way, the quadratic relationship (3.86) is replaced by the linear relationship (3.88) 

(see Figure 3.12).

T"

T

Figure 3.12 Propeller thrust (force) T as a function of new control variable u (affine thruster

model).

3 Unfortunately, nomenclature for marine vessels is not consistent. The symbol u is also used to represent 

the forward speed of the vehicle. This confusion will be resolved later by vectorisation.
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The next step is to introduce a new coefficient K and an auxiliary variable «', defined as: 

K = -\T^+T^ (3.89)

T(U')=KU' (3 - 9°)
The relationship between u and u' can be found in the following way (see Figure 3.13):

K . . , (3-91),n\n\
H'>0

Ku'=Tl ,H =>« = ——«', u'<Q -
(3.92)

T(u')=Ku'

uu u

Figure 3.13 Relationship between control variable u and auxiliary control variable u'. 

Finally, the last step is to make a range of force T symmetrical by introducing new limits 

(see Figure 3.14):

where

-Tm <T<Tm

T =\T •*-m \ n™

(3.93)

(3.94)
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New range for u' is given by

where

min

(3.95)

(3.96)
« K

In this way, the non-symmetrical relationship is transformed to symmetrical.

T

T_

Figure 3.14 Propeller thrust (force) T as odd function of auxiliary control variable u'.

Comments

• if the auxiliary control variable «' is used, relationship between thrust (force) T 

and u' is linear and ranges of variables are symmetrical. Because of this reason, it 

is easy to normalise control constraints and the control allocation problem can be 

formulated in the normalised form, which is more understandable and easier to 

solve.

• Transformation from u' to u is easy: after u' is calculated, u can be calculated 

from (3.91) or (3.92), depending on the sign of «'.

3-38



Chapter 3: Modelling of ROV & Propulsion System

• Transformation from u to n is achieved using equation

(3.97)

• the "price" paid for achieving a symmetrical relationship between T and u is that 

a part of achievable force range f^l,?^] is lost, because um '< M^ and interval 

["m ', "ma* l isnever used.

3.7.4 Thruster test rig (IMPROVES project)

A part of the IMPROVES project is development of a thruster test rig. The aim is to 

develop facilities for performing experiments with the FALCON thruster, in order to 

obtain experimental curves similar to those shown in Figure 3.9. This is an ongoing 

project, expected to be finished in May 2004. When the project is completed, the thruster 

model used in the ROV simulator can be upgraded to represent real FALCON thruster 

dynamics.

3.7.5 Vectorisation

Previous discussion about thruster models assumed scalar variables. In order to develop 

the Simulink model of the thrusters, it is necessary to use vector variables. In addition, 

vectorisation resolves the confusion related with the nomenclature (see page 3-39). In the 

following it is assumed that the position and the orientation of the thruster is determined 

by vectors r and e, respectively (see Figure 3.15).

Figure 3.15 Thrust and torque as vector variables.
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Bilinear thruster model

The forward speed u in (3.72) should be interpreted as a projection of the linear velocity

vector %, = [u v wf on the orientation vector e . Consequently, the bilinear thruster 

model can be represented in vector form as

(3.98)

Qr =rxT

Affine thruster model

The vector form of the affine thruster model is obtained from the bilinear thruster model

(3.98), assuming ua - 0 :

<0

(3.99)

Qe =cQee, Qr =rxT

Both vector forms are implemented in the ROV simulator.

3.7.6 Full thruster model

A full thruster model, including dynamics of the thruster control loop, is shown in Figure 

3.16. A DC motor, designed for underwater operating conditions, drives a thruster. The 

input to the thruster control loop is a control variable nd (desired angular velocity). The 

motor is equipped with a tachometer, which measures actual angular velocity^ n . A
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gearbox with the gear ratio GR > 1 is used to reduce the output angular velocity n 

(n = (llGR)fi) and to enhance the output torque. Because of this reason, the input nd 

must be multiplied by GR (nd =GR- nd ). In this case, the thruster control loop looks like 

a box, with nd as the input and n as the output, although inside the motor the shaft

rotates much faster. A typical thruster control loop is implemented as independent device 

called Thruster Control Unit (TCU) with integrated power amplifiers and controlled by a 

microcontroller. More information about the TCU for FALCON and URIS can be found 

in Appendix A. The velocity controller is usually implemented as a digital PID controller, 

although the other designs are possible.

"I
Bilinear or affine 
thruster model

-.' ..'^L v ...*- T-.'. ., -,.- ;„•'. 'iieSte!

a

Figure 3.16 Block diagram showing full thruster model, including thruster control loop dynamics.

Load

Figure 3.17 Linear dynamic model of the speed-controlled DC motor.

Most thruster systems are driven by DC motors designed for underwater operating 

conditions. The dynamic model of a speed-controlled DC motor can be written as

(3.100)
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/ **L- K i _ 0 (3-101)
m ^7~ M l" Q

where

La is the armature inductance [//],

Ra is the armature resistance [ii],

Ua is the armature voltage [v],

KM is the motor torque constant \Nm I A] ,

Jm is the moment of inertia of motor and thruster [kgm2 j,

(0 is the angular velocity if the motor [rad/s],

Qe is the load from the propeller, defined in (3.82) [Nm].

Figure 3.17 displays internal structure of the block "DC motor dynamics", shown in the 

block diagram in Figure 3.16, based on equations (3.100) & (3.101). In order to obtain a 

more realistic model, it would be necessary to include hard non-linearities like actuator 

saturation, Coulomb friction, dead-zones and hysteresis into the model.

3.8 Concluding remarks

The purpose of the chapter was to describe non-linear dynamic models of thrusters and an 

ROV in 6 DOF. These mathematical models are used in the ROV simulator to investigate 

the performance of the PDAS, described in Chapter 5. Discussion was concentrated on 

ROVs, although the same models can be used to describe AUV dynamics. In this way, the 

ROV simulator can be augmented with the ability to compare different control 

architectures for AUVs.

A novel approach has been proposed whereby the affine thruster model is transformed 

into symmetrical form, enabling normalisation and easier visualisation of the control 

allocation problem.
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4.1 Introduction

The control allocation problem plays a vital role in the accommodation part of the PDAS. 

Typically, open-frame underwater vehicles have p>4 actuators (thrusters) for the 

motion in the horizontal plane and the control allocation problem in this case is very 

complex and hard to visualise, because the normalised constrained control subset SI is 

p -dimensional unit cube. The aim of this chapter is to give a clear picture and a 

geometric interpretation of the problem, to present existing methods for its solution and to 

introduce a hybrid approach, based on the integration of a pseudoinverse and the fixed- 

point iteration method, which is able to allocate the entire attainable command set and 

finds the solution optimal in /2 sense, i.e. which minimises the control energy cost 

function. The performance of presented methods is compared using the same example in 

low-dimensional control spaces, where the main idea of the method can be easily 

visualised and geometrically interpreted. However, the same concepts can be extended for 

higher dimensional cases, which are explored further in Chapter 5. 

The chapter is organised as follows. The general control architecture, as well as 

modification of this architecture for aerospace and underwater applications, is introduced 

in section 4.2. In section 4.3 the control allocation problem is formulated, and notation 

and terminology are introduced. A survey of existing control allocation methods is given 

in section 4.4. Each method is used to solve the same sample problem, with a clear 

geometric interpretation of the method. The concluding remarks are given in section 4.5 

and a list of references, cited in the text, is provided in section 4.6.

4.2 Control system architecture

The control allocation problem is related with the determination of a set of actuator 

commands, which produce a given set of desired (commanded) controls. The task of
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finding control combinations to achieve a specific objective is only a part of the larger 

control problem. Using control allocation, the actuator selection task is separated from the 

regulation task in the control design. The majority of modern aircrafts and marine vessels 

represent overactuated systems, for which it is possible to split the control design into the 

following steps (Harkegard, 2003):

1. REGULATION TASK: Design a control law, which specifies the total 

control effort to be produced (net force, moment, etc.),

2. ACTUATOR SELECTION TASK: Design a control allocator, which maps the 

total control effort (demand) onto individual actuator settings (thrust forces, 

control surface deflections, etc.).

Figure 4.1 illustrates the configuration of the overall control system. The control system 

consists of a control law (specifying the total control effect, v, that should be produced) 

and a control allocator (allocating control vector, u, which distributes this control 

demand among the individual actuators). In the system, the actuators generate a total 

control effect, v^, which is applied as the input to system dynamics block and which 

determines the system behaviour. The main objective of the control allocation is to ensure 

that condition v ra = v is satisfied for all attainable v.

Control system System

— *•
r"

Control
law

•« ' -;; •ii «i 1-.- v " (•-'-•>

V

%•' **.

Control
allocation

y>v:^:-. : ^ii*.-..

u

1 ^^

Actuators
v ™ System

dynamics
•a

™ •

~n

|

Figure 4.1 The overall control system architecture (Harkegard, 2003).

In aerospace applications, many authors have suggested a modular flight control structure 

similar to that presented in Figure 4.1. For example, Figure 4.2 displays a control
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structure where the part of the overall system responsible for following the desired 

response is conceptually separated from the part that is responsible for handling control 

redundancy (Beck, 2002). The control law, which maps the desired response to a set of 

commands (objectives), is not dependent on the design of the control allocation system, 

which relates these commands with settings and positions of individual effectors.

Inceptor 
command Command 

interpreter
- Control 

law

I

yj Control 
allocator

u
Aircraft

Outputs

Figure 4.2 Modular flight control structure (Beck, 2002).

A similar control structure exists in underwater applications. Figure 4.3 shows a typical, 

open-loop ROV control structure. An ROV pilot uses Hand Control Unit (HCU) and 

information from sensors and real-time video from the on-board camera to generate 

commands, which cause the vehicle to follow the desired trajectory according to the 

mission objective. These commands can be interpreted as a desired forces and moments 

among axes in the body-fixed frame. Raw signals from the HCU pass through the low- 

pass pre-filter to smooth out the commanded input, in order to prevent abrupt changes in 

set points and to protect the thrusters from damage. Beside that, additional restrictions 1 

can be included in the pre-filter to prevent undesired behaviour of the vehicle. The output 

of the pre-filter is the vector of desired forces and moments (virtual control input) td . 

The task of the control allocator is to find control settings for individual actuators (true

' FALCON has so powerful thrusters that it would be able to perform a full loop in vertical plane, if full 

freedom for commanded inputs is allowed. Because of this reason, restrictions are built in the control 

software to restrict the size of (be attainable command set.
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control input) u such that T = id , where T is vector of propulsion forces and moments,

exerted by the actuators after actuation with the control vector u. For an ROV the most 

common actuators are thrusters and control surfaces, such as fins for diving, rolling and 

pitching, rudders for steering, etc.

Monitor

..,-..,.:,.. Display 
(Heading, Depth, etc.)

On-board 
camera

ROV

Sensors

Figure 4.3 Typical open-loop ROV control structure.

In contrast to ROV control architecture, Figure 4.4 displays a typical, closed-loop AUV 

control structure. In order to achieve mission objective, the control law uses actual 

knowledge about the environment and sensors' measurements to find a reference inputs 

for a set of controllers (heading controller, depth controller, etc.). The outputs of the 

controllers are integrated into a vector that is similar to the output of the ECU in Figure 

4.3. The control allocator performs in exactly the same way as in the previous case. 

Hence, from the control allocator point of view, it does not matter how the virtual control 

input id is generated (by the ROV pilot or the control law). The control allocation 

algorithm is the same for both structures. The task of the control allocator in both cases is 

to determine appropriate control settings for individual actuators, which produce the 

desired set of forces and moments.

It is useful at this point to consider the role of the PDAS in the control structures shown in 

Figure 4.3 and Figure 4.4. Basically, the PDAS performs the control allocation task, but
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this primary task is enhanced with the ability to monitor the state of the thrusters and, if 

necessary, perform automatic reconfiguration, i.e. redistribution of propulsion forces 

among the operable thrusters (Figure 4.5).

Environment

Control law 
(Heading controller, 

Depth controller, etc.)

r t
Mission

objective •*

-* Pre-
filter

T rf
— *• Control 

allocator

u
Actuators

T AUV

Sensors

Figure 4.4 Typical closed-loop AUV control structure.

Fault
accommodation 

subsystem

Fault diagnosis and 
accommodation system

Fault 
diagnosis

Figure 4.5 Relationship between the PDAS and a typical control structure for open-frame
underwater vehicle.

In particular, the PDAS consists of two subsystems: a Fault Diagnosis Subsystem (FDS) 

and a Fault Accommodation Subsystem (FAS). The FDS uses Fault Detector Units 

(FDUs), associated with each thruster, to monitor their state. The output of the FDS is the 

total fault indicator vector f, carrying the codes of faulty states for each thruster. The 

FAS uses information provided by the FDS to accommodate faults and perform an 

appropriate reconfiguration, i.e. to reallocate control energy among operable thrusters.
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Treating control allocation independently of the control law is convenient because of the 

following:

• Actuator constraints can be taken into account. In real applications actuator 

saturation always exists. If one actuator saturates, some of methods for control 

allocation are able to redistribute control energy among other available actuators 

to compensate for the inability of a saturated thruster to produce its nominal 

control effect. In this way, available control resources are fully exploited before 

the closed-loop is degraded (Durham, 1993).

• Reconfiguration can be performed. If the effectiveness of the actuators change 

over time, or in the case of an actuator total or partial fault, reconfiguration i.e. 

redistribution of control energy among a set of available actuators can be 

performed, without having to redesign the control law (Eberhardt and Ward, 1999; 

Wise, etal, 1999).

• Adaptation to a particular application. The actuator utilisation can be optimised 

for the application considered, due to separation from the regulation problem. The 

actuator redundancy can be used for different purposes. In most cases, the extra 

freedom for control distribution, which is available for overactuated systems, is 

used to optimise some secondary objective, like total aerosurface deflections, drag 

or wing load in aerospace applications (Eberhardt and Ward, 1999; Wise, et al, 

1999), or total thrust in ship control applications (S0rdalen, 1997; Lindfors, 1993). 

Another possibility is to include filtering in the control allocation process in order 

to obtain different control distribution among the actuators for different 

frequencies (Davidson, et al, 2001).
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4.3 The control allocation problem

As stated in section 2.9.2, the notation and terminology used in publications on control 

allocation are application driven and not consistent. This makes it difficult to understand 

the main ideas and compare the different approaches. In this section, an effort is made to 

develop a generic formulation of the control allocation problem, which provides a unified 

framework which will be used in the following chapters.

4.3.1 Problem formulation

The task of the control allocator is to solve underdetermined, typically constrained, 

system of equations (Harkegard, 2003). The input to the control allocator is the total 

control effect to be produced, the virtual control input v(t)e SR* (see Figure 4.1). The 

output of the control allocator is the true control input u(?)e ft™, where m > k. When a 

set of actuators is actuated by vector u, it generates the total control effect \ sys (r)e 9?*. If 

the control allocation is successful, v^v = v.

Mathematically, for a given vector \(t)e 9J* the vector u(f)e 9t M must be found such 

that

g(u(0) = v(0 (4-1) 

where g: 9tm -> 9t* is the mapping from the true to the virtual control input, performed 

by the actuators and rank(Jacobian(g)) = k . The majority of publications in the field of 

control allocation consider a linear case, for which (4.1) has the form

Bu(*)=v(*) (4-2) 

where the control effectiveness matrix B is a kxm matrix with rank k. 

Actuator position constraints are given as set of inequalities
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Wmm^U^U^ (4.3)

where the inequalities apply componentwise.

In addition, if actuator rate constraints exist, another set of inequalities need to be

satisfied:

< Pnm (4.4) 

Since the control allocator is part of the digital control system, the time derivative in (4.4) 

can be approximated as

(45)

where T is the sampling time (Durham and Bordignon, 1996). Substituting (4.5) in (4.4) 

the rate constraints are transformed into set of an additional position constraints

rp^+ufr-T^u^Tp^+ufr-r) (4.6) 

Finally, combining (4.3) & (4.6) yields

u(0<u(r)<u(0 (4.7) 

where

u(t) = maxlu^rp^ + u(t - T)}
u(t) = min{Umaj[ ,rPmax + u(t - T)}

Dropping the time dependence, the standard constrained linear control allocation problem 

can be formulated as:

For given \,find u such that Bu = v and u < u < u.

The equation Bu = v defines the set of hyperplanes in the true control space 9lm . The 

intersection of these hyperplanes is a convex set, denoted by K . The set of inequalities 

u < u < u represent the hyperbox in the same space. This hyperbox is called constrained 

(admissible) control subset and denoted by ft. The solution set 3 is given by the 

intersection of K and ii. Three cases are possible:

4-9



Chapter 4: Control Allocation

• 3 is empty (i.e. no solution exists),

• 3 has exactly one element (i.e. there is one unique solution),

• 3 has more than one element (i.e. there are many solutions).

Example 4.1 (Linear control allocation problem)

Consider the control allocation problem Bu = v, where

• True control input is u =

• Virtual control input is v = ' e 9t 2 (k = 2\

• Control effectiveness matrix is B =

Actuator position constraints are u = —

Equation Bu = v represents system of equations

L _i -12 "' 4"2 4 U} Vj
3 2 -u2 --u,=v2

~\ 1 f
244
o 1 -I

5 5.

=

-1-

-1
-1

<u =

"«i"

M2

L«3.

<U^

"1"

1

1

(4.9)

Each equation in (4.9) represents a plane in 9?3 . Consequently, (4.9) can be rewritten as

1T . II — V*;: Nf-o 
- =

(4.10)
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where N, = — -— - — and N2 = 0 - - — are normal vectors, orthogonal on

planes flr, and X2 , respectively. Since A = 0.1925 *0 (see Appendix C, eq. (C.9)j planes 

are not parallel and their intersection is a line I (see (C.4)):

I:

104 10 1——v, +—v, +—t 
77 ' 77 2 4 
40 85 1

60 65 3-—v, - —v, + —t 
77 77 10

(4.11)

where t is the parameter of the line. The line I is a convex set, denoted by IS. in previous 

discussion. The constrained control subset O, which satisfies actuator position 

constraints, is a unit cube in 9l 3 (Figure 4.6):

5R3 (4-12) 

Geometric interpretation of the control allocation problem can be obtained by 

reformulating the problem as follows:

For a given \, find intersection 3 of I (4.II) and Q, (4.12).

Three cases are possible:

• If the intersection is a segment, there is infinite number of solutions (each point 

that belongs to the segment is solution),

• If the intersection is a point, there is only one solution,

• If the intersection is an empty set, no solution exists.

The control allocation problem, formulated in Example 4.1, will be used throughout the 

chapter to introduce the terminology and to demonstrate different approaches to the 

control allocation problem.
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U2

-0.5

Figure 4.6 Constrained (admissible) control subset Q.

4.3.2 Nomenclature for constrained control subset Q.

The following nomenclature is adopted for referring to Q (Durham, 1993): 

Boundary of £1 is denoted by 3(il). A control vector belongs to d(fi) if and only if at 

least one of its components is at a limit. Vertices are the points on 3(n) where each 

control receives a limit (min or max). In Figure 4.6 vertices are denoted as 0, 1, ..., 7 . In 

the general case, the number of vertices is equal to 2m . Vertices are numerated using the 

following rule: if the vertex is represented in a binary form, then " 0" in the k * position 

of this representation indicates that the corresponding control uk is at a minimum u k , 

while " 1" indicates it is at a maximum uk . For example, binary representation for the 

vertex 1 is 001. Using the rule it can be decoded as M,M 2 M"3 , which refers to the vertex 

generated by u l = -1, u 2 = -1, « 3 = 1. Edges are lines that connect vertices and that lie on 

3(ii). In Figure 4.6 edges are denoted as 01, 02 , ...,67 . They are generated by varying 

only one of the m controls, while the remaining m - 1 are at their limits, associated with
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the two connected vertices. In the general case, the number of edges is equal to 2'"" 1

Two vertices are connected by an edge if and only if their binary representations differ in 

only one bit. For example, vertices 0 and 1 are connected by edge 01, because their 

binary representations (000 for 0, 001 for 1) differ in only one (last) bit. In contrast, 

vertices 0 and 3 are not connected by edge, because their binary representations (000 

for 0, Oil for 3) differ in more than one bit. Facets are plane surface on d(£l) that 

contain two adjacent edges, i.e. two edges that have a common vertex. In Figure 4.6 

facets are denoted as 0132, 0451, ...,7623. In the general case, the number of facets is

equal to 2™~2 . A facet is defined as the set in the control space obtained by taking all

but two controls at their limits and varying the two free controls within their limits. For 

example, for facet 0132 binary representations of its vertices are: 000 for 0, 001 for 1, 

Oil for 3 and 010 for 2. It can be seen that the first digit in these representation is 

fixed, while the other digits are not fixed, indicating that on this facet the first control is 

fixed at limit M, = -1, while the other two controls u2 and w 3 are free to vary between 

their limits [-1, l]. For higher dimension m it is possible to define d -dimensional facets 

in a similar way, as a subset of 3(fl) where m - d controls are fixed at their limits and d 

controls are free to vary within their limits. A two-dimensional facet is a rectangular.

4.3.3 Nomenclature for attainable command set 4>

The control effectiveness matrix B performs a linear transformation from the true control 

space 9T to the virtual control space 9?*. The image of ft c 9T is called the attainable 

command set and denoted by <J>. The attainable command set <I> is a convex polyhedron, 

whose boundary 3(<I>) is the image of the facets of £1. It is important to emphasize that
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not all facets of Q are mapped on the boundary 3(<I>); most of these facets are mapped to 

the interior of <I>. If any k columns of B are linearly independent (non-coplanar 

controls), then mapping B is one-to-one on 3(<I>), i.e. (vv* s 3(4>))(3!u* e 3(fi)) v* = Bu*. 

The attainable command set 3> for the control allocation problem in Example 4.1 is 

shown in Figure 4.7. Images of vertices from d(&) are called vertices (if they lie on 

3(<I>)) or nodes (if they lie in the interior of <£). In Figure 4.7, 1, 2, 3, 4, 5 and 6 are 

vertices, while 0 and 7 are nodes. In a similar way, images of edges from 3(ii) are 

called edges (if they lie on 3(4>)) or connections (if they lie in the interior of 4>). In 

Figure 4.7, 13, 23, 26, 46, 45 and 15 are edges, while 01, 02, 04, 37 , 57 and 67 

are connections. Images of facets that lie on 3(&) are called facets (if they lie on 3(4>)) 

or faces (if they lie in the interior of 4>). In Example 4.1, 4> is two-dimensional and there 

are no faces or facets. If 4> is three-dimensional, facets or faces are parallelograms.

T -, 6

r..____.37 .............w« 7

Figure 4.7 Attainable command set <I>.

4-14



Chapter 4: Control Allocation

4.3.4 Remarks

Two important issues are addressed in the following (Harkegard, 2003):

• applicability of the control allocation,

• difficulties for using the control allocation in real applications.

Applicability

The system needs to be separable as explained in section 4.2 in order to use control

allocation. Applicability of the control allocation is bounded to the classes of linear and 

non-linear systems, which satisfy a criteria that will be determined in the following. 

Consider first a linear system, described in state-space form:

x = Ax + B uu (4.13)

where x€ 9T is the state vector, ue 9T is the control input, Ae 9TX" and BB e 5R"X"1 . 

Assume that B u has rank k<m. Then BM has a nullspace (see Appendix B, Definition

B.3) of dimension m - k in which the control input can be perturbed without affecting x, 

i.e. there are several choices of control input that produces the same system dynamics. 

This type of redundancy can be resolved by control allocation. 

Since Ba is rank deficient, it can be factorised as

BM =B VB (4.14) 

where matrices B v e 9TX* and B e 9lixm both have rank k. Introducing the virtual

control input

v = Bu (4-15)

where ve SR*, the system (4.13) can be rewritten as

x = Ax + B v v (4.16) 

Now, control design can be performed in two steps, as outlined in section 4.2. 

The same idea can be used for non-linear systems of the form
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x = f(x,g(x,u)) (4.17)

where f :9Tx$R* -^SR" and g:9Tx9r -»9t*, where k<m. Introducing the virtual 

control input

v = g(x,u) (4.18) 

where ve 91*, the system (4.17) can be rewritten as

x = f(x,v) (4.19) 

Again, a two-step control design can be used, as described in section 4.2. 

In order to solve (4.18), subject to actuator position constraints (4.7), a constrained non­ 

linear programming method must be used at each time step. Since the control allocation 

has to be performed in real time, this may not be computationally feasible. One way to 

resolve this problem is to approximate (4.18) on a local basis with an affine mapping 

(Harkegard, 2003), which leads to the (locally) linear control allocation problem.

Difficulties

The most important difficulties for using the control allocation in real applications are

actuator dynamics and non-monotonic nonlinearities.

Each actuator is a system with its own dynamics. The change of actuator's input will not 

be immediately reflected on its output, i.e. the output needs some time to achieve new 

steady-state value. For example, change of the set point (desired propeller velocity) of the 

thruster will generate a chain of changes inside the DC motor, which will lead to the 

acceleration or deceleration of the output (actual propeller velocity), until new steady- 

state is reached. Fortunately, in many cases actuator dynamics is much faster than the 

dynamics of the other parts of the system. In these cases the most common solution is that 

actuator dynamics are simply neglected. This will work as long as the closed-loop system 

is designed to be substantially slower than the actuator servo systems.
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Non-monotonic nonlinearities in the mapping (4.18) constitute another important 

difficulty. If the mapping is not monotonic, the linearization can not be performed. One 

solution to the problem could be to limit controls and restrict the mapping, such that only 

monotonic part is used (Doman and Oppenheimer, 2002).

4.4 Control allocation methods

This section represents a survey of the most popular methods for control allocation 

appearing in the literature. Many of these methods correspond to different ways of 

computing the solution for a certain control allocation objective, rather than for different 

objectives. In this representation, the aim is to make a clear distinction between the main 

idea of the solution and how the solution can be computed numerically. All these methods 

will be demonstrated on the control allocation problem described in Example 4.1.

4.4.1 Optimisation based methods

Optimisation based methods rely on the following geometric interpretation of the control 

allocation problem (see page 4-9): find the intersection of i2 and K, where Q is 

constrained control subset and K is a convex set, defined as intersection of hyperplanes 

Bu = v . If there are many solutions, choose the best one. If no solution exists, determine 

u such that Bu is the best approximation of v.

Problem statement

The / norm is used as a measure how good a solution (or approximation) is. In the

general case, the optimal control input is given by the solution to a two-step optimisation 

problem (Harkegard, 2003):

u = aigmin|W1I (ii-aJ,J/| (4.20)

^ = argmin||Wv (Bu-v| (4.21)

4-17



Chapter 4: Control Allocation

where u p represents preferred position of the actuators (preferred control input) and Wa 

and Wv are weighting matrices. The problem (4.20) - (4.21) can be interpreted as 

follows: Given *F, the set of feasible control inputs that minimise Bu - v (weighted by 

Wv ), find the control input u that minimizes u-up (weighted by Wu ). In (4.20) -

(4.21), u p , Wu and Ww are design parameters. The choice of u p may correspond, for 

example, to minimum control deflections in aerospace applications. WB can be used for 

actuator prioritisation, i.e. which actuator should be used primarily. In a similar way, Wv

allows for prioritisation among the virtual control inputs when the problem (4.20) - (4.21) 

has no exact solution.

Choice of norm

The /2 norm is the most frequently used (Harkegard, 2003; Eberhardt and Ward, 1999;

Enns, 1998; Snell, et al, 1992). The reason is that the unconstrained minimum norm 

allocation problem

min|ju|2 (4.22)

subject to

Bu = v (4.23) 

has an explicit solution given by

u = B+v (4-24)

where B+ = BT ^BBT Y is tne pseudoinverse of B (see Lema B.I, Appendix B). A similar 

result can be derived for the general case (u p * 0,Wa #1), see Lema B.3. This fact is 

exploited by many authors, who developed different numerical schemes to compute the 

solution of (4.20)-(4.21).
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Some authors used /, norm instead of /2 in (4.20) - (4.21) (see, for example, Ikeda and 

Hood, 2000; Enns, 1998; Lindfors, 1993). A motivation for this choice is that, in general, 

a linear program can be solved faster than a quadratic one.

The following example illustrates the differences obtained by choosing different norms 

for solving the control allocation problem.

Example 4.2 (Choice of norm)

Consider the control allocation problem in Example 4.1 and let \d = [—0.5 0.6 J is the 

desired virtual control input (Figure 4.8,). Let the optimisation objective be given by 

(4.20) - (4.21), with u p =0, Wu =I3 , Wv =I2 . Since vrf e<I>, i.e. \d is attainable, the

problem (4.20) - (4.21) can be reduced to

2

Figure 4.8 Position of the desired virtual control input vd in <&.

nun (4.25)

subject to
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Bu =

-1"

-1
-1

-0.5 
0.6 (4.26)

(4.27)

Substituting v, =-0.5 and v2 =0.6 in (4.11) yields

I:

-46 1—— + — t 
11 4 

71 1

9 3- — + — t 
11 10

(4.28)

The intersection (solution set) 3 of I and £1 is a segment 3 = P} P2 , where

^=[-1 3/5 -3/5f (for f = f, =-123/77) and P2 =[-l/2 1 Of (for 

t = t2 =30/77 ). The point Pl belongs to the 0132 facet, while P2 belongs to the 7623 

facet. The solution of the problem is a point on the segment P1 P2 that minimises |u| .

Hence, the solution depends on choice of norm. Recall that a sphere S(0,r)p is set of 

vectors ue 3( m for which |u| < r (see Appendix B, Definition B.2). A family of spheres 

can be obtained by varying r. Now, the problem can be reformulated as follows:

Find r for which the segment P,P2 is tangent to the sphere S0,

The solution set is given as set of point(s) where the segment touches the sphere. Figure 

4.9 illustrates the situation for p = 1. The family of spheres is represented by concentric 

diamond-shaped bodies. If the radius of spheres is increased, for certain value r, the 

sphere S(0,/-,), will touch the segment. The touching point(s) is a solution, which 

minimises u and minu = r,.
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Case p = 2 is illustrated in Figure 4.10. Now the shape of the sphere is familiar from 

Euclidian metric. The same procedure, as described above, can be applied again: if the 

radius of spheres is increased, for certain value r2 the sphere S(0,r2 )2 will touch the

segment. The touching point is a solution, which minimise ||u|2 and nun|u|2 = r2 .

Choice of the weighting matrix WB

The weighting matrix WB is a design parameter typically used for actuator prioritisation.

If all actuators have the same priority, then Wa is equal to unity matrix. Otherwise, the 

weight of the actuator with less priority is increased. In this way it is possible to 

accommodate actuator faults by changing weighting matrix Wu . This topic is discussed

in section 5.2.5. The influence of the choice of the weighting matrix WB on the solution 

of (4.20) - (4.21) is illustrated in the following example.

Example 4.3 (Choice of the weighting matrix Wu )

Consider the same control allocation problem as in Example 4.1 and Example 4.2. Let 

the optimisation objective be given by (4.20) - (4.21), with /2 norm, u p = 0, Wv = I2 and

WB = diag(wl ,w2 ,w3 )=diag(l,l,2). Since w3 =2> w, = w2 =1, the third actuator has a 

lower priority than other two. Change of the weight w3 deforms the shape of spheres, 

shown in Figure 4.10, in such a way that they become flattened (compressed) in the u3 

direction, as indicated in Figure 4.11. In this way, the solution (touching point of a sphere 

with the segment 3 ) exhibits lower contribution of the third control and higher 

participation of the other two controls, compared to previous case, when all actuators 

had the same priority. This property is used to accommodate partial thruster faults in 

section 5.2.5.
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-0.5

-10-1

Figure 4.9 Family of spheres for /, norm and the solution segment P 2̂ .

7

0.5.

-0.5,

12
0.5

-0.5
0.5

-0.5 u, 
-'I u.j '

Figure 4.10 Family of spheres for /2 norm and the solution segment P} P2 for the case WB = I3 .
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-0.5.

U2
-0.5

-10.1

Figure 4.11 Family of spheres for 12 norm and the solution segment Pt P2 for the case

\Vu =diag(l,l,2).

Remarks

• In the case when Wu is the unity matrix, the 12 norm distributes the virtual control

demand among the control inputs in uniform way, while the /, solution utilises as few 

control inputs as possible to satisfy the virtual control demand.

• The 12 solution varies continuously with the parameters (elements) of B , while the /, 

solution does not. Change in a parameter (element) b of B will produce the change 

in slope of / . The 12 solution will vary continuously with b , while it can be shown 

that the /, solution will have discontinuity for some value of b = b* and the solution 

in the break point b" is not unique.

• If Wu is non-singular, the problem min||Wuu| has a unique solution for p = 2 . For

p = 1 , this is not always the case, as discussed above. The reason lies in the fact that 

the sphere S(0,r)2 is strictly a convex set, while this is not the case for S(0,r\ .
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Fixed-point method

One of methods for solving the problem with 12 norm is the fixed-point method

(Harkegard, 2003; Bodson;2002; Burken, et al., 2001; 1999). This method finds the 

control vector u that minimises

/(u) = (1 - £|Wv (Bu - v| + c|W.ug (4.29) 

subject to

u£u<u (4.30) 

where |e| < 1. This problem is a special case of the weighted, mixed optimisation problem 

(2.9) where an /2 norm is used, y = v and u,, = 0. The algorithm proceeds by iterating on 

the equation

ut+1 = *if[(l-*>jBrQlv-foH-l)Bj (4.31) 

where

Q,=WvrWv (4.32) 

Q2 = WurWu (4.33)

(4.34)

(4.35)

and sat(u) is the saturation function that clips the components of the vector u to their 

limits. The condition for stopping the iteration process could be, for example, 

\j(uk+l )-j(uk ]<tol.

The fixed-point algorithm is very simple, and the most computations need to be 

performed only once before iterations start. Remarkably, the algorithm also provides an 

exact solution to the optimisation problem and it is guaranteed to converge. To improve 

the efficiency, Burken, et al. (2001; 1999) suggest selecting the initial point u0 as the true
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control input calculated at the previous time sample, i.e. u0 (/) = u(?-r). The main 

drawback is that convergence of the algorithm can be very slow and strongly depends on 

the problem. In addition, the choice of the parameter £ is delicate, since it affects the 

trade-off between the primary and the secondary optimisation objectives, as well as the 

convergence of the algorithm.

Example 4.4 (Fixed-point method)

Consider the control allocation problem, described in Example 4.1 and Example 4.2. The 

task now is to find the solution using the fixed-point method with the initial point

u0 = [0 0 Of and design parameters Wu = I3 , Wv = I2 , £ = 10"6 and tol = KT6 .

7

-0.5

-0.5

-10.

Figure 4.12 The solution obtained by the fixed-point method.

The individual iterations are shown in Table 4.1. The approximate solution is 

u7 =[- 0.5972 0.9221 -0.1170f and Bu7 =[-0.4999 O.oOOOf « vd = [- 0.5 0.6]".

4-25



Chapter 4: Control Allocation

In the light of the previous discussion, the norm |u7 |2 =1.1048 can be interpreted as

(approximate) radius of sphere (Figure 4.10) which touches the segment Pfo. 

The fixed-point method is used later as part of the accommodation process in the PDAS 

to find solutions that lie outside the feasible region for the pseudoinverse method i.e. the 

fixed-point method is activated only in case that the solution is not feasible using 

pseudoinverse (see Chapter 5 for more details; see also Example 4.10).

u k

IWI
/(-,)

"0.0000"

0.0000
0.0000

0.0000

0.60999939

"- 0.4668
0.9056

-0.2147

1.0412

0.00967132

"- 0.5544
0.9166

-0.1491

1.0816

0.00104717

"- 0.5833
0.9203

-0.1275

1 .0970

0.00011435

"- 0.5928
0.9215

-0.1204

1.1023

0.00001346

"- 0.5959
0.9219

-0.1180

1.1040

0.00000254

-0.5969
0.9220

-0.1173

1.1046

0.00000136

-0.5972"

0.9221
-0.1170

1.1048

0.00000124

Table 4.1 Iterations of the fixed-point method.

Pseudoinverse methods

Most existing methods for 12 -optimal control allocation can be classified as

pseudoinverse methods. These methods exploit the fact that, if the actuator constraints are 

neglected, the general problem (4.20) - (4.21) reduces to

(4.36)mm Wlu-u,

subject to

(4-37)

which, using Lema B.3 and assuming Wu is non-singular, has the explicit solution

(4.38)

where + is pseudoinverse operator, see Appendix B.
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Durham (1993) considered the case u,, = 0 and showed that, in general, G does not exist

such that the pseudoinverse solution (4.38) is feasible for all attainable v. That is, a set of 

commands attainable by pseudoinverse solution (4.38) is a subset of <E>. 

Various ways to accommodate the pseudoinverse solution (4.38) to the actuator 

constraints have been proposed in the literature. The simplest alternative is to truncate the 

solution (4.38) by clipping those components that violate some constraints. Virnig and 

Bodden (1994) proposed a Redistributed Pseudo Inverse (RPI) scheme, where all control 

inputs that violate their limits in (4.38) are saturated and removed from the optimisation. 

Then, the control allocation problem is resolved with only the remaining control inputs as 

free variables. The RPI method is very simple and effective. However, it does not 

guarantee full utilisation of the actuators' capabilities and some bad choices made early in 

the iterations cannot be recovered later, as shown in the following example (Bodson, 

2002):

Example 4.5 (Redistributed pseudoinverse method)

Consider the control allocation problem

• True control input is u =

L"4,

e9t4 (m = 4),

Desired virtual control input is \d =

Control effectiveness matrix is B =

"0"

= 9
0

e

"1 0
0 1
0 0

ft 3

0
0
1

(k
0"

1
1
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• Actuator position constraints are u =

"-5"

-10
-2
-1

<u<u =

~5~

10
2
1

The unconstrained pseudoinverse solution (4.38) in the first iteration is 

u, =[0 6 -3 3j . The control inputs that exceed their limits are «3 and u4 , since 

M3 = -3 < MJ = -2 and «4 = 3 > w4 = 1. The clipped solution is u* = [0 6 - 2 if. TTte 

control inputs H3 and M4 are saturated to their limits - 2 and 1, respectively, while w, 

and M 2 are /ree to vary. From B[M, M2 - 2 if = [«, 1 + M2 - if « vrf = [0 9 of 

if can fee easily found that M, = 0 and i^ = 8. Hence, at the second and final iteration the 

control vector U 2 = [0 8 - 2 if is obtained, which satisfies the actuator constraints. 

But, this solution is just approximate, since Bu2 = [0 9 - if £ vrf = [0 9 Of. 

However, the desired vector \d can be attained using only the second control variable, 

i.e. the exact solution is u = [0 9 0 Of.

Example 4.6 (Pseudoinverse method)

The pseudoinverse solution (4.38) will be used for the control allocation problem, 

described in Example 4.1 and Example 4.2. Design parameters are n p = [0 0 Of and 

WU = I3 . Substituting design parameters in (4.38) yields 

u = [- 0.5974 0.9221 - 0.1169f. It can be easily verified that u e P\P2 , and, therefore, 

satisfy the actuator constraints. The solution u is a limit of iterations ut (obtained in 

Example 4.4) when k -»«> (see Figure 4.12). The norm |u|2 = 1.1049 can be interpreted 

as the exact radius of sphere (Figure 4.10) which touches the segment P&.

4-28



Chapter 4: Control Allocation

The pseudoinverse solution is a fast and efficient method to find the solution of the 

control allocation problem. The pseudoinverse is a member of a family of generalised 

inverses and is the one that yields minimum control energy. However, Durham (1993) 

showed that a general inverse is able to allocate controls only on a subset of 4>, i.e. there 

exist some points inside <I> (and on the boundary 3(<I>)) that are not feasible by general 

inverse. This important fact is demonstrated for pseudoinverse by the following example. 

Example 4.7 (Pseudoinverse - partitioning of the virtual control space) 

Pseudoinverse of B from Example 4.1 is given by2

1.3506 0.1299

-0.5195 1.1039

-0.7792 -0.8442
(4.39)

Recall that the attainable command set <I> is found in section 4.3.3 and shown in Figure 

4.7. The pseudoinverse is mapping u = B + v from k-2-dimensional virtual control 

space to m = 3 -dimensional true control space. The virtual control space (square 

<!>„ = V0V}V3V2 , Figure 4.13) is mapped by the pseudoinverse to a parallelogram

£l v =U0UtU3U2 (Figure 4.14). The intersection of the parallelogram ii v, with the cube £i 

is a convex polygon £l p = R^Ris^^^^' where the vertex Rtj lies on the edge ij of

Q..

The following discussion will address these issues: 

• Find 4> c4> v such that B + (* )=£i ,

2 if Wu * I3 , the pseudoinverse matrix is given by B^ = W~'B r (BW~ 1 B r j (Leraa B.2, Appendix 

B). The change of weights in Wu produce the change in slope of the parallelogram ii v and, consequently, 

the change in shape of fi p .
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• Find B + (<J>). 

In order to find ® p it is sufficient to find points Ptj such that

^=B+ (/>.) (4.40) 

Let Ptj = [vf vf f and /?. = [wf u\ u\ f. TTzen (4.40) caw fee rewritten as

b^vf+b^vl=uf
b^f+b^^ul (4.41)
^vf+^=<

The fact that Rtj € y o/ Q means that R:j is bounded to the edge ij defined by vertices i 

and j, i.e. two coordinates (controls) of RtJ are fixed to their limits, while one is free to 

vary. Recall that the nomenclature for edges, introduced in section 4.3.2, enables easy 

detection of free and fixed controls for ij: binary representations of vertices i and j 

differ in only one bit and the position of this bit indicates a free control for ij. For 

example, the edge 13 is determined by vertices 1 and 3. The binary representations of 1 

(001) and 3 (Oil) differ in the second bit, which means that the free control is u ]23 , 

while fixed controls are w,13 =«,=-! and w' 3 = «3 = +1. Once the fixed and free controls 

for ij are obtained, it is easy to find coordinates vj7 and v| of Py from (4.41) by 

removing the equation that corresponds to free control and replacing the right hand sides 

of other equations with corresponding limits for fixed controls. For example, for R}3 

system (4.41) can be rewritten as

,.13 _..13 (4-42)

A free control is u^ so the second equation is removed, while the right hand sides of the 

first and the third equation are replaced with M,13 = -1 and w" = +1, respectively:
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-1 -0.8 -0.61-0.4 p 0" 0.2 0.450.6 0.8 1

Figure 4.13 Partition of the virtual control space <J>V : <& p (feasible region for pseudoinverse) and

<3> (attainable command set).

Figure 4.14 Images of partitions in the true control space: £lv - B+ (<!>„) (image of <I> v ), 

&„ = B+ (<I> p ) (imageof 4>^)and ne =B+ (4>) (imageof 4>).
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£V3 + frV3~ +1 (4' 43)

which yields the solution v,13 = -0.6875 and v23 = -0.5500. Other vertices can be found 

in a similar way and results are shown in Table 4.2 (vertices P(j ) and Table 4.3 (vertices 

Rij). Hence, the subset & p a<& r such that B + (<I> p )= Jl^ is a convex polygon 

^^15^45^46^26^2)' whose vertex Pu lies on the edge if of 4> (Figure 4.13). 

The pseudoinverse image of <t> is a convex polygon Qe = B+ (<&). Vertices 1, 2, 3, 4, 5 

and 6 of 4> are mapped to vertices 1, 2, 3, 4, 5, 6 of £le that lie outside £1, wn//e 

nodes 0 and 7 o/ 4> are mapped to nodes 0 and 7 o/ iis fnar /i'e j'nsz'de £1. TTze virtual 

control space can be partitioned into three characteristic regions (Figure 4.13): <J> p 

(polygon ^s^s^s^^e^ A *^*P («m0n of triangles 1^5 ^3 , 3/^3 P23 , ..., 5P45 ^5 ) 

and 4> v . \<I> (union of triangles Vn 1 3, ..., V2 4 5). The pseudoinverse image of each 

partition lies inside parallelogram Q. t (Figure 4.14). Table 4.4 displays cross-relation 

between these polygons in the virtual and the true control space. 

Subset <I> represents a part of the virtual control space <J> v attainable (feasible) by

pseudoinverse. That is, if v'e<l> p , then u'=B+ v'€£l and ||u'|2 = arg min|(u|. In other 

words, if the virtual control input lies in 4> p , then the pseudoinverse solution is feasible 

and has a minimal /2 norm of all other solutions. Otherwise, if \'<£® p , then

u'=BVgQ, which means that v' is not feasible with pseudoinverse, although some 

other choice of general inverse or application of other methods, like direct allocation, can 

make it feasible. This aspect of the relationship between the position of the virtual control 

input and the feasibility of the solution is important and discussed in the following

example.
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-0.7917 0.7917 -0.6875 0.6875 -0.2000 0.2000

0.5333 -0.5333 -0.5500 0.5500 -1.0000 1.0000

Table 4.2 Vertices of <I> .

"l
"2
"3

-1.0000

1 .0000

0.1667

1 .0000

-1.0000

-0.1667

-1.0000

-0.2500

1 .0000

1.0000

0.2500

-1.0000

-0.4000

-1.0000

1 .0000

0.4000

1 .0000

-1.0000

Table 4.3 Vertices of Q = B + (<J> ).

Virtual Control Space True Control Space

Partition
*,

*\*,

4> \4>

Polygon
p p p p p pM 3M 5 MS r46r26'23

1 p p
1 M5 *13

3 P P0 rn rv

2 ^23 ^26

6 P*P«
4 P P* r46 r45

5 MS^S
V0 13
y, 3 2
V3 6 4
V2 4 5

Partition
",

Qe \ap

«v\".

Polygon

KllR\5R45R46R2f,K23

1 R15 R]3

3 R]3R2)
2 R23R26
6 ^26^46

4 *46#45

5 R4SR15
Un 13
Ul 3 2
f/3 6 4
U2 4 5

Table 4.4 Cross-relation between the virtual and the true control space. 

Example 4.8 (Pseudoinverse - geometric interpretation of solution)

Consider again the control allocation problem from Example 4.1 and let S = [vt v2f 

denotes an arbitrary point from the virtual control space <$>„. Recall that a total solution 

set 3 is given by the intersection of the line I (4.11) and ft. When a point S moves 

inside $ , the corresponding line I moves in the true control space. For a given S,
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pseudoinverse will select the solution from 3 where the line I intersects the 

parallelogram £lv . Three characteristic cases are possible, regarding the position of S

relative to the partitions of Ov (Figure 4.15J:

1. 5 = 5,6*,,

2. S = S2

3. S = S,

-1 -0.8 -0.6i-0.4 p 0 0.2 0.450.6 0.8 1

Figure 4.15 Three typical cases for position of virtual control inputs relative to <& p and 4>. 

Case 1: In this case, point Sl lies inside 4> p and the pseudoinverse solution is 

T, =B+ (5i) that lies inside Qp (Figure 4.16;. A solution set is a segment 3, =\ n&. 

This segment intersects the parallelogram fl v in the point T} , 7] =3] nQv . From all 

solutions in 3, the solution 7], selected by pseudoinverse, is optimal in 12 sense.
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For example, if S, = [- 0.6 0.4f, then the solution set is a segment 3, = Pf% = /, n Q, 

/;=[-! 14/25 -4/25f, P2 = [-9/20 1 l/2f (Figure 4.1 6). The pseudoinverse 

solution (7;=B+ (£,) = [-0.7584 0.7532 0.1299f ) represents the point where the 

segment P} P2 intersects the parallelogram Qv . This solution is feasible, since it belongs 

to Q. 

Case 2: In this case, point 52 lies outside 4> p , but inside <3>. The image

T2 = B+ (S2 ) lies outside £2 p , but inside Qe (Figure 4.17). Geometrically, a solution set is 

segment 3 2 =/2 nQ that does not intersects with £l v , which means that the 

pseudoinverse solution T2 lies on 12 but outside 3 2 , i.e. r2 gQ. Hence, the virtual 

control input 52 is unfeasible (unattainable) by pseudoinverse, but, because 3 2 't 0, 

some other methods (like direct allocation) are able to allocate solution from 3 2 . 

For example, if S2 = [- 0.9375 0.1600f, then the solution set is a segment 

3 2 = /?P2 =/2 nQ, /? = [-! 43/50 89/100f, P2 = [-9/20 1 l/2f (Figure 4. 17). 

The pseudoinverse solution (T2 = B + (S2 ) = [-1.2455 0.6636 0.5955fj represents the 

point where the line 12 intersects the parallelogram Qv . This solution is unfeasible, since 

it lies on the line /2 outside 3 2 and does not belong to £2.

Case 3: Finally, in the last case point 53 lies outside 3>, but inside 4> v (Figure 

4.15). The image T3 = B+ (S3 ) lies outside Q.e , but inside fi v (Figure 4.18J. In this case 

line 13 does not intersect with £2, i.e. 3 3 =/3 nii = 0 and the exact solution of the 

problem does not exist. The pseudoinverse solution T3 is unfeasible, since it does not 

belong to ii.
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Un

U2

Figure 4.16 Case 5, 6 ® p yields to the pseudoinverse solution 7] e I2p c O that is optimal in

/2 sense.

Figure 4.17 Case 52 G 4> \ <E> p yields to the unfeasible pseudoinverse solution 72 € Q.e \ il p that

lies outside fl.
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Figure 4.18 Case 53 e & v \ <E> yields to the unfeasible pseudoinverse solution T3 e & v \ Qe that

lies outside Q.

For example, if S3 = [- 0.9000 - O.SOOOf, then line I = 13 (4.11) is given by

493 1

/3 : P =
154 5 

173 _3_154 + 10*

(4.44)

The line 13 does not intersect Q and the exact solution of the control allocation problem 

does not exist (Figure 4.18J. However, intersection of 13 and Q v is the pseudoinverse

solution TI =B+ (S3 ) = [-1.2805 -0.0844 1.1234f. This solution lies outside Q and is

notfeasible.

This example demonstrated that pseudoinverse is able to allocate the exact solution

(optimal in 12 sense) only if the virtual control input v lies in &p . Otherwise, if
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ve 3>\<$,,, the pseudoin verse finds solutions that lie outside Si, i.e. that violate control 

constraints. The approximation of these solutions is the topic of the following example. 

Example 4.9 (Pseudoinverse - approximation of unfeasible solutions)

This example is a continuation of discussion from Example 4.8. If a virtual control input 

v lies outside ® p (for example, S2 and 53 in Figure 4. 15), then the pseudoinverse

solution u = B +v is unfeasible and lies outside SI, i.e. it violates control constraints (T2 

in Figure 4.17 and T3 in Figure 4.18). In this case it is necessary to approximate 

unfeasible u € Si with feasible u* e Q such that Bu* « v . 

Definition 4.1 (Approximation error)

The approximation error is defined as e = v — v*, where v is the virtual control input, 

v* = Bu* is an approximation of v and u* is an approximation of u = B +v . In order to 

be able to compare different approximations, two scalar errors are introduced: direction

T *

error 6 = acos ,. \ .,' V „ and magnitude error |e| = fv - v*| . The direction error
II. ,11 ,>* " "^ " H2

12

represents the angle between v and v*, while the magnitude error represents the module 

of the approximation error vector e (Figure 4.19), In the case when 0 = 0, the 

approximation v* preserves the direction of the original vector v.

v* = Bu* 

(a) Case Q * 0.

Figure 4.19 Approximation error e = v-v* = v- Bu*.
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Two common approximations (truncation and scaling) are explained in the following: 

Truncation (T-approximation): In this case approximation u* is obtained from u 

by truncating (clipping) all controls that exceed their control constraints. For example,

the first control u2l of the pseudo inverse solution u, =T2 = HL2455 0.6636 0.5955
"21 "22 "23

for the virtual control input \2 =S2 =[-0.9375 0.1600f e <J>\4> p (see Example 4.8; 

violates the constraint M, (u2} <Uj=-l) and must be clipped, which leads to T- 

approximation u\, =r2*=[-l 0.6636 0.5955f (Figure 4.20;. This approximation 

generates v*, =5*, = Bu*, =[-0.8148 0.16CK)f (Figure 4.21;. Vector v*, is not

vr -v* 
colinear with v, and the direction error is & = acos-—\ «, 2'ii =1.4249°, while theNlKi
magnitude error is ||e2,||2 = v2 - vU = 0.1227.

The same procedure can be applied for the case when the virtual control input lies

outside 3>. For example, let v 3 = 53 = [-0.9000 -O.SOOOf e <!>„ \4>. Controls u3l and

«33 of the unfeasible pseudoinverse solution u3 = F3 = -1.2805 -0.0844 1.1234

found in Example 4.8, violates their constraints and must be clipped f«31 =u { =-1 and 

UK =^ = l), which leads to T -approximation uj, = 7]J = [-1 - 0.0844 if. 

This approximation produces v*, =53*f =BU;, =[-0.7289 -0.4506f (Figure 4.21), 

which lies on the boundary d(&), since u3, lies on the boundary d(&)3. Again, the

3 Since every kxk = 2x2 partition of B is non-singular, equation v'= Bu', u'e d($>) has unique 

solution v'e d(&). In this case controls are said to be independent (see section 4.4.2).
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approximation \\t is not colinear with v3 and the direction error is

T *
03l = acos V j* j. Vf.." = 2.6724°, while the magnitude error is |eJ| = |v3 - v*,|| = 0.1781.I 17 tl flv II " "2

Scaling (S-approximation): In this case approximation u* is obtained from u by 

scaling all controls by factor f such that u* =,/u€ d\Qp ). Geometrically, point T* =u* 

is the intersection of u and d(Si p ) (Figure 4.20). But T(*e 3(nJ:=> T/e 3(il), since 

)c d(A). /n tfze general case, the scaling factor f is calculated from4

= mn

max max I —'- \, max —
,1 (4.45)

If ueil then /-I. Otherwise, /<!. For example, since fi is symmetrical about 

u = 0, the scaling factor f2 for U2 =r2 =[w2 , «22 M23 feil,\ft is found using 

simplified (4.45):

/2 =min
max

,1 = min 1

max -1.2455
+1

0.6636)+1 r 0.5955
+ 1 (4.46)

-mi-^il-asa*

4 It is assumed that lower and upper limits have opposite signs, i.e. that the origin u = 0 belongs to Q . In 

special case, when SI is symmetrical about the origin ( Ui,=-«,-= Umi ), (4.45) is simplified to

/ = rain -
l'«
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Figure 4.20 Approximation of unfeasible pseudoinverse solutions in the true control space.

-1 -0.8 -0.6j-0.4 p 0 0.2 0.450.6 0.8 1

Figure 4.21 Results of approximations in the virtual control space.
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which leads to a S-approximation uj, = r2* = Ju2 = [- 1 0.5328 0.478lf e d(&p ) 

(Figure 4.20). This approximation generates vj, =Sjs =Buj, =[-0.7527 0.1285f e3(<I> p ) 

(Figure 4.21). Vector v 2 , is colinear with \ 2 and the direction error is

#,, = acos7—I ,| 2 -'n = 0.0°, while the magnitude error is lie,,II = Iv2 - v* II = 0.1874.
II vr II tlvT II II 112 *'* I JO

The same procedure can be applied for the case when the virtual control input lies 

outside <J>, like v 3 = S3 = [-0.9000 -0.5000f 6 <E>V \4> in Figure 4.21. The S- 

approximation of the unfeasible pseudoinverse solution u3 = T3 € ii v \ flf is

U;s =r3*s =/3u3 =0.7809[-1.2805 -0.0844 1.1234f = [-l -0.0659 0.8773f € a(ap ) 

fFigure 4.20), which yields v*3s = S*3s = Bu3s =[-0.7028 -0.3905f (Figure 4.21),

which lies on the boundary d^^j, since u*3l lies on the boundary d\£lp ). As in the 

previous case, the approximation Vj, is colinear with v3 and the direction error is

T *

93, = acos,, Yn^n - 0.0°, while the magnitude error is |(e3J2 = |v3 - Y^ = 0.2255.

Remarks

• Pseudoinverse B + is a special case of generalised inverse P (section 2.9.3). The 

shape of 4> depends on the selection of P. Durham (1993) showed that the

equation u = Pv can be satisfied at no more than (m - k}k pre-selected points on 

the boundary ve 9(<J>). This means that from all vertices of 4> p no more than 

(m -k)k can be selected arbitrarily, while other vertices can be obtained by some 

linear combination of controls that correspond to the selected vertices.
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• Each selection of no more than (m-k]k points on the boundary 3(<I») yields to 

unique partition of matrix P. Durham (1993) demonstrated one way to find 

partitions of P using nullspace w[PB-l].

• Durham (1993) also demonstrated a method to find the "best" generalised inverse, 

that is, the generalised inverse which maximise the area or volume of <& p inside

4>, without violating any control constraints. This is clearly the same as 

minimising the difference between the area or volume of the boundary 3(<I>) and 

& p within constraints. The "price" that is paid for maximising & p is that the 

solutions are not optimal in 12 sense.

• T -approximation u* of the unfeasible pseudoinverse solution u lies in 

(4>\4>j,)ud(3») and introduces direction error 6t *0, i.e. vectors v and v* have 

not the same direction. At the same time, the S -approximation u* lies on 3(3>,,) 

and the direction error 6t is always zero, i.e. vectors v and v* always have the 

same direction, but the magnitude error |es |2 is greater than ||e,|2 .

• The fixed-point method (page 4-24) is able to improve the T - or S - 

approximation of the unfeasible pseudoinverse solution u. Approximations u* or 

u* can be used as the initial iteration u0 and the algorithm will find the solution 

u^ such that v*f = Bu) is a better approximation of v than v* or v*. This is the 

main idea of the hybrid approach for control allocation used in the PDAS:
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If the virtual control input v lies inside 4> p , use the pseudoinverse solution 
u = B+ v that is optimal in 12 sense. Otherwise, if ve <& v \<£ p activate the fixed- 
point iterations to find u"f , using the T -approximation u*, S -approximation u*
or control vector from previous sample u(f -T) as an initial point for iteration. 
Depending on design parameters of the fixed-point method, the solution 
Vy =Bu^ obtained in this way is (almost) exact (if ve 4>\<I> p J or approximate

Example 4.10 (Hybrid approach for control allocation)

In this example, the fixed-point method is used to improve T - and S -approximation of 

unfeasible pseudoinverse solutions from Example 4.9. Design parameters are WB = I3 , 

Wv = I2 , e = 10"6 and tol = 10"*. Results are shown in Table 4.5 and Table 4.6.

Initial #of Last Limit Obtained virtual Desired virtual Direction Magnitude
point iterations iteration control input control input error error

Uo

U*2,

UL

k

19

20

Ufk

-1.0000 
0.8585 
0.8874j

-1.0000 
0.8582 
0.8870

Uf

-1.0000 
0.8600 
0.8900

[-1.0000 
0.8600 
0.8900

Vfk=BUfk

f- 0.9365] 

[ 0.1601 J

f- 0.93631 

|_ 0.1601J

V

T- 0.9375"! 

|_ 0.1600 j

T- 0.93751 

|_ 0.160oJ

6k

0.0181°

0.0208°

IKIU

0.0010

0.0012

Table 4.5 Iterations of the fixed-point method for v2 e 4> \<I»

Initial 
point

Uo

<

»3.

#of 
iterations

k

3

5

i
Last 

eratior

Ufk

-1.0000' 

- 0.0535 
1.0000

"- 1.0000" 

-0.0533 
1.0000

Limit

Uf

-1.0000 
-0.0533 

1.0000

-1.0000 
-0.0533 

1.0000

Obtained virtual 
control input

Vfk=BUfk

T- 0.73661 

[- 0.432 ij

1"- 0.73671 

|_-0.432oJ

Desired virtual 
control input

V

T- 0.90001 

|_-0.500oJ

f- 0.90001 

|_-0.500oJ

Direction 
error

6k

1.3431°

1 .3341 °

Magnitude 
error

!M*

0.1769

0.1769

Table 4.6 Iterations of the fixed-point method for v, €
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(a) If Y 2 e*\*p , 7^=7^3, is 
exact solution, optimal in /2 sense.

(b)lf v 3 e* 1P \*, T;{ is 
approximative solution.

-0.9 -0.8 -0.7 -0.6 -0.5

(c) If v 2 € 4> \ <£„ , then S2f = S2 . (d) If v 3 e 4> v \ * , then S3/ is better
approximation than S'3l or S3s .

Figure 4.22 Improving of T - and S -approximation by the fixed-point method. 

Individual iterations are shown in Figure 4.22. In particular, iterations that start from the 

T-approximation are shown as black dots, and as red dots, if they start from the S- 

approximation. If the desired virtual control input v 2 lies in *\*p , the fixed-point 

algorithm converges toward the exact solution T*f = %, which lies in the solution set 32 

and has lower 12 norm than any other point in 32 . However, if the desired virtual control 

input v3 lies outside ®, the fixed point algorithm finds an approximate solution Tjf that 

is better than solutions obtained by T - or S -approximation, since it has lower direction 

and magnitude error.
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4.4.2 Direct control allocation

In the original paper (Durham, 1993), the author uses nomenclature v = m (the virtual 

control inputs are moments) and the term attainable moment set for O, because he 

discusses the problem from the aerospace perspective. In the following, the general 

nomenclature will be kept. It is assumed that the controls are independent (non-coplanar 

controls), i.e. that every kxk partition of the control effectiveness matrix Btxm is non- 

singular. This assumption yields that the control allocation problem has a unique solution 

for the case when virtual control input lies on the boundary of <&. Vectors that lie on the 

boundary 3(£i) (d(<I>)) are denoted as u* (v*), respectively. A unit vector in the

ydirection of v is denoted by v = 1'

Problem statement

The control allocation problem is defined as follows: given B, £2 and some desired

virtual control input vd , determine the true control input u e Q. that will generate a 

virtual control input for the largest possible magnitude of v in the direction v rf . That is, 

the objective is to find a control vector u € £1 that results in the best approximation of the 

vector \d in the given direction, i.e. such that direction error is zero. The implicit 

assumption is that directionality is an important characteristic of flight control. Hence, the 

direct allocation method moves the focus from the interior or exterior of <I> to its 

boundary and searches for a solution there, employing the fact that the solution is unique 

on the boundary, under assumption of non-coplanar controls.

Description
Given a virtual control demand vd , the direct control allocation method involves the

following steps:
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1. determine 4>,

2. find the boundary 3(<E>),

3. find the intersection v^ of the half-line p (in the direction of vd ) and 3(<3>),

4. calculate the scaling factor

(4.47)

5. determine the unique control vector u* € d(&) such that Bu* = v^,

6. select the true control input u e Q according to

"' lfa>1 (4.48) 

(u , ifa<l

Bodson (2002) condensed this verbal description into the following optimisation problem: 

Given B and vrf , find a real number a and a vector u* that solve

max a (449)
a.u \ • >

subject to

U ~ OT̂  (4.50) 

u <u < u

Then assign u as in (4.48).

Example 4.11 (Direct control allocation)

Consider the control allocation problem in Example 4.1 and let \d = [- 0.5 0.6f, as in 

Example 4.2. The attainable command set 4> and its boundary 3(O) are already found in 

section 4.3.3 and shown again in Figure 4.23.
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-1 -0.5 0

Figure 4.23 The direct control allocation method searches for v^ = a\d on

7

-10-1

Figure 4.24 The direct control allocation method finds the limit solution u* on 3(Q), such that 

Bu* = v*, and performs inverse scaling to obtain the solution u = -u*.
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The intersection of the half-line p in the direction of \ d and 9(<I>) (edge 23, see Figure

4.24) is denoted as \'d and can be found as the intersection of the two lines:

31 419 
P'- ~— v\- — v2 =0 and 23: —v,- —v2 =——. Solving the system yields

~' ^ J iL, \\J

Vrf = - — —\.The scaling factor is a = f-^p- = ———— = 1.2857. Now the focus is 
L 14 35 J | VJ2 0.7810

moved to £2: a vector u* must be found such that Bu* = v*. Since v* lies on edge

H3e 3(<I>), vector u* must lie on edge 23 € 9(Q). Every vector on this edge has the first 

coordinate equal to -I, the second equal to 1 and the third free to vary between — 1 and

1. Now, the condition Bu* = \"d yields u'= — 1 1 - . Finally, since a > 1, the 
14.

solution u that satisfies Bu = \d is found by performing inverse scaling

u = -u* = [- 0.7778 0.7778 - 0.3333f. It is easy to verify that u £ P1 P2 . 
a

Remarks

• The solution obtained by direct control allocation has /2 norm |u|2 =1.1493,

while the pseudoinverse method found the solution with 12 norm ||u| =1.1049. 

Comparing these two norms, it is possible to conclude that the solution obtained 

by the direct allocation method is not optimal in 12 sense.

• Direct control allocation is trying to allocate the actuators by direction 

preservation. If v is not feasible, i.e. if v lies outside 4>, the method will find u* 

such that Bu* = v*, where v* e 8(<£>) is the best approximation of v in the 

direction of v (v* and v have the same angle, but different magnitude, i.e. 

direction error is always zero).
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• There are no design variables to be selected. That is, the solution is completely 

determined by the control effectiveness matrix B, and the control constraints u 

and u.

• For a > 1, no one element in u is saturated (Durham, 1994). That is, if \d lies 

strictly inside <I>, then u lies strictly inside Q.

• The control constraints u < u < u must include the origin (Bodson, 2002). That is, 

the method requires u < 0, u > 0, i.e. the origin u = 0 must be a feasible true 

control input. This stems from the way how u is constructed in (4.48). When rate 

constraints are included, as in (4.8), the origin u = 0 is often outside the control 

constraints. A solution to this problem consists in applying the technique to 

increments of the vector u. However, this solution introduces a wind-up problem, 

which must be resolved using "restoring" techniques.

• Another drawback is that the direct control allocation method does not enable axis 

prioritisation.

4.4.3 Daisy chain control allocation

In daisy chain control allocation (Harkegird, 2003; Bordignon, 1996), the actuators are 

divided into groups which are successively employed to generate the total control effort.

Description

The m true control inputs are first divided into M groups,

u 1

after possibly reordering the control inputs. Then, the control effectiveness matrix is 

partitioned accordingly,
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B = [B, -. Bj

The control allocation problem Bu = v can be rewritten as

BX+ +BM uM =v (4.51)

The main idea of daisy chain is to first find the best possible contribution of group u 1 by 

solving

BX = v (4.52) 

for u 1 . 

Two cases are possible:

1. if rankBj > dim v = k , (4.52) is solved by

ul =P,\ (4.53) 

where P, is any right inverse of B! (see (2.3)).

2. if rankB! < k, v can not, in general, be generated using only u 1 . In this case, an 

approximate solution of (4.52) is assumed to have the same form (4.53).

Definition 4.2 (Saturation function)

\uk ,ifxk >uk
Saturation function is defined as satu (x) = y, such that yk = \ xk , if u k <xk ^uk .

(u t ,ifxk <uk

If u1 satisfies (4.52), as well as the actuator constraints, the allocation was successful and 

the procedure halts. Otherwise, u1 is saturated according to its constraints

u'^sat^ftv) (4.54)

and the second group of actuators u2 is employed to solve

B2u 2 = v-B,u' (4.55)
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for u2 . The principle is the same as for u1 : the solution (possibly approximate) is given 

by u2 =P2 (v-B,u1 ). Again, if u 2 satisfies (4.55) and the actuator constraints, the

procedure halts. Otherwise, u2 is saturated and the procedure is repeated until either v is

met or all actuator groups have been employed.

The daisy chain control allocation procedure can be summarised as

(4.56)

uM =sat JpJ v-YB r.ur'
u M \ L—l '

M-l

where B,P; =1 (if possible). Figure 4.25 illustrates the procedure for M =3.

v-B,u\

Figure 4.25 Daisy chain control allocation for M — 3. 

Example 4.12 (Daisy chain control allocation)

Consider the same control allocation problem as in previous examples. The method will 

be demonstrated for the case when a set of actuators is divided in M - 3 groups:
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« =«,

« 3 =i

grouping yields to the following partition of B.

B
0.51-0.251- 0.251

The approximate solution of the first equation BjM 1 = \d is given as

= sat, (-!) = -!

where P, is found from5 

f0.5l 1 0
o i

(4.57)

(4.58)

(4.59)

(4.60)

Since BjW 1 *^, the procedure is continued for u 2 . The approximate solution of the 

second equation B2M 2 = vrf - BjM 1 is given by

[-0.5917 1.420l]| = sat 2 (0.8521) = 0.8521 (4.61)

where P2 is found from

-0.25 
0.6

1 0
0 1 (4.62)

5 MATLAB operator T is used to find Pj (MATLABcode: Pl=Bl\eye (2)).
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Since B 2w 2 * \d -BjM 1 , the procedure is continued for M 3 . The approximate solution of 

the third equation B3M 3 = \d - (fl,*/ 1 + B2M 2 ) is given by

u 3 = satBS (p3 (v, -(B,H' + B 2« 2 ))) = sat a3 

= sat 3 (-0.3989) = -0.3989

[-1.1236 -1.7978f213°]
'|_0.0888j (4.63)

Hence, the daisy chain method found the solution u = [l 0.8521 -0.3989f (see Figure

A™ u- u- • • « -0.61331 -0.5 4.26), which is approximate, since Bu =

-0.5

-0.5

-10.1
-0.5

Figure 4.26 Daisy chain solution for M = 3 groups of actuators.

Remarks

• The design choices consist of the actuator groupings and the P, matrices. Note 

that in the special case, when each group consist of k actuators and each of square 

matrices B, has a full rank, each matrix P, is uniquely determined from B,.P, = I.
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• The method is very dependent on design choices and may fail to produce feasible 

virtual control inputs, like in Example 4.12. Similar cases are given in (Bordignon, 

1996).

• In aircraft applications, daisy chain control allocation is often used when thrust 

vectoring is available (Enns, et al, 1994). Conventional control surfaces, such as 

elevator, aileron and rudder, are then primarily used for control, and the thrust 

vectoring vanes are used for auxiliary control.

4.5 Concluding remarks

In this chapter the control allocation problem, in the general case, has been formulated. 

This formulation was used to establish which class of system control architecture can be 

separated into two independent tasks (control law and control allocation), thereby 

allowing the control allocation to be considered separately from the control law, which is 

the norm for ROVs and AUVs.

A number of methods for the solution of the general control allocation problem have been 

presented. In order to compare their performance the solutions were tested using the same 

example and it was shown that the solution is dependant upon the method and/or criteria 

used. A new hybrid approach, which integrates pseudoinverse and fixed point methods, 

was introduced and shown to be able to allocate the exact solution, optimal in an 12 sense, 

inside the entire attainable command set 4>. This solution minimises the control energy 

cost function, which is the most suitable criteria for underwater applications. 

Clear geometric interpretations were given for each method, which enabled visualisation 

and better understanding of the complex underlying mathematical relationships. For easy 

geometric interpretation, the control allocation problem in selected example had the two- 

dimensional virtual control space and the three-dimensional true control space. However, 

the concepts can easily be extended to ROV applications which have three-dimensional
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virtual space (three DOF in horizontal plane) and four-dimensional true control space (4 

horizontal thrusters). This is explored further in the development of the PDAS, which is 

described in the next chapter.
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5.7 Introduction

A novel thruster fault diagnosis and accommodation system (PDAS) for underwater 

vehicles is proposed in this chapter. Basically, the PDAS is a control allocator, but this 

primary function is enhanced with the ability of automatic thruster fault detection and 

accommodation. Material presented in this chapter is closely related with the basic 

concepts about propulsion system (section 3.7) and control allocation (section 4.3). The 

hybrid approach for control allocation (Example 4.10) is extended for the case of the 

three-dimensional virtual control space and the four-dimensional true control space in this 

chapter and used as a foundation to build an enhanced control allocator, with fault 

detection and accommodation capabilities.

This chapter is organised as follows: the rest of this section provides conceptual elements 

and reveals the main idea of the PDAS, displays a list of requirements and addresses 

some implementation issues. Section 5.2 discusses the control allocation problem for 

underwater vehicles. Topics include introducing basic concepts, nomenclature and 

terminology, description of normalisation procedure and choice of optimisation criteria 

and weighting matrices. The architecture of the PDAS is described in section 5.3. A 

detailed description of the Fault Diagnosis System (FDS) is given in section 5.4. Topics 

include fault classification and description of the fault code table, Fault Detection Unit 

(FDU) and the FDU algorithm. Section 5.5 presents the structure of the Fault 

Accommodation System (FAS), describes the hybrid approach for control allocation and 

discusses the feasibility of pseudoinverse solution. In addition, the feasible region concept 

is described for different faulty situations. The FAS algorithm is presented at the end of 

section. Remarks on implementation issues are given in section 5.6. Section 5.7 

summarises concluding remarks.
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5.1.1 Conceptual elements

A standard open-loop ROV control structure is shown in Figure 5.1 (a). The ROV pilot 

uses the Hand Control Unit (HCU) to generate vector T^ , which can be interpreted as a 

desired vector of propulsion forces and moments among axes in the body-fixed frame. 

Raw signals from the HCU, packed in vector T* , pass through the low-pass pre-filter to 

smooth out the commanded input and to protect the actuators from damage caused by 

abrupt changes of set points. The output of the pre-filter is the desired vector of 

propulsion forces and moments (virtual control input) rd . The control allocator maps the 

vector r d into the vector (true control input) u, representing control settings for 

individual actuators.

Hand 
Control Unit

- „ : . n., .»sKSS

TJ Pre- 
filter

jjj^j^^jy

to Control 
allocator

u
' ROV

(a) Standard architecture, without FDAS.

Fault
accommodation

subs)

f

stem

u
-j— i

Fault diagnosis and 
accommodation system

(b) Improved architecture, with FDAS.

Figure 5.1 Open-loop ROV control structure.

After actuation with u, the actuators generate a vector of propulsion forces and moments 

(total control effect) T , which is applied as input Bt to the ROV dynamics block (for
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example, simulation diagram for ROV dynamics and kinematics shown in Figure 3.4), 

and determine the behaviour of the vehicle. The main objective of the control allocation is 

to ensure that the condition T = td is satisfied for all attainable td . 

The thruster configuration of the FALCON (Figure 3.7 (a)) enables direct control of 4 

DOF: surge, sway and yaw in the horizontal plane and heave in the vertical plane. In a 

similar manner, the modified thruster configuration of the URIS (Figure 3.7 (b)) allows 

direct control of only 3 DOF (surge, sway and yaw in the horizontal plane). In both cases, 

control system for motion in the horizontal plane is overactuated, since there are three 

controllable DOF and four horizontal thrusters. Vector td can be decomposed into two

parts as rrf =
^

where r"T represents desired surge force Tx , sway force ry and

yaw moment 1N for motion in the horizontal plane, and t^ is equal to heave force 7Z 

for motion in the vertical plane. The control allocation problem for motion of the 

FALCON in the vertical plane is straightforward, since the vector T^ has only one 

component, i.e. there is one-to-one correspondence between the controllable DOF (heave) 

and the vertical thruster. However, in the general case the vector T^ can have three 

components (heave force rz , roll moment rx and pitch moment tM ). Typical example is 

ODIN (see page 2-41), with four horizontal and four vertical thrusters, where each of 

vectors T^ and T^ have three components. Since the work described herein is related 

with improvements of two particular vehicles (FALCON and URIS), the following 

discussion will concentrate on horizontal thrusters, although the same principles are valid 

for vertical thrusters. Following on from the discussion in Example 4.7, the 3D virtual
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control space ®"T for normalised1 T^ is represented as unit cube in Figure 5.2, and the 

two characteristic regions inside ®"T are ®"T (feasible region for pseudoinverse) and 

* => <&"J (attainable command set). It should be emphasized that there is an infinite 

number of exact solutions for T"T e ®HT , while no exact solution exists for 

if7 e f&f7 \ &"* . The standard control structure for the FALCON, developed by Seaeye 

Marine Ltd., uses pseudoinverse approach to solve the control allocation problem, which 

is able to find the exact solution, optimal in the 12 sense, only if r^T e <&"r . In order to

extend the size of the region with the exact solution, the control allocator in the standard 

structure shown in Figure 5.1 (a) is replaced by the FAS in the improved control 

structure, shown in Figure 5.1 (b).

05-

-05-

Figure 5.2 Partitions of the normalised virtual control space for motion in the horizontal plane2.

1 The normalisation process is described in section 5.2.2. Normalised variables are denoted by an underline.

2 Partitions, shown in Rgure 5.2, illustrate the main idea of the PDAS concept and assume X-shaped 

configuration of horizontal thrusters (FALCON). Full description of these partitions for X-shaped and 

cross-shaped configurations is given in section 5.5.2.

5-5



Chapter 5: Fault Diagnosis and Accommodation System

The FAS performs a hybrid approach for control allocation, such that it finds the exact 

solution of the control allocation problem, optimal in /2 sense, for r^1" e 3> HT . Hybrid 

approach (Example 4.10) uses pseudoinverse for r^e ®"T and fixed-points iterations3

for ^ 6 $ \ & p . In addition, the primary task of control allocation is enhanced with

the fault diagnosis module performed by FDS, able to monitor state of the thrusters and 

inform the FAS about any malfunctions using the total fault indicator vector f , carrying 

the codes of faulty states for each thruster. The FAS uses information provided by the 

FDS to accommodate faults and perform appropriate reconfiguration reallocating control 

energy among operable thrusters. The overall fault diagnosis and accommodation process 

is very fast, despite the fact that in some cases it is necessary to perform iterations, due to 

the computational efficiency of the PDAS algorithm, where the heaviest numerical 

calculations are performed off-line, in advance. 

The thruster fault diagnosis and accommodation process is summarised as follows:

1. The FDS detects fault (type and degree of damage in each horizontal thruster) and 

generates the total fault indicator vector,

2. Using the fault code table (see section 5.4.2), the FAS penalises the faulty thruster 

by increasing the corresponding weight in weighting matrix, updating the criteria 

and restricting the saturation bounds,

3. The FAS finds a new, feasible control vector for the given input vector using the 

hybrid approach, which minimises a new criteria,

4. New control vector is denormalised and used to actuate the thrusters.

HT _ -HI >
3 The fixed-point iterations can also be used to find the approximate solution for cases £, € 3>v 

when the exact solution does not exist.
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5.1.2 Requirements

The problem of thruster fault detection and accommodation for underwater vehicle has 

special features, due to specific environmental conditions in which the vehicle operates. 

At the beginning of the IMPROVES project, Seaeye Marine Ltd. specified a list of 

requirements that should be taken into account before choosing a fault detection method. 

The most important requirements that the PDAS should fulfil are:

• Reliable and fast fault detection, without false alarms,

• Easy integration with the existing control system,

• On-line learning and adaptation to new types of faults,

• Cost efficiency i.e. the PDAS should use resources already available, without 
introducing new hardware,

• Easy transfer to and implementation in other vehicles.

These requirements limit the choice of available approaches and restrict the designer 
freedom.

5.1.3 Implementation issues

There are certain implementation issues that must be taken into account during the design 

process. These issues, described below, are addressed in section 5.6 in relation to 

implementation of the PDAS in real applications.

Timing issues: The FALCON uses a distributed intelligence control system (see 

Appendix A), where each device (thruster, light, compass etc.) is controlled by a 

microcontroller and represents a "slave node" with the unique ID. Each slave node is 

connected to the network, supervised by "master node" (processor), located in the Surface 

Unit. The master node uses a loop technique to control the behaviour of the slave nodes. 

At each control cycle, the master node reads the states of the HCU controls and on-board
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sensors, performs mathematical calculations to find the new set points and sends updated 

values to the slave nodes. Typical execution time of one cycle is about 50 ms. It is 

required that the PDAS algorithm does not increase this time significantly. Hence, the 

PDAS algorithm must be computationally very efficient.

Memory issues: The master node has a limited storage capacity, which must be 

used in an efficient way. It is desirable that the PDAS performs as many calculations as 

possible off-line and stores the results (i.e. knowledge about faulty situations) in a 

compact form in memory (hard disk). In this way, the PDAS is able to take advantage of 

saved results to make easier on-line processing and to perform the fault diagnosis and 

accommodation tasks very fast. However, there is a trade-off between the amount of data 

that can be saved and available memory.

Accuracy issues: The master node controls the velocities of each thruster such that at 

each control cycle it sends updated set points (desired velocities) to slave nodes that 

represent Thruster Control Units (TCU). Each TCU uses the digital PID algorithm to 

control the propeller angular velocity. The FALCON control protocol uses the normalised 

form for the desired thruster velocities, where each demand is represented as an integer 

number between -100 and +100. Positive values correspond to positive spin direction 

of the propeller. In this way, at the last stage of the control allocation, the existing control 

software must round the desired velocities to the nearest integer before transmitting them 

to the TCUs, introducing rounding error. In addition, signals from the HCU are converted 

into digital form using A/D converter, introducing quantisation error. Hence, the 

architecture of the FALCON control protocol and A/D conversion process introduce 

errors that must be taken into account for design of the PDAS.
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5.2 Control allocation for underwater vehicles

5.2.1 Background

For underwater vehicles the most common actuators are (Fossen, 2002):

• Azimuth thrusters: thruster units that can be rotated an angle a about the z - 

axis during the mission and produce two force components (px .F } in the

horizontal plane. They are attractive in dynamic positioning systems, since they 

can produce forces in different directions, leading to an overactuated control 

problem that can be optimised with respect to power and possible faulty 

situations.

• Fixed direction (non-rotable) thrusters: In contrast to azimuth thrusters, 

where an angle a can vary with time, fixed direction thrusters are characterised 

with a fixed angle a = a0 , i.e. orientation of these thrusters is fixed in advance 

and cannot be changed during the mission.

• Control surfaces: control surfaces can be mounted at different locations to 

produce lift and drag forces, like fins for diving, rolling and pitching, rudders for 

steering, etc.

The FALCON and URIS have no other actuators except fixed direction thrusters, and the 

following discussion will concentrate on this type of actuators, while more information 

about other types can be found in (Fossen, 2002). Initially, the control allocation problem 

will be formulated and solved under the following assumptions:

1. the dynamics of thruster control loop are neglected (Figure 3.16),

2. the relationship between propeller thrust/torque and the control variable is given 

by a modified version of affme thruster model (3.99), as described in the 

following.
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The first assumption is realistic, since the time constants of DC motors used to drive 

thrusters of the FALCON and the URIS are very small and dynamics of the thruster 

control loop is much faster than dynamics of the rest of the system (see discussion about 

difficulties for using control allocation on page 4-16). 

The second assumption means that:

• shaft torque Qe is neglected, since it is small compared to Qr , Qr = r x T,

• the effect of the ambient water velocity ua on propeller thrust T is neglected,

• the symmetrical relationship between thrust T and the auxiliary control variable

M' is used (see Figure 3.14).

Under these assumptions, the control allocation problem for open-frame underwater 

vehicles (in particular, FALCON and URIS) is linear and can be solved using techniques 

described in Chapter 4. The influence of neglected factors on the performance of the 

ROV control system can be investigated using the ROV simulator incorporating the 

bilinear thruster model (3.98) and the dynamics of the thruster control loop. Test cases 

(A7), (A8) and (A10) in section 6.3.1 addresses these topics. In addition, experimental 

results, presented in section 6.4.4, reveal the effects of neglected thruster control loop 

dynamics. Hence, in the following it is assumed that the fixed direction thrusters are the 

only available actuators for control allocation. Under the assumptions discussed above, a 

general thruster 'Th, i = l,p is modelled by a modified affine model shown in Figure 5.3. 

Vector of forces and moments, exerted by thruster 'Th, can be written as:

'T Te 
T('rx'e) Ne),

T (5.1)
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'T=Te 
l'Q=I'Qr =I'rx'"T=I'r( I'rxi e)

7" («')=*«'

'T

Q

(a) 3D view of propeller. (b) Block diagram representation. 

Figure 5.3 Thruster model used in control allocation for underwater vehicles.

Superposition of the individual contributions 'T, i = l,p leads to total vector of 

propulsion forces and moments T :

T =

\ C*
y

1

('rx'e)
('rx'ei -

_('rx'e)z

i
y

i

('rx'e) (
(We); .- (
('rx'ei (

*> e
y

P

"rx'e^
"rx'-e^

>'
•
*

T

;
= Tf

r

(5.2)

where Te5R6x'' is the thruster configuration matrix5 and f e 9T is vector of control 

forces. For azimuth thrusters ie= i e(or) and 'r='r(or), which means that ''T='T(CT) and

4 Vector T is equal to B T from (3.59), but superscript B is removed in order to improve readability.

5 In the general case, when the vehicle is equiped with different types of actuators, the matrix T is called 

the actuator configuration matrix (Fossen, 2002).
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T = T(or). However,

Substituting 'T=K'u'

T =

'e* -

J'rx'ef e

for fixed direction thrusters a = «„ = const, and T = T(a0 ) = const.

in (5.2) yields

i p

l ey .» 'e*

rx'e), ("rx^el 
rx'el - ("rx"ei 
rxf e)z ("rx"e)z

"'A: o o '

0 'K 0

0 0 "K
K

''»-

'"' =TK°' (5.3)

u'

where KeSR'""' is the force coefficient matrix and u'69? p is the control vector. 

Introducing

B = TK (5.4) 

where Be 9?6*'1 is the thruster control matrix, (5.3) can be rewritten as

t = Bu' (5.5) 

A zero-row in B means that the corresponding DOF is not directly controllable with the 

particular thruster configuration. For example, if the third row of B is a zero-row, this 

means that the heave DOF is uncontrollable, i.e. the particular thruster configuration is 

not able to produce non-zero heave force Tz . 

Assuming that thrusters are identical, the coefficients 'K are the same for all thrusters,

and equation (5.4) can be simplified as

B = TK = T(JEIJ=A:(TI,)=AT (5.7)

Recall from (3.95) that each component V of the control vector u' is limited by 

constraint

6 This assumption is realistic, since in most cases the open-frame underwater vehicles are equipped with the 

identical thrusters.
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> i = l (5.8) 

Constraint (5.8) represents thruster velocity saturation, i.e. the physical construction of 

the thruster 'Th imposes velocity limitations and the thruster cannot rotate faster than the 

maximum velocity. For the control vector u' set of constraints (5.8) can be written in 

compact vector form as

-um '<u'<um ' (5.9) 

where

For identical thrusters, I H_'=-"=''«_ I =MIII I and u '=w ' 1 ••• 1 ••• 1 . Recall that

the constrained control subset Q is defined as a set of all control vectors u' which satisfy 

(5.9). Finally, the general control allocation problem for the open-frame underwater 

vehicles can be formulated as:

For given t,find u'e £2 such that Bu'= T.

Analogous to the general problem formulation in section 4.3.1, the equation BU'=T 

defines the set of hyperplanes in the true control space 91". The intersection of these 

hyperplanes is a convex set, denoted by S. The solution set 3 is given by the 

intersection of K and ft. From many solutions in 3 it is necessary to select the one that 

minimises the chosen criteria. The most suitable criteria for open-frame underwater 

vehicles is control energy cost function, since minimising this criteria means maximising 

operational battery life, which is very important issue for future underwater vehicles. 

The position and orientation vectors 'r and 'e for FALCON and URIS are given in Table 

3.5 and Table 3.6, respectively. Thruster configuration matrices for these vehicles, shown
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in Table 5.1 , are obtained from (5.7), assuming that all thrusters are identical. Parameter

A is defined by A = — sinor + — cosor.
2 2

FALCON URIS

B K

HI' VT~

co&a cos a cos or cosor 0
sin a -sin a sin Of -sin a 0

0 00 01 
0 00 00
0 00 00
A -A -A A 0

T

K

HT

1100
0011
0000 
0000
0000
R -R R -R

T

Table 5.1 Thruster control matrix for different thruster configurations.

It can be seen that the uncontrollable DOF for the FALCON are roll and pitch, since the 

fourth and the fifth row of B are zero-rows. In a similar way, uncontrollable DOF for the 

URIS are heave, roll and pitch.

In the following, the general control allocation problem will be separated into two 

subproblems, which will be treated individually. The first subproblem is related with the 

motion in the horizontal plane, and the second with the motion in the vertical plane. 

Decomposition of the motion is given in Table 5.2 for the FALCON and in Table 5.3 for 

the URIS. Visual interpretation of these decompositions is illustrated in Figure 5.4, where 

it can be seen that the motion of the FALCON in the vertical plane is determined by the 

vertical thruster and the heave force is directly proportional to the value of control signal. 

In the case of a partial fault in a vertical thruster, the only available solution is to limit

7 In order to be consistent, the same nomenclature K is used for the force coefficients for both vehicles, 

although in reality these coefficients have different numerical values.
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angular velocity of the thruster. In the case of total fault (failure), the thruster must be 

switched off and the vehicle must be recovered for repair.

Horizontal thrusters
(motion in the 

horizontal plane)

Controllable DOF: Surge, Sway, Yaw
HT, HTt HT, HTt

cos or cos or cosar cos a
= K sin a -sin or sin or -sin or 

A -A -A A

2 u'HT

Vertical thruster
(motion in the 
vertical plane)

Controllable DOF: Heave

Table 5.2 Decomposition of the the FALCON motion.

Horizontal thrusters
(motion in the

horizontal plane)

Vertical thruster
(motion in the
vertical plane)

Controllable DOF: Surge, Sway, Yaw

V
tHT = TY

_V

= K

~HT, HT2 HT, HT4 '

1100
0011
R -R R -R

_

~ ] u'HT ~

2 u'HT

>'"".
•, ————— v ————— ,

B"

Controllable DOF: -

Table 5.3 Decomposition of the URIS motion.

The situation is different for motion in the horizontal plane, where the number of 

horizontal thrusters is four and the number of controllable DOF is three. In this case 

inherent redundancy in thruster configuration enables successful control allocation in the 

case of partial or even total fault in a horizontal thruster.
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—— DOF controllable by horizontal thrusters
—— DOF controllable by vertical thruster

, YAW 
YAW

SURGE

SWAY - ^W.^^VX m^^SB^^R* SURGE

t *
HEAVE SWAY

(a) FALCON. (b) URIS. 

Figure 5.4 Relationship between thruster configuration and controllable DOF.

The control allocation of horizontal thrusters is the topic of the discussion in the 

following sections. Before the full problem is formulated, relevant vectors and matrices 

will be normalised, in order to make problem more understandable and easier to visualize 

and solve.

5.2.2 Normalisation

Normalisation means that vector components are divided by their maximum values, such 

that each component is dimensionless number that lies between -1 and +1. Normalised 

vectors and matrices are underlined, in order to distinguish them from the standard 

nomenclature. The normalisation procedure will be explained in details for the X-shaped 

thruster configuration (FALCON). Recall from Figure 5.3 (b) that maximum thruster 

force is given by

Tm = Kum ' (5.11) 

The first step is to find maximum values (modules) of the surge and sway forces and the 

yaw moment. Three characteristic cases are indicated in Figure 5.5. It can be seen that
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= 4Tm cosa = 4Kum 'cosa => Kcosa = -***-4u ' (5.12)

^=4rra si , 'sin a => K sin a = —— 4u ' (5.13)

_ ^Nm

4«J (5.14)

(a) max. surge force i xm . (b) max. sway force t Ym . (c) max. yaw moment -c Nm .

Figure 5.5 Three cases for finding the maximum modules of force and moment vectors (X-

shaped thruster configuration).

The second step is to substitute expressions (5.12) - (5.14) in the standard relation

Kcosa Kcosa Kcosa
Ksina -Ksma Ksina -Ks'wa

KA -KA -KA KA

4um ' 4um ' '
*Nm _ TNm __

Xm4u'

4u'

(5.15)
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The final step is to rewrite

1*1
TXm
ty
TYm

la-
T

-*Nm_

"1

—— -

4
1
4
1

_4

(5

1
—

4
1
4
1
4

15) in the normalised form as follows:

1
__

4
1
4
1
4

„«-

" 1 ,HT ~

r_
4
1
4
1
4.

u
um '

2u'HT
um '

*u'HT

Um
*lSHT

«-' -

HT ~HT , HT

**- ~~ ~ (5.16)

Formulation of the control allocation problem using a normalised form (5.16) has a 

number of advantages compared to the standard form t"T = B HTulHT as follows:

1. Components of the vectors T and u1/ff are dimensionless number, restricted to 

the standard interval [-l,+l]. This enables better understanding and easier 

visualisation of the problem.

2. All physical parameters are removed from the matrix B during the

normalisation process. The compact form of Bw simplifies calculations and, as 

will be shown later, leads to the very simple representation of the weighted 

pseudoinverse solution and a clear geometric interpretation of the control 

allocation problem.

Normalisation for the cross-shaped thruster configuration (URIS) can be performed in a 

similar way. As indicated in Figure 5.6, the maximum surge and sway forces and yaw 

moment are given by

=>K = ^- (5.17)

(5.18)
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i _ "Nm4u.' (5.19)

(a) max. surge force T Xm . (b) max. sway force r Ym . (c) max. yaw moment T Nm

Figure 5.6 Three cases for finding the maximum modules of force and moment vectors (cross-
shaped thruster configuration).

Substituting these expressions in the standard relation T HT ~ B HTu <UT yields

T =

K K 0 0
0 0 K K

KR -KR KR -KR

4w_'

2u'

(5.20)

Finally, the normalised form for the cross-shaped thruster configuration is given by

TX*

IL.

f

•• — « —

=

I i o o"
2 2
o .1 I
1 -I I -1
4 44 4,

B-

" }u'HT '
"„,'

XL
ĤT

u '
V"7"

. «»'

(5.21)
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5.2.3 Problem formulation

The control allocation problem for the motion in the horizontal plane can be formulated 

using normalised variables as follows:

r^ • «' f I tHT n™ 1 1 1 * n"' irll nlFor given T , find u € Q such that B u = 1 .

In the following, the problem is analysed in more detail from the general control 

allocation perspective.

• The true control input is u'Hr =

iHT
1 

iHT
2 

MT

<HT

l u'HT

HT• The virtual control input is T =

HTThe control effectiveness matrix B is given by

FALCON:

'1
4
1
4
1

_4

1~4

1
4

_1
4

1~4

1
4
1
4

f~4

1
4
1
4.

(5.22)
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URIS: B wr =

^ 1 ° °
2 2
0 0 I I

2 2
1 _1 1 1

.4 44 4.

• Actuator position constraints are
-1
-1
-1

-

(5.23)

~l ,HT

M'^

.M^

-
+ 1
+ 1

.+ 1.

Equation Bwr u lWr = TW represents the system of equations

FALCON: l<1 '"'-l,ia '«-+I«,'"--IM '«r
j ^J j -— Z j __3 j !— .

4 4' 

j4̂- 4- 

1 1 "4-1 ~~4~-

in-i - r~ ix

44

(5.24)

URIS:

I—M, —— I 4 4"

(5.25)

Each equation in (5.24) & (5.25) represents a hyperplane in 9l 4 . Consequently, (5.24) & 

(5.25) can be rewritten as

(5.26)

where normal vectors Nx , Ny and Nw , defined as
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N,-[I i I IT
[4444J

FALCON: N, =[i -I I -i]' (5.27)

NZ = I -i -I IT
z [4 4 4 4j

ri i TN x = - -00
12 2 J

r i ifURIS: Nr = 0 0 - - (5.28) 
L 2 2J

»,-[! -I i -IT
14 44 4J

are orthogonal on the hyperplanes nx , JC^ and nN , respectively. The intersection of these 

hyperplanes is a convex set, denoted by ^OT , which represents the set of all points u'tfr 

that satisfy BM u"ff = T"r .

HTThe actuator position constraints determine the constrained control subset Q , that is, 

the unit four-dimensional hypercube in 9t4 :

<l(c<R4 (5.29)

Intersection of S"7 and Qwr is a solution set, denoted by 3 HT . The geometric 

interpretation of the control allocation problem for the motion in the horizontal plane 

using normalised variables is given by:

„ . HT j~ j • . .. nHT v-Wr ,-. WFor a given T , find intersection ;5 = ]£ o ii .

Recall from section 4.3.1 that the control effectiveness matrix B^ performs a linear 

transformation from the true control space 9T to the virtual control space 9t* and that 

the image of Qm c 9t* is called the attainable command set and denoted by ®_m .
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5.2.4 Nomenclature

The nomenclature for the constrained control subset QHT and the attainable command set 

3>"7 was introduced in sections 4.3.2 and 4.3.3, respectively. The shape of QHT is the 

same for both configurations, while the shape of & HT varies with configuration. 

Unfortunately, Q is the four-dimensional hypercube and cannot be easily visualised in 

contrast to <& HT that is shown in Figure 5.7 (for the X-shaped thruster configuration) and 

Figure 5.8 (for the cross-shaped thruster configuration). The coordinates of vertices of 

!Q and <1> are given in Table 5.4. Using the MATLAB command convhulln, it

was found that a convex hull of <& HT consists of all but 3 and C vertices for X-shaped

configuration, and 6 and 9 vertices for cross-shaped configuration. Hence, nodes 3 and

C (6 and 9) lie inside 5&"r for the X-shaped (cross-shaped) configuration.

The linear independency condition (section 2.9.2) is satisfied for both configurations,

since every 3x3 partition of B wr is non-singular. This means that the equation

B"r u'wr = T wr has a unique solution u'wr e 3^"r ) on the boundary T"T € d(®HT ).

In the general case, the character of the solution depends on the position of the vector T

relative to Q_ HT . Three cases are possible:

1. If T Hr lies inside <& HT , then the solution set S"7 has infinite number of points 

and the control allocation problem has an infinite number of solutions.

2. If T HT lies on the boundary d($Hr ), then solution set 3WT is a single point, which 

is a unique solution of the control allocation problem.

3. Finally, if T Wr lies outside <&"r , i.e. if T WT € $"T \<J> Hr , then solution set S"7 is 

an empty set, i.e. no exact solution exist.
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Using the hybrid approach, described in Example 4.10, the PDAS is able to find the exact 

solution of the problem for the cases 1. and 2., optimal in the 12 sense, and a good 

approximate solution for the case 3.

Cross-shaped configuration

8
9 
A 
B 
C 
D 
E 
F

-1
-1
-1
-1

1 -1 -1
1 -1 1
1 1 -1
1 1 1

1 -1 -1 -1
1-1-1 1
1-1 1-1

1 1 1
1 -1 -1
1 -1 1
1 1 -1
1 1 1

-0.5
-0.5 

0.0
-0.5 

0.0 
0.0 
0.5

-0.5 
0.0 
0.0 
0.5 
0.0 
0.5 
0.5 
1.0

0.0
-0.5 

0.5 
0.0

-0.5
-1.0 

0.0
-0.5 

0.5 
0.0 
1.0 
0.5 
0.0

-0.5 
0.5 
0.0

0.0 
0.5

-0.5 
0.0

-0.5 
0.0

-1.0
-0.5 

0.5 
1.0 
0.0 
0.5 
0.0 
0.5

-0.5 
0.0

-1.0
-1.0
-1.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
1.0 
1.0 
1.0

-1.0 0.0
0.0 -0.5
0.0 0.5
1.0 0.0

-1.0 -0.5
0.0 -1.0
0.0 0.0
1.0

-1.0 
0.0 
0.0 
1.0

-1.0 
0.0 
0.0 
1.0

-0.5 
0.5 
0.0 
1.0 
0.5 
0.0

-0.5 
0.5 
0.0

Table 5.4 Coordinates of vertices of Q and $ .

The nomenclature for ft"7 is given in Table 5.5. Recall from section 4.3.2 that the 

component values (controls) of u'WT in a vertex can be decoded from its binary 

representation. For example, decoding the binary representation 1000 of the vertex 8 

yields M,' WT = +1, u 2 ' HT = -l, u 3 ' HT = -l and w 4 ' wr = -l. Vertices i and j are connected 

by edge y if and only if their binary representations differ in only one bit. For example, 

vertices 1 (0001) and 5 (0101) are connected by edge 15, since their binary 

representations differ in the second bit.
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0.5-

•0.5-

* Jx 

Figure 5.7 Attainable command set &" for the X-shaped thruster configuration.

-0.5-

0.5
1 -1

Figure 5.8 Attainable command set &" for the cross-shaped thruster configuration.
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A facet is defined as a set of points on d\& HT } obtained by taking m - 2 = 2 controls at 

their limits and varying the two free controls within their limits. For example, the facet 

0132 is a rectangle, determined by vertices 0 (0000),! (0001), 3 (0011) and 2 

(0010). It can be seen that the first two controls are fixed to limit values w,'wr = -1 and 

« 2 'Wr = -1. ar>d two free controls u3 llfr and « 4 ' wr are free to vary, i.e. coordinates of any 

point which lie on the facet 0132 have the form [-1 -1 ^ qj, where <73 ,<?4 e [-l,l].

Vertices

0, 1, 2, 3, 4, 5,6,7, 8, 9, 
A, B, C, D, E, F

Edges

01, 02, 04, 08, 13, 15, 19, 23, 
26, 2A, 37, 3B, 45, 46, 4C, 
57, 5D, 67, 6£, IF, 89, &A, 
8C, 9B, 9D, AB, AE, BF, CD, 
CE, DF, EF

Facets

0132, 89BA, 4576, CDFE, 0198, 
23BA, 45DC, 67FE, 04C8, 
15D9, 26EA, 37FB, 0154, 2376, 
89DC, ABFE, 0264, 1375, 
8AEC, 9BFD, 02A8 , 13B9, 
46EC, 57FD

Total: 24 = 16 vertices Total: T - 32 edges Total: 24~ 2 | | = 24 facets 
2,

Table 5.5 Nomenclature for

Vertices Nodes Edges Connections

0, 1, 2, 4,
5, 6, 7,
8,9, A,
B, D, E,
F

3, C Oli 02, 04, 08, 15,
19, 26, 2A, 45, 46,
57 , 5D , 67 , 6E ,
IF, 89, 8A, 9B,
9D, AB, AE, BF,
DF, EF

13, 23, 37, 3B,
4C, 8C, CD,
CE

Facets

89BA, 4576,
0198, 67FE,
15D9, 26EA,
0154, ABFE,
0264, 9BFD,
^^^£ £JH^

Faces

0132, CDFE,
23BA, 45DC,
04C8, 37FB,
2376, 89DC,
1375, 8AEC,
£2fi&> 4£Sfm

Table 5.6 Nomenclature for 4> (X-shaped thruster configuration).

Vertices Nodes Edges Connections Facets Faces

0, 1, 2, 3,
4, 5, 7,
8, A, B,
C, D, E,
F

6, 9 Oli 02, 04, 08, 13,
15, 23, 2A, 37, 3fi,
45, 4C, 57, 5D,
IF, 8A , 8C , AB ,
AE, BF, CD, CE,
DF, EF

19, 26, 46, 67,
6E, 89, 9B, 9D

0132, CDFE,
23BA, 45DC,
04C8, 37FB,
0154, ABFE,
1375, 8AEC,
02A8, S7FD

89BA, 4576,
0198, 67FE,
15D9, 26EA,
2376, 89DC,
0264, 9BFD,
13B9, 46EC

Table 5.7 Nomenclature for <J>"r (cross-shaped thruster configuration).
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The nomenclature for <& HT is given in Table 5.6 (for X-shaped thruster configuration) 

and Table 5.7 (for cross-shaped thruster configuration).

5.2.5 Introducing criteria in problem formulation

It was mentioned in section 5.2.3 that the character of the solution is closely related with 

the position of the vector rHT relative to <& w . In order to extract a unique, "best" 

solution from a solution set, it is necessary to introduce criteria, which is minimised by 

the chosen solution. The most suitable criteria for underwater applications is a control 

energy cost function, as stated previously.

In the general case, the optimal control input u'wr is given as a solution to a two-step 

optimisation problem

""'"a""! (5.30)

The general formulation (5.30) - (5.31) of the control allocation problem for motion in the 

horizontal plane is obtained from (4.20) - (4.21) assuming p = 2, u,, = 0 and W,, = I3 .

The first assumption p = 2 means that the /2 norm is used as a measure of how good a 

solution (or approximation) is. This norm represents a measure of control effort and 

(5.30) can be interpreted as control energy cost function. The second assumption u^ =0 

means that the non-actuated state of the horizontal thrusters is a preferred state (preferred 

virtual control input). The third assumption Wv = I3 means that the same priority is given 

to all horizontal thrusters in the case when the problem (5.30) - (5.31) has no exact 

solution. This is reasonable, since all horizontal thrusters of the FALCON and the URIS 

are identical and have the same priority level in a fault-free case.
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The problem (5.30) - (5.31) can be interpreted as follows:

Given ^P"7 , the set of feasible control inputs tliat minimise |B wr u'wr -T WT | , find the

control input ulWr e y"7 that minimises

The design parameter W^ is a positive definite weighting matrix, weighting the control 

energy, and can be used for thruster prioritisation, i.e. to decide which thruster should be 

used primarily. The weighting matrix W,"7" is usually chosen to be a diagonal matrix

W.HT =

"wT
0
0
0

0
wf

0
0

0
0

wf
0

0 "

0
0"f.

(5.32)

where w*7" >0 is the weight associated with the thruster 'HT, i = L,4. Using Wf7', a 

faulty thruster is penalised by increasing its weight, as explained in the following.

Weighting matrix Wf7 for fault-free case

In the fault-free case, all horizontal thrusters have the same priority and W^ is chosen to 

be equal to identity matrix
1000" 

0100 

0010 
0001

(5.33)

Attainable command sets, shown in Figure 5.7 and Figure 5.8, are found assuming (5.33).

Weighting matrix Wf7 for faulty situations

Two faulty situations are possible: a partial fault and a total fault (failure). 

In the case of a partial fault in 'HT, the thruster is typically allowed to continue operation 

with the restricted usage, i.e. the new constraint (saturation) bounds are:
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- S?T ±u;m < S»T (5.34) 

where 0 < s"T < 1. The numerical value of sf depends on the type of the fault and is 

selected in advance for each particular fault type. For example, restricted constraint bound 

sf = 0.75 can be selected for a faulty state "Jammed propeller" of 'HT, which means 

that the thruster's operating range is restricted to 75% of its nominal range. In addition to 

the change of the constraint bounds, the weight wf1 of the faulty thruster is increased 

using

w/ff =l + Aw,wr (5.35) 

where

Awfr = 2-[4F-l| (5.36)
V S! )

The weight update (5.35) is introduced to penalise the faulty thruster, prioritise healthy 

thrusters and to compensate for restricted usage of the faulty thruster in an optimal way. 

Formula (5.36) is obtained from the weighted pseudoinverse solution ~Bw «r , analysing the 

components of u 1/ff and the desired restriction of saturation bounds in faulty situations.

In the case of a total fault in 'HT, the thruster is switched off and removed from the 

allocation process. The same effect can be achieved using formulation (5.30) by allowing 

wf1 —» °°. in this way, the redundancy is eliminated from the system of equation

E HT n'lfr - r"7 , which can now be solved in a standard way.

Geometric interpretation

It is useful to give a geometric interpretation of the relationship between the choice of the 

weighting matrix Wj"" and the solution of the control allocation problem for fault-free

and faulty situations. Recall that a set of points ulWr that satisfy ||W"7 u'wr ||2 <, r is called
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a weighted sphere 5wH7 (0,r)2 with the centre at 0 and the radius r (Definition B.2, 

Appendix B).

In a fault-free case, the choice W"T =14 means that 5w<n.(0,r)2 is the standard sphere 

with regular shape, similar to those shown in Figure 4.10. The touching point of a sphere 

with the solution set 3wr is a solution that minimises ||u'W71 .
— II- Il2

In a faulty situation, the faulty thruster is penalised with weight increase and restriction of 

constraint bounds. This means that Sw/n (0, r)2 is compressed in the direction of penalised

control, like the sphere shown in Figure 4.11. The restriction of constraint bounds reduces 

the size of the constrained control set Q!" . The touching point of a deformed 

(compressed) sphere with the solution set 3 WT that lies inside restricted Q1*7 is a solution

that minimises |WKwru'tf7'I .

5.2.6 Remarks on vertical thrusters

For the motion of FALCON in the vertical plane normalisation yields

VI w»W ,VTI = B u" (5.37)

The weighting matrix for vertical thruster W^ becomes a scalar, defined as

Vt? = w? (5.38) 

where w™ > 0 is the weight associated with the thruster !VT . 

In the fault-free case, wf = 1 . 

In the case of a partial fault, the new restricted constraint (saturation) bounds are:
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where 0 < sf < 1. Since B^ = 1, the weighted pseudoinverse solution B^" does not

depend on wf. Hence, restriction of the constraint bounds (5.39) is the only action that is 

undertaken in the case of a partial fault in the vertical thruster.

In the case of a total fault, the thruster 1VT must be switched off and removed from the 

allocation process. In this case, heave (depth) becomes uncontrollable DOF.

5.3 Architecture of the FDAS

The overall functional architecture of the proposed FDAS, shown in Figure 5.9, 

represents the expanded version of the improved architecture shown in Figure 5.1 (b). 

The description of the architecture will be given in a hierarchical way, such that the 

general description and the main idea of the method are presented in this section, while 

more details about individual components of the overall system can be found in the 

following sections.

The FDAS consists of two subsystems: the FAS and the FDS. Essentially, the FAS 

performs the control allocation task, but this primary task is enhanced with the ability to 

perform automatic reconfiguration in the case of a partial or total fault in a single thruster. 

The thruster states are obtained from the FDS.

The FDS uses FDUs, associated with each thruster, to monitor their state. The outputs of 

the FDUs are integrated inside the FDS into the total fault indicator vector, carrying the 

codes of faulty states for each thruster. Relationships between fault types and remedial 

actions are stored in the fault code table. The architecture shown in Figure 5.9 can be 

easily expanded for vehicles with more vertical thrusters. 

The input to the FDAS is the vector -t_ d , obtained by filtering (smoothing) the desired

vector of propulsion forces and moments T^ , generated by the HCU (see discussion in 

section 5.1).
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Fault Accommodation 
Subsystem (FAS)

Fault Diagnosis Subsystem (FDS

Figure 5.9 Overall functional architecture of the proposed PDAS.
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The output of the PDAS is the vector of desired thruster velocities n, transformed into 

the form that is compatible (acceptable) by the TCUs. A brief description of the 

individual components of the overall PDAS architecture is given in the following. 

FDS

FDU: The FDS uses FDUs to monitor the state of the thrusters. The FDU is a 

software module associated with the thruster, able to detect internal faults 

(for example, temperature of the windings exceeds limits) and external 

faults (for example, jammed propeller). The output of the FDU is a fault 

indicator /( , the code of the fault.

Integration: The fault indicators / are integrated into the total fault indicator

vector f inside this block. The vector f is a carrier of thrusters' states. 

FAS

Demux: In accordance with the decomposition of the motion, shown in Table 5.2 

and Table 5.3, this block symbolically indicates separation of the vector

"t_d into two parts: T^r , representing the DOF (surge, sway and yaw) 

controllable by horizontal thrusters, and T^ , representing the DOF 

(heave) controllable by vertical thruster.

Pseudoinverse: This block finds the weighted pseudoinverse solution of the control 

allocation problem, separately for horizontal and vertical thrusters. For 

horizontal thrusters, the solution u'wr is given by (5.46) & (5.48) for 

FALCON and (5.47) & (5.48) for URIS. For vertical thruster, the solution 

upVT is given by (5.50) for FALCON.

Approximation: In contrast to ullT , which is always feasible, the weighted 

pseudoinverse solution u'wr can be feasible (satisfies all constraints) or
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unfeasible (violates some constraint(s)). The outputs u'*W and u'*^ = ulKr 

of this block must be feasible solutions for all time. Hence, if u'HT is 

feasible, then u""T = u'HT . Otherwise, fixed-point iterations (FPI) are

activated that lead to the feasible solution u" .

Co-ordinator: The role of this block is to undertake remedial actions in 

accordance to the context of the total fault indicator vector f and the 

instructions, stored in the fault code table. For each possible fault type the 

fault code table has stored corresponding actions A and B. The action A is 

related to the weight updates of weighting matrices, used to find the 

weighted pseudoinverse solution. The Action B is related to changes of 

constraint bounds, in accordance to fault type.

Mux: This block performs an opposite role to that of the Demux block, i.e. it

merges feasible solutions u" and u'* into composite solution vector 

u".

Correction: Vector u'* is found using the assumption of a symmetrical 

relationship between thrust T and the auxiliary control variable M' for a 

thruster (Figure 5.3 (b)). Since in most real applications this relationship is 

not symmetrical (Figure 3.12), it is necessary to correct each component of 

u'* in accordance to (3.91) & (3.92). The output of this block is corrected

vector u*.

Transformation: The vector u* cannot be direcdy applied to drive the thrusters. It 

must be transformed into the vector of desired thruster velocities n. This
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block performs this function, using transformation (3.97) for each 

component.

Adaptation: Different TCUs accept data in different format. For example, the

desired angular velocity for the TCU of FALCON must be represented as

an integer number between -100 and +100 (see section 5.1.3). In

contrast, the same variable must be converted into the voltage in order to

be applied to drive the thruster of URIS. This block transforms the vector

n into the vector n, which has the format adapted for the particular TCU.

Vector n is used to drive the thrusters, which generate a vector of propulsion forces and

moments T . The proposed PDAS guarantees that the condition T = td is satisfied for all

attainable td . That is, if rd is attainable, the PDAS will find the exact solution of the

control allocation problem, optimal in the 12 sense. Otherwise, the solution obtained by

the PDAS is a very good approximation, which depends on design parameters of the

fixed-point iteration method.

5.4 Fault diagnosis subsystem

5.4.1 Fault classification

Thrusters are liable to different fault types during the underwater mission e.g. propellers 

can be jammed or broken, water can penetrate inside the TCU, communication between 

TCU and the master node can be lost, temperature of the winding can exceed the 

threshold etc. Some of these faults (partial faults) are not critical and the thruster is able to 

continue operation in the presence of a fault with the restricted usage, i.e. reduced 

maximum velocity. In other cases (total faults - failures) the thruster must be switched off 

and mission has to be continued with remaining operable thrusters. Thruster faults are 

classified into two main classes:
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• Internal faults (e.g. temperature of the windings is out of range, lost 

communication between the TCU and master node, water penetration inside the 

TCU, drop in bus voltage etc.)

• External faults (e.g. jammed or broken propeller).

5.4.2 Fault code table

Relationships between thruster states, fault types and remedial actions are stored in the 

fault code table (Table 5.8). It must be emphasized, at this point, that this fault code table 

is just a suggestion, intended to reveal the main ideas of the proposed PDAS. New states 

(rows) can be added, and the existing relationships can be changed, in order to 

accommodate specific requirements and available thruster data.

Thruster state Class Type Indicator/ Constraint bound A,

Normal (Fault-free)

Jammed propeller

Heavy jammed propeller

Broken propeller

Unknown fault

Internal fault

Ext.

Ext.

Ext.

Ext.

Int.

-

Partial

Partial

Total

Partial

Total

1

2

3

4

5

6

1.00

0.75

0.50

0.00

0.25

0.00

Table 5.8 Fault code table.

5.4.3 Fault detection unit

Description

The FDU is used for monitoring the thruster states and reporting any faulty situation. The 

FDU is a software module, able to detect internal and external faults. Connections 

between the FDU and the TCU for arbitrary thruster 'Th are indicated in Figure 5.10. 

Signals Intlt Int2 , ... for detection of internal faults are already available in existing 

TCUs for both vehicles. In particular, the TCU for URIS, based on Maxon Servoamplifier
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ADS 50/5 (see Appendix A), has a status-reading signal Int{ ="Ready", which can be 

used to report internal faults (i.e. excess temperature or excess current). Similarly, the 

communication protocol for the FALCON provides monitoring of the winding 

temperature (7/tf,) and bus voltage (Int2 ) of each thruster. In order to build a universal 

FDU, able to detect both internal and external faults, it is necessary to augment the 

existing internal protection with a software module for fast and reliable detection of 

external faults.

For detection of external faults available signals are actual velocity of the motor shaft n 

and current consumption 7 of the thruster. For URIS, these signals are called "Monitor n" 

and "Monitor I", respectively (Appendix A); for FALCON, the communication protocol 

enables output speed and winding current to be read. By monitoring n and 7 , together 

with desired speed nd obtained as output of the PDAS, the FDU is designed to detect and

categorise external thruster faults.

Finally, the universal FDU integrates both parts (internal and external) into one unit, 

which is able to detect internal and external faults (Figure 5.10). Integration includes a 

priority scheme, where total faults have higher priority than partial faults. Indicator /, 

the output of the FDU, is the code of the fault.

I
Intl 
Int2

'5T <DIs-
8

t i

DC motor Gear —»| Propeller

Fault Detection 
Unit (FDU) Thruster Control 

Unit (TCU)
Figure 5.10 Block diagram showing connections between the FDU and the TCU for thruster 'Th.
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Implementation

Implementation involves two phases: off-line training and on-line fault detection. 

Off-line training phase

The first stage in the training phase is acquisition of training data. Test trials were 

performed with URIS at University of Girona in July 2002 (Figure 5.11), and training 

data were saved in files. Normal state and three different fault cases were considered 

(jammed, heavy jammed and broken propeller)8 . Jammed propeller was simulated such 

that an object was attached to the propeller. When the thruster is actuated, the propeller 

and the object rotate together, representing additional load for the motor. Heavy jammed 

propeller was simulated with two objects attached. In order to simulate broken propeller, 

all blades were removed from the shaft. Signals n and /, delivered by the TCU, were 

acquired by onboard A/D card. Since "Monitor n" and "Monitor I" outputs of the TCU 

have output voltage range -10... + 10 VDC and output resistance lOfcQ, a signal 

conditioning circuit9 had to be used to convert signals into the form acceptable by the 

A/D card. The drawback was a small drop in voltage during conversion. Each record in 

file consists of acquired data from the TCU (nd , n and /) and associated fault code f,. 

Sampling time was 0.1 s, long enough to ensure that all transient responses decay 

between samples. The motion of URIS was controlled by a joystick, such that all range of 

possible thruster velocities was covered with enough data points. Figure 5.12 displays raw 

training data in the 3D space I-nd -n, where each fault type is represented by a 

different colour.

8 However, in real applications the number of faulty cases can be higher. In addition, partially broken or 

damaged propeller blades can be used to cover intermediate cases.

9 The circuit was a voltage follower, with low output resistance and voltage gain slightly less than 1.
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(a) Normal (/. =l).

(c) Heavy jammed propeller (/. = 3).

(b) Jammed propeller (f. = 2).

(d) Broken propeller (/. = 4).

Figure 5.11 The first stage in off-line training: test trials for acquisition of training data.

-5 -5

Normal (Fault-free) 
Jammed proppeler 
Heavy j propeller 
Broken propeller

Figure 5.12 Raw training data in the 3D space. 
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Discretisation levels can be observed in the training data, which are caused by 

discretisation of the joystick output. It should be noted that the real-time experiments 

were undertaken during the development stage of URIS, and inadequate signal 

conditioning, wiring and shielding resulted in noisy data. Nevertheless, design of robust 

FDU, able to cope with poor data quality, was a real challenge.

The time diagrams of the raw training data are shown in Figure 5.13. Signals from 

different fault types are connected next to each other in order to make easier their 

comparison. Noise and outliers (data items that lie very far from the main body of the 

data) are particularly noticeable in the motor current waveform.

3000

Figure 5.13 Time diagrams of raw training data.

Data pre-processing filters the raw training data in order to remove outliers and reject 

noise. Pre-processed training data in 3D space are shown in Figure 5.1410 . Figure 5.15 

displays time diagrams of pre-processed data. Normalisation step in pre-processing is 

optional, since all variables have the same range and no one is dominant.

' MATLAB function medf i It 1 was used to filter data and to remove outliers.
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Normal (Fault-free) 
Jammed proppeler 
Heavy j propeller 
Broken propeller

-5 -4

Figure 5.14 Pre-processed training data in the 3D space.

2500

Figure 5.15 Time diagrams of pre-processed training data. One of die zero-velocity segments is 
highlighted for illustration. These segments are excluded from the training process.

Analysing the distribution of the training data in Figure 5.14, the first feature that can be 

noticed is that each fault type creates certain pattern. In the ideal case, these patterns 

should be well-defined curves. However, the presence of the noise and outliers in the
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training data results that patterns shown in Figure 5.14 exhibit a fuzzy ("cloudy") look. 

The second feature is that the zone around nd « 0 (called the critical zone) is filled with 

data from different fault types in such a way that it is very hard to distinguish individual 

fault types. Geometrically, the critical zone represents intersection of different fault type 

patterns. This makes successful fault detection and isolation in the critical zone difficult 

to achieve. In particular, for zero-velocity case nd - 0 the thruster does not rotate and 

successful and reliable fault detection is impossible, since external faults cannot be 

detected without shaft rotation. In other words, thruster must operate (rotate) in order to 

detect external fault. The solution for this problem is the exclusion of the zero-velocity 

segments from the training process, i.e. the training is performed considering data records 

with nd * 0, as shown in Figure 5.15. However, the same exclusion is performed during

the on-line fault detection phase (see page 5-46).

Time diagrams of the pre-processed training data are shown in Figure 5.16, together with 

associated fault codes. Each fault type is characterised by specific features, which makes 

them different from the other types. These features are discussed in the following. 

In general, all three variables (/ , nd and n ) are correlated, i.e. they tend to rise and fall 

together in a non-linear way. The degree of nonlinearity depends on nd and motor load. 

For normal (fault-free) thruster state, n is close to nd for approximately |nd |s4V. 

Disagreement between n and nd becomes higher with increasing \nd \. Eventually, for 

cases when |nd |-»5V, n is not able to follow nd and \n\ is saturated to approximately 

4V. This means that the thruster is not able to utilise the full operating range even in a 

fault-free case, under standard load conditions. It is believed that this performance can be 

improved by re-tuning the controller parameters inside the TCU. For jammed propeller, 

an object attached to the blades generates an additional load for the motor and leads to
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higher current 7 than for the fault-free case. In addition, the saturation of n is reached 

earlier, i.e. for smaller nd . A similar conclusion can be drawn for the heavy jammed 

propeller, where two objects attached to the blades result in an even higher load for the 

motor. Saturation is achieved for smaller nd than in previous cases and current / is much 

higher. Finally, in the case of broken propeller, the absence of the blades means that the 

load for the motor is much smaller than in the other cases and n is able to follow nd over 

all operating range, with reduced current / . However, the thruster does not generate any

propulsion force in this case.
Normal 
(/, - 1)

Jammed Heavy j.(/, =3)

"0 500 1000 1500 2000 2500 3C
t(s)

Figure 5.16 Time diagrams of pre-processed training data, together with fault code.

Since the thruster fault detection problem is time-dependent, the initial idea for the second 

stage in the training phase was to use trajectories of thruster states on the map grid of the 

single, large SOM for all fault types. The SOM was trained by pre-processed training data 

using the MATLAB SOM Toolbox (http://www.cis.hut.fi/proiects/somtoolbox/). Clusters 

of the map, represented as a collection of map units with the same label (fault type), 

correspond to different fault types. Different training parameters (e.g. map shape, map 

size, neighbourhood function etc.) and learning methods (supervised and unsupervised:
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sequential and batch) were combined. Figure 5.17 displays typical U -matrices obtained 

during training. In particular, Figure 5.17 (a) displays a {/-matrix obtained using 

unsupervised learning (batch algorithm), while the same matrix for supervised learning is 

shown in Figure 5.17 (b). The U -matrix uses colour code to visualise the relative 

distance between adjacent map units on the whole map. The clusters are highlighted by 

plotting appropriate labels on the map. Labels N, A , B and C are used for fault codes 1, 

2, 3 and 4, respectively. The input to the map was a feature vector x, created from the 

pre-processed nd , n and / . Trajectories (paths created on the map grid by the BMUs of 

consecutive input vectors) were used for fault detection purpose.

U-matrix
,2.36

1.18

'0

(a) Unsupervised learning (batch algorithm) (b) Supervised learning

Figure 5.17 SOM trajectories were initially used for fault detection purpose.
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Unfortunately, each attempt resulted in the FDU producing in certain cases wrong fault 

detection when thruster operates in the critical zone. Although the large number of 

detection errors in the initial design stage was later significantly reduced by fine tuning of 

the training parameters, it was not possible to eliminate these errors. The initial idea about 

a single, large SOM for all fault types was abandoned and replaced with representation of 

each fault type by a single, one-dimensional SOM. Hence, the main idea of the second 

stage in the training phase is to replace each fault type (pattern) in Figure 5.14 with a 

SOM prototype as shown in Figure 5.18, which serves as a representative of the particular 

fault type. A fault type with code ft - k is replaced with SOM k . Each SOM k is one- 

dimensional array of 100 neurons. Each of these neurons has associated prototype vector 

with three coordinates. The distribution of prototype vectors (Figure 5.18) in the input 

space was found using fuzzy C -means clustering and approximately 80% data from each 

fault type. Each prototype vector is a cluster centre and the representative of all data from 

its cluster.

Figure 5.18 The second stage in off-line training phase: different fault types (patterns) are

replaced by SOM prototypes.
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In the third and the last stage in the training phase, the structure of the SOM prototypes is

saved on hard disk for future use. In this way, heavy demanding calculations are

performed off-line, during the training phase, which enables fast and efficient fault

detection during the on-line phase.

On-line fault detection phase

From the preceding discussion, the problem of thruster fault detection can therefore be

interpreted as a pattern recognition problem. An original method for on-line fault

detection, adapted to the specific features of the underlying pattern recognition problem,

is described in the following.

During the initialisation stage of the on-line fault detection phase, the master node (the

main processor) reads the structure of the SOM prototypes, saved on hard disk during the

training phase, and stores this data in the working memory for fast access.

After the initialisation is finished, the fault detection is performed by repeating the

following steps at each program cycle:

Algorithm 5.1 (FDU - On-line fault detection)

1. Read inputs for internal faults ( Int^ ,Int2 , ...) and external faults (/ , nd and n ).

2. If any of Intk is on, set /. = 6 (Internal fault) and go to 13.

3. Perform pre-processing on / , nd and n.

4. Create feature vector x.

5. Find q closest prototype vectors (BMUs) to x in each SOM.

6. Create matrix M4x<( with distances between x and q BMUs in each SOM.

7. Find minimal values and corresponding indices for each column of M.

8. Store minimum values in row vector m .
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9. If characteristic property of m exceeds its limit, set /, = 5 (Unknown fault) and 

go to 13.

10. Store indices in row vector b .

11. Add vector b to the buffer B,X(/ .

12. Analyse buffer elements and find the fault code /.

13. Deliver /. as the output of the FDU.

At step 1, the algorithm reads actual values of inputs 7nr,,/nf2 , ... for detection of 

internal faults and / , nd and n for detection of external faults. It is assumed that digital 

signals Intk are active (on) in the case of corresponding internal faults. The logical 

function h = OR Intk is evaluated in step 2. If h is equal to "1", then the thruster exhibits

internal fault and the output of the FDU is set to f{,- 6 (code for Internal fault, as defined 

in the fault code table shown in Table 5.8). The sequential execution of the algorithm is 

terminated and redirected to the end (step 13). 

Otherwise, if no fntk is on, pre-processing of 7, nd and n is performed in step 3, as

discussed on page 5-40.

Numerical values of pre-processed / , n4 and « are chosen to create a feature vector x

in step 4, where x = [/ nd nj is the three-dimensional column vector. In this way, the 

actual measurement is represented as a point in the 3D space l-nd -n, which can be 

considered as a feature space.
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In step 5, the q closest prototype vectors (BMUs) from each map to the feature vector x 

are found11 , together with corresponding distances. Figure 5.19 illustrates the situation for 

q = 3. Nomenclature ''BMU^ means 7* BMU in SOM k, while kd} means Euclidian 

distance between x and * BMU j., A: = 1,4, ;' = 1,3. It can be seen from definition that

(Normal) (Jammed)

SOM 1 'BMU2 I !BMl]i 2 BMU, SOM 2 
'BMU,' -

.......... "d

(Heavy jammed) (Broken)

Figure 5.19 On-line fault detection phase: position of the feature vector is determined relative to 

SOM prototypes by finding q = 3 closest BMUs in each SOM.

In step 6 the matrix M = [*dJ4x3 is created. In order to make the following discussion 

more understandable assume that

X X X
X X X
v, X X
x x x

"0.2 0.7 0.9"
0.4 0.5 0.6
0.3 0.4 0.7
0.5 0.6 0.8

(5.40)

Minimum values min*d. of each column of M and corresponding indices (values of k
t '

that correspond to minimum values) are found in step 7:

11 Function sortUamus from SOM Toolbox (Appendix A, page A-15) was used.
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M =

minimums 
indices

0.2 0.7 0.9
0.4 0.5 0.6
0.3 0.4 0.7
0.5 0.6 0.8i_»-j i—fj ^^

>• 0.2 0.4 0.6
••0) (3) (2)

(5.41)

Minimum values are stored in row vector m in step 8:

m = [0.2 0.4 0.6] (5.42) 

In order to determine if x is too far from all maps, some property of m must be 

evaluated and compared with standard thresholds (step 9). If the property is out of range it 

means that the thruster state is unknown (not experienced before). In order to avoid 

wrong detection, past values of m could also be included in the decision process. 

Another option is to utilise fuzzy inference system to fuzzify thresholds and to improve 

robustness. One of the simplest properties is average (mean) value m. If m > Threshold , 

then the output of the FDU is set to ft, = 5 (code for Unknown fault in the fault code 

table). The sequential execution of the algorithm is terminated and redirected to the end 

(step 13).

Otherwise, indices of minimum values of each column are stored in row vector b in step 

10. For example, b = [l 3 2] means that the closest first BMU is in SOM 1, second -

in SOM 3 and third - in SOM 2.

In order to avoid false detection, the final decision about thruster state is accomplished 

using present vector b(f) and past vectorsb(f-l), b(r-2), ..., b(f-(s-l)), which are 

stored in the buffer B sxg . This buffer operates similar to shift register: when the new 

vector is added to the buffer (step 11), the other vectors are pushed down and the "oldest" 

vector is shifted out (Figure 5.20).
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Elements of the buffer are compared to each other in step 12. If all buffer elements have 

the same value, then the fault indicator /. is set to this value. Otherwise, the previous 

value of jf is kept. 

Finally, the fault indicator ft is delivered as the output of the FDU in step 13.

Although at first sight the Algorithm 5.1 might seem relatively complicated, its 

MATLAB implementation is very efficient, due to advanced MATLAB programming 

capabilities.

Buffer B

bs-,

JL
bs

new vector is added to the top

the "oldest" vector is shifted out

Figure 5.20 Buffer B 1Xl? with present and past values of vector b.

5.4.4 Integration of fault indicators
Integration of individual fault indicators is performed by the "Integration" block (Figure 

5.9). The composite vector

f = HT fHT fHT fHT fVTfHT fHT fHT f 
J\ J2 /3 /4 (5.43)

is called a total fault indicator vector. This vector carries the fault state codes for each 

thruster.
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5.5 Fault accommodation subsystem

5.5.1 Description

As stated previously, the ROV pilot uses the HCU (Figure 5.9) to generate the input 

command vector rd . The FDS finds the total fault indicator vector f with information 

about the state of each thruster. The FAS uses these two vectors and relationships in the 

fault code table to solve the control allocation problem separately for motion in the 

horizontal and vertical plane.

The hybrid approach for control allocation, based on the integration of the pseudoinverse 

and the fixed-point method, is implemented as a two-step process. The weighted 

pseudoinverse solution is found in the first step. Then the feasibility of the solution is 

examined analysing individual components of the solution. If violation of actuator 

constraint(s) is detected, the fixed-point iteration method is activated in the second step, 

which results in guaranteed feasible solution. In this way the hybrid approach is able to 

allocate the exact solution, optimal in the /2 sense, inside the entire attainable command 

set. This solution minimises the control energy cost function, which is the most suitable 

criteria for underwater applications.

5.5.2 Hybrid approach for control allocation

Pseudoinverse

The solution method adopted in the FAS relies on the fact that an explicit solution to the 

unconstrained control allocation problem:

rmn|Wu||2

subject to Bu = td 

is given by (Lema B.2, Appendix B)
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(5.44)

where the matrix B,

B; = -' )+ = w-'Br (BW-'BT Y (5.45)

is the weighted pseudoinverse of B . 

Horizontal plane

For motion in the horizontal plane the weighted pseudoinverse matrix B^S is given by

FALCON: B^=-T-^- (5.46)

URIS: (wf - <) - 2(wfr + w
(5.47)

These expressions are obtained by combining (5.22), (5.23) and (5.45).

The weighted pseudoinverse solution of the unconstrained control problem for motion in

the horizontal plane is given by

rt"T =B^r"T (5.48) 

Vertical plane

Combining (5.37), (5.38) and (5.45), the weighted pseudoinverse matrix B^£ for motion 

in the vertical plane becomes scalar

FALCON: B££ =1 (5 -49) 

The weighted pseudoinverse solution of the unconstrained control problem for motion in 

the vertical plane is given by

*" = *%, •*?=*? (5-50)
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Feasibility of pseudoinverse solution

The weighted pseudoinverse solution for motion in the vertical plane (5.50) is always 

feasible. However, it is not always the case with the solution (5.48) for motion in the 

horizontal plane. The input command vector if = \TX Ty TN J lies in the virtual 

control space $f , that is, the unit cube in 3J 3 :

(5.51)

For the constrained control allocation problem, where the constraint u <HT e Q!^ is 

required to be satisfied, the solution (5.48) may become unfeasible, depending on the 

position of if inside 4>f . The virtual control space *f can be partitioned into 

characteristic regions, as indicated in Figure 5.21. The two characteristic regions inside 

3>f are ^_"T (the feasible region for pseudoinverse) and &17 ^> $f (the attainable

command set). The shape of *wr is already given for the fault-free case hi Figure 5.7 for 

FALCON and Figure 5.8 for URIS. The shape of 4>f is found from the condition 

u'"r = B ̂ £ ; if T e QHT (see page 5-57). It should be emphasized that, for the general 

constrained control allocation problem, there is an infinite number of exact solutions for 

if e $Wr . while no exact solution exists for if € 3>f \ <&_"* . The weighted 

pseudoinverse is able to find the exact feasible solution of the control allocation problem, 

optimal in the /2 sense, only if if € <I>f . Otherwise, for if € 4>f \4>f , the solution 

obtained by pseudoinverse is unfeasible. However, as demonstrated hi Example 4.10, the 

fixed-point iteration method is able to find the exact solution, optimal in the 12 sense, for 

cases tf e ®"T \<$f . This idea is explored further in the following section.
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05
1 -1

(a) FALCON.

1 -1

(b) URIS.

Figure 5.21 Partitions of the virtual control space 3>|
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Fixed-point iteration method

In the case when the pseudoinverse solution u'HT = B^lr"T is unfeasible, the fixed-point 

iteration method is triggered, which is able to find the exact solution for r"r e ®"T \3>"T 

or approximate solution for r"r e ®"r V*"7 . Three choices are available as the initial 

point for iterations: T -approximation u£HT or 5 -approximation u;* flr of the unfeasible 

pseudoinverse solution u]Hr , or the output at previous time sample tf""T (t-T), where T 

is sampling time. As stated in Example 4.10, design parameters of the fixed-point 

iteration method are WB , Wv , e and tol.

Co-ordinator

In accordance with previous discussions, the actions undertaken by "Co-ordinator" are 

summarised in Table 5.9 - Table 5.13 for different faulty situations. In particular, Table 

5,9 displays actions for fault-free case. Weights and constraint bounds are all set to unity. 

Actions undertaken in the case of a partial fault in 1 HT with code fk , k e {2,3,5} (see the 

fault code table on page 5-36) are shown in Table 5.10. The constraint bound 0 < sk < 1 is 

associated with the fault code fk . The faulty thruster 1HT is penalised by increasing w"T 

and restricting the constraint bound s"T to s^ -sk . In the case of a total fault in 1HT 

(ke {4,6}), the faulty thruster is switched off ( w"T -»°°, s?T = 0) and excluded from the 

allocation process, as indicated in Table 5.11. The control allocation is solved with 

remaining operable thrusters. Table 5.12 shows actions in the case of a partial fault in 

]VT with code fk . In contrast to similar case shown in Table 5.10, the constraint bound 

s^ is restricted to s™ = sk , but the weight w™ is not updated, since the pseudoinverse 

solution (5.50) does not depend on this weight.
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Action Scope

"Pseudoin verse"

Fault-free case

,"r = 1, i = 1,4

"Approximation"
=1

Table 5.9 "Co-ordinator" actions for fault-free case.

Action Scope Partial fault (fk) in 1 HT

"Pseudoinverse" z = 2,3,4

"Approximation" I, / = 2,3,4

Table 5.10 "Co-ordinator" actions for a partial fault in 1 HT .

Action Scope Total fault in 1 HT

"Pseudoinverse" i = 2,3,4
VT 1 

W, =1

"Approximation" z = 2,3,4

Table 5.11 "Co-ordinator" actions for a total fault in } HT .
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Action Scope Partial fault (fk) in Vr

"Pseudoinverse"

"Approximation"
s™ =l,i = 1,4

Table 5.12 "Co-ordinator" actions for a partial fault in

Action Scope Total fault in VT

"Pseudoinverse"

"Approximation"
s,wr =U = l,4 
s?=0

Table 5.13 "Co-ordinator" actions for a total fault in 'VT.

Table 5.13 displays actions in the case of a total fault in !VT. The faulty thruster is 

switched off as before, but in this case the heave DOF becomes uncontrollable, since the 

remaining operable horizontal thrusters cannot produce force in z direction.

Feasible region for pseudoinverse

The problem of finding the shape of <>f for different thruster configurations is 

addressed in this section. In the general case B ̂ f can be partitioned as

_
HT (5.52)
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Equation u'flr = B^lT can be rewritten as

M'f
NT

•o + fflV

(5.53)

or in component form

Jt3 :
(5.54)

Each equation in (5.54) represents a plane nl in 9t3 , and N; _L n-t are normal vectors, 

orthogonal to planes #,, i = 1,4. 

Condition u'OT e QHr can be rewritten as

— s.
(5.55)

A set of equations (5.55) determine the shape of a convex body &"T . The boundary

represents a set of all T^ for which at least one component of the pseudoinverse 

solution (5.48) receives extreme value. This boundary can be determined by solving the 

following set of equations:

NI-/^-^ N^-l^-sf
(5.56)
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The plane Jl~ «) represents a set of all T HT for which «'?T = -sf7 (u'?T = s"T ). Planes 

n~i and jtf are parallel. The feasible region &^ is a convex polyhedron inside &"T 

determined by intersection of the four pairs of parallel planes defined by (5.56). Vertices 

°f ^JT can be found as the intersection of each group of a three non-parallel planes,

which lie inside the virtual control space ®_"T or on its boundary.

Normal vectors for different thruster configurations, shown in Table 5.14, are obtained

4
from (5.46) & (5.47). The parameter w is defined as w = ]T W?T .

i=\

X-shaped configuration Cross-shaped configuration

N

N

_^_U| HT , WT \ _*)/ ITT «7 

W

Table 5.14 Normal vectors for different thruster configurations. 

Figure 5.22 displays the shape of 4^r for different thruster configurations. Each facet is

denoted by a label showing the corresponding plane and component of ulflr that is 

saturated on the facet. Facets are colour-coded, in order to make their recognition easier. 

Table 5.15 displays facets and their colour codes.

Table 5.15 Facets of <J> „ and colour codes.
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0.5
0.5

1 -1

(a) FALCON.

-0.5-

0.5
0.5

1 -1

(b) URIS.

Figure 5.22 Feasible region <&p for different thruster configurations.
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0.5.

•0.5-

(a) FALCON: (b) FALCON: <D"r &

(d)URIS: 4>"r & ®"T .

Figure 5.23 Partitions of the virtual control space f& v for faulty state "Heavy jammed 

propeller" in 2HT (sf =0.5).

HTIn the case of a fault in a single thruster, the feasible region for pseudoinverse <& p and 

attainable command set <& HT shrink, as shown in Figure 5.23. In particular, Figure 5.23 

(a) & (c) display the region $jf for the case of a partial fault ("Heavy jammed
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propeller") in 2HT. In accordance to the fault code table, "Co-ordinator" penalises 2HT 

by increasing its weight (w>2wr = 3, equations (5.35) & (5.36)) and changes the 

corresponding saturation bound to s"T = 0.5. The geometrical interpretation can be 

obtained by observing that the change of weight w"T produces changes in Nf, N, and 

Nj, but no change in N£ . This means that the planes n~ and flf, i e {1,3,4} change their 

slopes, while the planes n^ and n\ move closer to the origin, staying parallel i.e. without 

changing their slopes. The pseudoinverse guarantees equality between the desired vector 

T^ and the actual vector -t"T inside ®"T , and, at the same time, the value of \u'"T will

never be greater than s"r - 0.5. The shape of the constrained control subset Q.HT is 

changed to a compressed 4D cube, in accordance with the change in the saturation bound 

s"T . This change produces a change in the shape of the attainable command set <&.ar , as 

indicated in Figure 5.23 (b) & (d), where J&jf and <&"T are shown together. It can be 

seen that <&^ c <j?HT , i.e. the pseudoinverse is not able to find a feasible solution in the 

region <&HT \<^^r . In this case the fixed-point iteration method, able to find a feasible 

solution optimal in the 12 sense, is activated. In this way, hybrid approach allocates the 

entire attainable command set in an optimal way, despite the limited usage of a faulty 

thruster.

The extreme (worst) case (total breakdown in *HT) is shown in Figure 5.24. In 

particular, Figure 5.24 (a) & (c) display the region ®"T for the case of a total fault 

("Broken propeller") in 2HT. In accordance with the fault code table, the "Co-ordinator" 

penalises *HT by increasing its weight (w"r -4<») and changes the corresponding 

saturation bound to s"T = 0 (see page 5-29).
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(a) FALCON: &

*v Ix

(b) FALCON: *"r & *"".

05
1 -1

(c) URIS: #* (d) URIS: <f>"r & &".

Figure 5.24 Partitions of the virtual control space $„ for faulty state "Broken propeller" in

This means that the thruster 2HT is switched off and the redundancy is eliminated from 

the control allocation problem by removing the variable «'" from the system of 

equations (5.24) & (5.25), which is simplified to
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— Ui'HT -\— M, >Wr H—— U.'HT = T V 
4 4 4

FALCON: !«, "ff +l«3 'wr -I«4 ' OT = It (5 .57)

-*• iWT 1 «WT -I . WT

1 ,HT
~— 1 ~ £x

URIS: k^+^4""^ (5.58)

The modified thruster control matrix Bwr in (5.57) & (5.58) is a non-singular 3x3 

square matrix, and the problem can be solved in a standard way. The constrained control 

subset Qm is transformed to the 3D unit cube, defined as

^} (5.59)
£2 is mapped by modified Bwr to &" , which coincides with f£"r , as indicated in

Figure 5.24 (b) & (d). This means that the pseudoin verse solution for w^ -»°° is 

equivalent to the exact solution of (5.57) & (5.58).

wr

The ratio of volumes Y"^""1""'"" OT T 'f\"ysi"u"i°'1 can be used as a measure of 
V <3> V k>V \£-P 'fault-free ^ /fault-free

loss in manoeuvring capabilities of the vehicle produced by limiting the usage of a faulty 

thruster.

5.5.3 FAS algorithm

In this section, the FAS algorithm is presented, which summarises signal flow and 

processing inside the FAS, discussed in previous sections. The inputs to the algorithm are 

the total fault indicator vector f (the output of the FDS, Figure 5.9) and the desired 

vector of propulsion forces and moments TJ (the output of the pre-filter). The output is
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the vector of desired thruster velocities n, transformed into the form that is acceptable by 

the TCUs. Design parameters are WB , Wv , £, tol and initial iteration for the fixed-point

iteration method. It is assumed that the remedial actions are stored in the fault code table 

(Table 5.8), covering possible faulty situations.

Algorithm 5.2 (FAS - Hybrid approach for control allocation)

1. Read inputs f and rd .

2. Perform Actions A and B in accordance to Table 5.9 - Table 5.13.

3. Find the pseudoinverse solution using (5.48) for horizontal and (5.50) for vertical 

	thrusters.

4. If the solution is feasible, go to step 6.

5. Otherwise, use the fixed-point iterations (4.29) to find feasible solution.

6. Use (3.91) & (3.92) to correct for not symmetrical T -curves.

7. Transform the control vector u* into the vector of desired thruster velocities n, 

using (3.97) for each component.

8. Transform n into n, using TCU-dependent format.

9. Deliver n as the output of the FAS.

5.6 Remarks on implementation issues
Timing issues: The heaviest computations in the PDAS are performed off-line, 

during the training process. Implementation of the FAS and FDU algorithms utilises the 

matrix representation of the control allocation problem, which can be very efficient, if 

high-quality numerical libraries are used during the program compilation stage. It is 

important to note that the existing FALCON control software for control allocation is not 

optimised for efficiency and can be improved using the matrix formulation of the control
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allocation problem, which can partially compensate for the additional processing time 

needed for fault detection and accommodation.

Memory issues: Knowledge about faulty situations is encoded into the SOM 

prototypes, which are saved on the hard disk during the training phase. Each fault type is 

represented by a SOM with 100 neurons (prototype vectors) and associated labels (fault 

indicators). Each prototype vector has three coordinates (real numbers) and associated 

label (integer number). If two (five) bytes are needed to represent an integer (real) 

number, then the total memory space occupied by one SOM is approximately 

100-(3-5 + l-2) = 1000fcyte«l£fl. For the fault code table shown in Table 5.8, it is 

necessary to save SOM prototypes of four fault types (with indicators 1,2,3 and 4). 

Hence, a memory space needed to store a knowledge about faulty situations for one 

thruster is approximately 4kB. FALCON has five thrusters and total memory space that 

needs to be allocated is about 20 kB. This amount of memory is reasonable, compared to 

the size of modern hard disks and memory modules.

Accuracy issues: The number of fixed-point iterations, performed to find the feasible 

solution for cases when the pseudoinverse solution is unfeasible, depends on the desired 

accuracy and the choice of the design parameters. The level of accuracy is limited by the 

rounding error, since the FALCON control protocol requires desired velocities to be 

presented as integer numbers between -100 and +100. This means that the true control 

space for motion in the horizontal plane is discretised by uniform grid of 

2014 = 1.63224080 MO9 discrete control vectors and each solution must be rounded to 

the closest point in the grid. Design parameters of the PDAS must be chosen taking into 

account these issues. This topic is explored further in Chapter 6.
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5.7 Concluding remarks

A novel thruster fault detection and accommodation system for overactuated open-frame 

underwater vehicles is presented in this chapter. The PDAS includes two subsystems: 

FAS and FDS. The FAS performs a novel hybrid approach for control allocation. The 

primary task of control allocation is enhanced with the FDS, able to monitor state of the 

thrusters and inform the FAS about any malfunctions using the total fault indicator vector, 

carrying the codes of faulty states for each thruster. The FDS is a hybrid, on-line, model- 

free approach, based on the integration of SOM and fuzzy C -means clustering methods. 

In the training phase the FDS uses data obtained during test trial to find SOM prototypes 

for each fault type. In the detection phase the FDS categorises the fault type by comparing 

the position of feature vector relative to these maps. The FAS uses information provided 

by the FDS to accommodate faults by performing an appropriate reconfiguration, i.e. to 

reallocate control energy among operable thrusters.

Despite the fact that in some cases it is necessary to perform iterations, the overall fault 

diagnosis and accommodation process is very fast, due to the computational efficiency of 

the PDAS algorithm, where the heaviest numerical calculations are performed off-line. 

This aspect of computational efficiency, combined with the adoption of a matrix 

formulation of the control allocation problem, means that the addition of the PDAS can 

be accomplished without the need to extend the cycle time.

The hybrid approach for control allocation is based on the integration of the 

pseudoinverse and the fixed-point iteration method. It is implemented as a two-step 

process. The pseudoinverse solution is found in the first step. Then the feasibility of the 

solution is examined analysing its individual components. If violation of actuator 

constraints) is detected, the fixed-point iteration method is activated in the second step. 

In this way, the hybrid approach is able to allocate the exact solution, optimal in the /2
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sense, inside the entire attainable command set. This solution minimises a control energy 

cost function, the most suitable criteria for underwater applications. 

The FDS and FAS are presented at an algorithmic level. Evaluation of the proposed 

algorithms is performed in Chapter 6, where a number of representative test cases 

demonstrate key features of the proposed PDAS.
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Chapter 6: Testing and Evaluation of the PDAS

6.1 Introduction

A new thruster fault diagnosis and accommodation system (PDAS) has been proposed in 

Chapter 5. The performance of the PDAS is evaluated and its key features highlighted in 

this chapter. The PDAS has been implemented as a Simulink model (ROV simulator, 

Appendix D), which was used to simulate a number of representative test cases, also 

presented in this chapter. These test cases were chosen to examine the behaviour of the 

PDAS in different situations. In order to make easier comparison, simulation results for 

different thruster configurations are shown next to each other. The FAS was tested using 

FALCON at the QinetiQ Ocean Basin Tank at Haslar, UK. Here the FAS was used in a 

real-world situation, where the motion of the vehicle was controlled with different, 

artificially generated fault conditions in the thrusters. Preliminary results from these 

experiments are presented at the end of chapter.

This chapter is organised as follows. The performance of the FDU, described in section 

5.4.3, is evaluated using the full set of data acquired during experiments with URIS and 

results are presented in section 6.2. Simulation results, presented in section 6.3, evaluate 

the performance of the PDAS through the series of test cases for fault-free and faulty 

situations. The results from the FALCON trials at Haslar (described above) are presented 

in Section 6.4. Finally, concluding remarks are given in section 6.5.

6.2 Evaluation of the FDU

As stated in section 5.4.3, a large data set was acquired during test trials and only a part of 

this data was used for training. The capability of the proposed FDU to detect external 

faults is evaluated using the entire data set. The FDU algorithm (Algorithm 5.1, page 5- 

46) is implemented as a Simulink model, shown in Figure 6.1. Signals 7 , nd and n are 

presented as inputs to the FDU, which must estimate the state of the thruster using only
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these inputs. Figure 6.2 displays the actual fault indicator and FDU output, together with 

training data. It can be seen that the FDU identifies the new thruster state correctly in a 

short time after the change in state (circled regions in Figure 6.2). These delays are 

unavoidable, because the thruster must spend some time in a faulty state before the faults 

can be identified. The delays are proportional to the buffer size s. A conservative value 

s = 25 was used in Figure 6.2, in order to prevent a wrong detection and false alarms in 

the critical zone (see Figure 5.14). It is expected that the buffer size and delay will be 

reduced in future similar trials with FALCON, due to advanced signal conditioning and 

better quality of measured signals.

tm_ditj mjt
N^
J Fault indicator

1 0[|

n

FDU »•

i .0 ik

Display

Display

Scope

Figure 6.1 Simulink model for evaluation of the FDU.

Normal
(/, =

Broken

Figure 6.2 Evaluation is performed by comparing the actual fault indicator and FDU output.
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Another improvement of the FDU can be obtained by using Mahalanobis metric for 

finding the closest BMUs from the feature vector in the on-line fault detection phase. The 

Mahalanobis metric automatically accounts for the scaling of the coordinate axes, corrects 

for correlation between the different features and can provide curved as well as linear 

decision boundaries. However, the price that must be paid is higher memory and time 

requirements. In addition, the covariance matrix is typically hard to determine accurately, 

which can reduce the quality of improvements.

6.3 Simulation results

Simulation results, presented in this section, are divided into two groups: A and B. Group 

A is a collection of test cases, which assume fault-free thruster states. The test cases from 

group B demonstrate the behaviour of the vehicle in different faulty situations. Table 6.1 

and Table 6.2 enable easy navigation through these test cases.

Test case Description Diagrams

A1:

A2:

A3:

A4:

A5:

A6:

AT:

A8:

A9:

A10:

Feasible pseudoinverse solution

Unfeasible pseudoinverse solution - activation of 
the fixed-point iterations

Approximation of an unattainable command input

Feasible trajectory - the trajectory lies inside the 
feasible region for pseudoinverse

Feasible trajectory - the trajectory lies inside the 
attainable command set

Partially unfeasible trajectory - the trajectory 
partially lies outside the attainable command set

Difference between affine and bilinear thruster 
model

Choice of propeller spin direction

Motion in vertical plane

Difference between symmetrical and non- 
symmetrical T-curve

pg. 6-8

pg.6-8

pg. 6-10

pg. 6-12

pg.6-13

pg. 6-14

pg. 6-16

pg.6-17

pg. 6-19

pg. 6-20

FALCON: pg. 6-31 
URIS: pg.6-31

FALCON: pg.6-32 
URIS: pg.6-32

FALCON: pg.6-33 
URIS: pg. 6-33

FALCON: pg.6-34 
URIS: pg.6-35

FALCON: pg.6-36 
URIS: pg- 6-37

FALCON: pg.6-38 
URIS: pg. 6-39

FALCON: pg.6-40 
URIS: pg.6-41

FALCON: pg. 6-42 
URIS: pg. 6-43

FALCON: pg.6-44

FALCON: pg. 6-45 
URIS: pg. 6-46

Table 6.1 Navigation table for test cases in the group A (fault-free cases).
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Test case Description Diagrams

B1:

B2:

B3:

B4:

B5:

B6:

Partial fault - "Jammed propeller"

Partial fault - "Heavy jammed propeller"

Partial fault - "Unknown state"

Total fault - "Broken propeller"

Consecutive faults - passing through the pipe

Consecutive faults - passing through the hole in 
the rock

pg. 6-24

pg. 6-26

pg. 6-26

pg. 6-27

pg. 6-28

pg. 6-29

FALCON: pg. 6-47 
URIS: pg. 6-48

FALCON: pg. 6-49 
URIS: pg. 6-50

FALCON: pg.6-51 
URIS: pg. 6-52

FALCON: pg. 6-53 
URIS: pg. 6-54

FALCON: pg. 6-55 
URIS: pg. 6-56

FALCON: pg. 6-57 
URIS: pg. 6-58

Table 6.2 Navigation table for test cases in the group B (faulty situations).

In order to improve the clarity and readability of the results presented, some symbols 

defined in previous chapters are replaced with a simplified version, as shown in Table 

6.3. Description of the display showing the distribution of propulsion forces can be found 

in Appendix D. Dynamics of the thruster control loop (Figure 3.16) and umbilical cable 

are neglected in all test cases.

Symbol Type Definition Description 1

THT 
Arf

THT
A/

V

¥

xE'y£'Ze

M,,; = W

«',.,/ = 1A

L,i = ii4

Vector (9f)

Vector (9* 2 )

Scalar

Scalar

Scalars

Scalars

Scalars

Scalars

if = fc« ^A

i/w = b/ I*]

HINL
^n2 (3)

£ 1i=ta ?£ *J

u"T = \u t u 2 u, u,]

u' Hr = \ii', «', u', u',]

II 'T II 
/ \ ^ LL=sgniH,.;— —

Projection of x^T in the Tx - TY plane

Projection of T^T in the Tx - TY plane

Module of the linear velocity vector 8 v,

Heading (yaw angle) of the vehicle in {#}

Coordinates of the vehicle in {f}

Components of the control vector u

Components of the control vector u'wr

Normalised force exerted by thruster 'HT

Table 6.3 Abbreviated symbols used in diagrams in this chapter.
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In order to enhance the graphical presentation of simulation results and to improve 

understanding of the underlying fault detection and accommodation approach, a virtual 

underwater world has been developed with two ROV models (FALCON and URIS) in a 

realistic underwater environment. The relative position of different objects in the 

underwater world is shown in Figure 6.3. Three particular objects (the rock with a hole in 

the middle, long pipe and "Stonehenge"-like group of rocks) are used throughout the test 

cases in this section to evaluate the manoeuvring capabilities and performance of the 

ROV, when equipped with the PDAS. Appendix D provides more information about the 

virtual underwater world. It is important to emphasize that the results presented in this 

section should be considered from the qualitative point of view, i.e. they serve only to 

highlight the key features and principles of the PDAS and to outline the main 

enhancements obtained by introducing the PDAS concepts into the ROV control 

architecture. However, the actual dynamics of FALCON and URIS are faster than 

dynamics of the vehicle used in simulations (see Appendix D for more information about 

dynamic models of FALCON and URIS). More accurate simulations will be attainable 

when the work on modelling and identification of FALCON and URIS is completed and 

corresponding dynamic models become available.

^^F
"Stonehenge" 

___________ Holemi^m^^m L
\LCON

Figure 6.3 Virtual underwater world.
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6.3.1 (A) Fault-free case

For all test cases in this subsection it is assumed that each thruster is in a fault-free state,

i.e. wfr =1, s"T = 1, j = 1,4 and wf = 1, s^ - 1. Design parameters of the fixed-point 

method are W^ = I4 , W^ = I3 , e = 10"6 and tol = KT6 . Other simulation settings are 

given in Table 6.4. The ROV simulator was used for simulation and results (diagrams and 

movies) are saved on disk for post-simulation analysis.

Test case T-curve Thruster Propeller spin di

(A1)

(A2)

(A3)

(M)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

Symmetrical (rt = T,.)

Symmetrical (r7 , = T~, )

Symmetrical (rt, = 77 )

Symmetrical (jt, = 7V7,)

Symmetrical \T n̂ = T~^)

Symmetrical (7*7 = 77,)

Symmetrical (77, = 77,)

Symmetrical (77, = 7"nu)

Symmetrical (77, =^Jnij

Symmetrical (r;r 77,,, )& 

Nonsymmetrical (rTj^r;,)

Affine (3.99)

Affine (3.99)

Affine (3.99)

Affine (3.99)

Affine (3.99)

Affine (3.99)

Affine (3.99) & 
Bilinear (3.98)

Affine (3.99)

Affine (3.99)

Affine (3.99)

'CHT = 2Cnr = 1 (CW) 

3Cm = "CHT - -1 (CCW)

'CHT = 2Cm- = 1 (CW) 

3CHT = 4CHT=-1 (CCW)

'CHT = 2Cnr = 1 (CW) 

3Cnr = 4Cnr = -1 (CCW)

'CHT = 2Cnr = 1 (CW)
3_ 4_ HJ /««...\
l^HT ~ wHT -" * 1 \\AJVl}

'CHT = 2Cnr = 1 (CW) 

3CHT = VHT = -1 (CCW)

'CHT = 2Cnr « 1 (CW) 

3CHT = 4CHT=-1 (CCW)

'CHT = 2Cm- = 1 (CW)

3CHT = 4CHT - -1 (CCW)

Different 
combinations

'CVT = 1 (CW)

'CHT = 2Cnr = 1 (CW) 

3CHT = "CHT = -1 (CCW)

ection 1

'CHT = 3CHT = 1 (cw)

2CHT= 4CHT=-1 (CCW)

'CHT = 3CHT = 1 (CW) 

2CHT = "CHT = -1 (CCW)

'CHT = 3Cm- = 1 (cw) 

2Cnr = "CHT = -1 (CCW)

'CHT » 3CHr = 1 (CW)

2CHT= 4CHT=-1 (CCW)

'CHT = 3CHT - 1 (CW)

2CHT= 4CHT= -1 (CCW)

'CHT • 3Cnr = 1 (CW) 

CHT= CHT=~I (CCW)

'CHT = 3CHT = 1 (CW) 

2CHT = 4Cm- = -1 (CCW)

Different 
combinations

-

'CHT = 3CnT = 1 (CW)

aCHT = "CHT=-1 (CCW)

Table 6.4 Simulation settings for group A tests.

' See Example 3.1 on page 3-27 for description of propeller spin direction.
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(Al) Feasible pseudoinverse solution

Let T^7 = [0.18 0.28 0.34f for X-shaped thruster configuration in fault-free case. The 

pseudoinverse solution u^ = [0.80 -0.44 0.12 0.24f is feasible and belongs to 

Q"7 . Hence, T%T e <3>^ so the fixed-point iterations don't need to be activated. The 

solution u™1 leads to TOT =BH7 uflT =[0.18 0.28 0.34f, i.e. j"T =r"T , direction 

error 0 = 0° and magnitude error ||rf -T^ll =0 (Figure 6.4 (a)). Since T"T lies inside

O^, there is an infinite number of feasible solutions2, but the pseudoinverse solution

u is optimal in the /2 sense. Distribution of propulsion forces among horizontal 

thrusters is shown in Figure 6.4 (b). Similar case for the cross-shaped thruster 

configuration is shown in Figure 6.4 (c) & (d). If r"T = [0.42 0.28 0.32f e <&f, then

U HT =[0.74 0.10 0.60 -0.04feaHr .

The main conclusion of this test case is that, while T^r lies inside $"r , the

pseudoinverse solution is always feasible and optimal in the 12 sense.

(A2) Unfeasible pseudoinverse solution - activation of the fixed-point iterations

In this test case desired virtual control input T^ is chosen to lie in ®"r \$^f. Table 6.5 

summarises the steps undertaken by the FAS to solve control allocation problem in this 

case. Figure 6.5 (a) & (c) display the virtual control inputs r'"7 and T*flr (obtained by the 

T - and 5 -approximation) and *""* (obtained by the fixed-point iterations). Individual

2 The FALCON control protocol discretises the true control space (see section 5.6), which makes the 

number of feasible solutions finite.
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fixed-point iterations converge in the true control space towards the exact solution ufm , 

optimal in the 12 sense. The control variable M and force (thrust) T_, exerted by a thruster, 

have the same numerical value in a normalised form for the affme thruster model and 

symmetrical T -curve (see test case (A7)), and the visualisation of nf can be obtained by 

showing the distribution of propulsion forces for horizontal thrusters (Figure 6.5 (b)).

FALCON URIS

Desired virtual control input v"T

Pseudoinverse solution u"7

Feasibility of u"7

T-approximation u'"T

Obtained virtual control input t"'"

Direction error 9:

Magnitude error T^-T^
12

S-approximation u"T

Obtained virtual control input T* //T

Direction error 6>s

Magnitude error -t"T --c'"T
2

FPI solution u*/7

Obtained virtual control input -t""T

Direction error df

Magnitude error \-tf-r™
2

[0.70 0.20 0.25f

[1.15 0.25 0.65 0.75f

Unfeasible, since M t >1

[l.OO 0.25 0.65 0.75f

[0.6625 0.1625 0.2125f

2.6362°

0.0650

[l 0.2174 0.5652 0.6522f

[0.6087 0.1739 0.2174f

0°

0.1004

[l.OO 0.50 0.45 -O.SOf

[0.70 0.20 0.25f

0°

0

[0.975 -0.025 0.475f

[1.45 0.50 0.45 -O.SOf

Unfeasible, since u { >\

[l.OO 0.50 0.45 -O.SOf

[0.7500 -0.0250 0.3625f

0.4366°

0.2516

[l 0.3448 0.3103 -0.3448f

[0.6724 -0.0172 0.3276f

0°

0.3367

[l.OO 0.95 0.90 -0.95f

[0.975 -0.025 0.475f

0°

0

Table 6.5 Hybrid approach for unfeasible pseudoinverse solution.

6-9



Chapter 6: Testing and Evaluation of the PDAS

Corresponding iterations in the virtual control space are shown in Figure 6.5 (a) & (c) as 

red dots (for the initial iteration u"J ^u]"7 ) and black dots (for u"J =u, m ). It is 

interesting to note that, in the case of FALCON, iterations starting from u*w coincide 

with iterations starting from u,*w after the second iteration.

The main conclusion of the test case (A2) is that the fixed-point iterations can find the 

exact, 12 -optimal solution for r"T e &_"* \<J>"r . Test cases (Al) and (A2) demonstrates 

that the hybrid approach for control allocation, implemented in the FAS, is able to find 

the exact, feasible solution on the entire attainable command set, optimal in the 12 sense.

(A3) Approximation of an unattainable command input

In this test case desired virtual control input -t^ is chosen to lie outside the attainable 

command set, i.e. "t*f e <|>fr \<$>HT . As stated in section 5.2.4, the exact, feasible solution 

of the control allocation problem does not exist in this case. Each method for control 

allocation leads to an approximate solution. Different approximations (T-, S- and FPI 

approximation) are shown in Table 6.6. It can be seen that the FPI approximation has the 

smallest magnitude error and the largest direction error. In contrast, the S -approximation 

has the largest magnitude error and zero direction error. The choice of approximation 

depends on the error priority: if directionality is important, the S -approximation is a 

favourite. Otherwise, if the magnitude error is prioritised, the FPI approximation is the 

best choice. Figure 6.6 (a) & (c) depict the virtual control inputs -t,"7 and -c]"7 (obtained 

by the T- and 5-approximation, respectively) and -if1 (obtained by the fixed-point 

iterations). Similarly to test case (A2), in the case of FALCON, iterations starting from 

u*w (red dots in Figure 6.6 (a)) coincide with iterations starting from u, m (black dots) 

after the second iteration. Figure 6.6 (b) visualises the FPI approximate solution.
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The main conclusion of the test case (A3) is that, for the case where the exact, feasible 

solution does not exists (t"T <£*"r ), the hybrid approach provides different 

approximations (T -, S - and FPI approximation) with different approximation errors.

FALCON URIS

Desired virtual control input T"?

Pseudoinverse solution \\ HT

Feasibility of u"T

T-approximation u'HT

Obtained virtual control input -c' HT

Direction error dt

Magnitude error -t"T -T*"r
2

S-approximation u"T

Obtained virtual control input T*™"

Direction error ds

HT *HTMagnitude error -td -T,
2

FPI solution u"T

Obtained virtual control input r*"7

Direction error 6,

1 1 UT * HT
Magnitude error T" -I/

2

[0.90 0.80 0.70^

[2.4 -0.6 1.0 0.8f

Unfeasible, since w t > 1

[l.O -0.6 1.0 0.8f

[0.55 0.45 0.35f

4.4565°

0.6062

[l -0.25 0.4167 0.3333f

[0.3750 0.3333 0.29 nf

0°

0.8125

[l.O -1.0 1.0 l.Of

[0.5 0.5 0.5f

5.8275°

0.5385

[0.70 0.80 0.90f

[1.60 -0.20 1.70 -O.iof

Unfeasible, since M 1 > 1 &

M 3 > 1

[l.OO -0.20 1.00 -O.lOf

[0.4000 0.4500 0.5750f

3.4453°

0.5640

[0.9412 -0.1176 1 -0.0588r

[0.4118 0.4706 0.5294f

0°

0.5735

[l -0.0326 1 0.1659]7

[0.4837 0.5829 0.4667f

8.6994°

0.5307

Table 6.6 Hybrid approach for unattainable command input.
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(A4) Feasible trajectory - the trajectory lies inside the feasible region for 

pseudoin verse

This test case is intended to demonstrate the ability of the PDAS to solve the control 

allocation problem for motion in the horizontal plane, where commanded inputs over time 

create the trajectory ^(t), which completely lies inside the feasible region for the 

pseudoinverse ®"T (Figure 6.7 (a) - FALCON and Figure 6.8 (a) - URIS). The mission 

objective was to move the vehicle from the start point A through the pipe, under 

constraint T^XfJc^7'• The trajectory n"T (t) was generated by a joystick, using the

virtual reality display and dynamic visualisation of the feasible region to accomplish the 

mission. The pseudoinverse solution of the underlying control allocation problem is

feasible V*, and trajectories r"7^?) and ^(t) coincide3 inside Q1̂ . Time diagrams of

components of the vectors -^"(t] and i"r (r) are shown hi Figure 6.7 (b) (FALCON) and 

Figure 6.8 (b) (URIS). The plan view of the motion in the XE - yE plane is displayed in 

Figure 6.7 (c) (FALCON) and Figure 6.8 (c) (URIS), together with the Earth-fixed frame 

{E}. Figure 6.7 (d) (FALCON) and Figure 6.8 (d) (URIS) display time responses of 

velocity v(t) and heading l//(t)4 . Snapshots from the virtual reality display, showing the 

motion of the vehicle in the virtual world, are displayed in Figure 6.7 (e) (FALCON) and 

Figure 6.8 (e) (URIS). The vehicle begins the motion at the start point A, rotates right,

3 However, if thruster dynamics are not neglected, then trajectories are close to each other, but they don't 

coincide. Similar conclusion can be drawn in other examples. This topic is discussed in section 6.4.4.

4 Heading response is normalised on interval 0° < \ff(t) < 360°, in order to be compatible with the input 

of the Angular Gauge control "Compass" in Dials & Gauges Blockset. This normalisation introduces jumps 

in heading responses for cases yf(f) < 0°.
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enters the pipe, moves forward, leaves the pipe, decelerates and stops the motion at the 

end point B.

The main conclusion of this test case is that, if T%T (t) c *"r , then the PDAS ensures that

the actual behaviour of the vehicle is the same as the desired behaviour, without 

undesired effects of thruster velocity saturation.

(AS) Feasible trajectory - the trajectory lies inside the attainable command set

Similar to test case (A4), this example demonstrates the ability of the PDAS to solve the 

control allocation problem for motion in the horizontal plane, where the trajectory y%T (t)

lies inside the attainable command set ^m (Figure 6.9 (a) - FALCON and Figure 6.10 

(a) - URIS). The mission objective was to move the vehicle from the start point A 

through the hole in the rock, under constraint T^r (f)c*wr . As in test case (A4), a 

joystick was used to generate the trajectory -^(t). The majority of the trajectory T^r (/) 

lies inside ®_"T , while some parts lie in &" \ &"T . The hybrid approach for control 

allocation, implemented in the PDAS, utilises the pseudoinverse method to find the 

feasible solution for ^(t)e&™ and the fixed-point iteration method for

T^(f)e &" \®"T - In this way, trajectories -t"(t] and -^(t) coincide inside the entire 

<£wr . Figure 6.9 (b) (FALCON) and Figure 6.10 (b) (URIS) display the time diagrams of 

components of vectors ^(t) and v"T (t). The plan view of the motion in the xE -yE 

plane is depicted in Figure 6.9 (c) (FALCON) and Figure 6.10 (c) (URIS). Time 

responses of velocity v(t) and heading y/(t) are shown ha Figure 6.9 (d) (FALCON) and 

Figure 6.10 (d) (URIS). Snapshots of the journey through the hole in the rock, taken from 

the virtual reality display, are shown in Figure 6.9 (e) (FALCON) and Figure 6.10 (e)
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(URIS). The vehicle begins the motion at the start point A, rotates right, moves forward, 

rotates left, enters the hole, moves forward, leaves the hole, decelerates and stops the 

motion at the end point B .

The main conclusion of this test case is similar to the conclusion of test case (A4); that is, 

if T^^C: f$HT , then the PDAS provides that the actual behaviour of the vehicle is the 

same as desired behaviour, without undesired effects of thruster velocity saturation.

(A6) Partially unfeasible trajectory - the trajectory partially lies outside the 

attainable command set

This test case is intended to examine the performance of the PDAS for motion in the 

horizontal plane, where commanded inputs over time create a partially unfeasible

trajectory v"T (t), i.e. the trajectory, which partially lies outside the attainable command

set &" (Figure 6.11 (a) - FALCON and Figure 6.12 (a) - URIS). The mission objective 

was to move the vehicle from the start point A through the passage in "Stonehenge", 

without any constraint on ^(t). As in the previous cases, the trajectory T^r (f) was 

generated by a joystick. The hybrid approach for control allocation can approximate 

unfeasible parts of ^(t) by three approximation types: T -approximation, S- 

approximation and FPI approximation. In this test case the FPI approximation was used, 

such that the FPI approximations lie on the boundary 3(#Hr ). In this way, trajectories 

T™"^) and r"T (t) coincide inside tit"7 , while thruster velocity saturation implies that 

they differ outside *Hr . Time diagrams of components of vectors ^(f) and £T (t] are 

shown in Figure 6.11 (b) (FALCON) and Figure 6.12 (b) (URIS). The unfeasible parts of 

T^(f) are denoted as shadowed regions in these diagrams. They are characterised by 

disagreement in components of T"^) and if(0- T^ Plan view of ^ motion in me
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XE-JE Plane is displayed in Figure 6.11 (c) (FALCON) and Figure 6.12 (c) (URIS). 

Figure 6.11 (d) (FALCON) and Figure 6.12 (d) (URIS) display time responses of velocity 

v(t) and heading \p(t}. Snapshots from the virtual reality display, showing different 

stages of the motion in the virtual world, are displayed in Figure 6. 1 1 (e) (FALCON) and 

Figure 6.12 (e) (URIS). The vehicle begins the motion at the start point A, rotates right, 

moves forward, rotates left, enters the passage in "Stonehenge", moves forward, leaves 

the passage, decelerates and stops the motion at the end point B . If v"T (t) is feasible, i.e. 

if T^^e^"7 , the vector of propulsion forces and moments T.HT (t), exerted by 

thrusters, is equal to the desired vector T%T (t) , generated by the HCU, and the motion of 

the vehicle is in accordance to command inputs. In situations when T^ (?) becomes 

unfeasible, vectors r"7 ^) and i"r (f ) are not equal and there is a change in the behaviour 

of the vehicle. When thruster velocity saturation occurs, the vehicle reacts in a different 

way than in the non-saturation case. An experienced ROV pilot is able to "feel" this 

change and manually returns the command input r"T (t) back into §>"r . However, the 

PDAS can automatically provide information about the position of ^(t) relative to 

O^ in different ways:

• using dynamic visualisation of $>"* , ^(t) and r"T (t) in 3D virtual control 

space,

• using dynamic estimation of components of T^ (/) and T (t),

using quantitative descriptor (for example, scalar indicator) to indicate the case 

when ^(t) lies outside jfc"7' .

•
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In this way, using information provided by the PDAS, even an inexperienced ROV pilot 

is able to detect the situation when thruster velocity saturation occurs and to correct the 

input vector z"T (t) such that it becomes feasible.

The main conclusion of this test case is that an ROV pilot should keep r%T (t) inside <&"T 

for all time, because in that case the response of the vehicle to command inputs is exactly 

the same as expected.

(A7) Difference between affine and bilinear thruster model

The hybrid approach for control allocation, implemented in the PDAS, was derived 

assuming affine thruster model, shown in Figure 5.3. This test case is intended to 

compare the performance of the PDAS when two different thruster models are used 

(affine (3.99) and bilinear (3.98)). Model parameters are given in Appendix D. In the 

affine thruster model, propeller thrust T and shaft torque Qe only depend on propeller 

angular velocity n, that is, the control variable u. In the bilinear thruster model, T and 

Qe depend on propeller angular velocity n and ambient water velocity ua (see (3.81) & 

(3.82)). Figure 6.13 (a) (FALCON) and Figure 6.14 (a) (URIS) display time diagrams of 

•t^(t), tw (*)> ^(t), T.i(t) and v(t) for the case when an affine thruster model is used. 

The same diagrams for bilinear thruster model are displayed in Figure 6.13 (b) 

(FALCON) and Figure 6.14 (b) (URIS). Vector if (f) was created using the "From File" 

Simulink block. For the affine thruster model the normalised relationship between thrust 

(force) 7) and control variable «; is given by

L=«L ((U) 

This can be seen from diagrams Figure 6.13 (a2) (FALCON) and Figure 6.14 (a2)

(URIS), where £,-(/) and ut (t) coincide, V;, which yields ^T (t) = rar (t), as shown in
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Figure 6.13 (al) (FALCON) and Figure 6.14 (al) (URIS). Equation (6.1) is not valid for 

bilinear thruster model, which can be seen from Figure 6.13 (b2) (FALCON) and Figure 

6.14 (b2) (URIS). The second term - Z|,,|J«K in (3.98) is responsible for the discrepancy 

between r,(f) and u,(t}. In general, the faster the vehicle, the higher the difference. For 

this reason, vectors T" (r) and r"T (t) for bilinear thruster model are close to each other, 

but they do not coincide, as shown in Figure 6.13 (bl) (FALCON) and Figure 6.14 (bl) 

(URIS). The difference between ^(t) and TOT (f) for bilinear thruster model produces 

the loss in velocity of the vehicle, which is visible from the velocity time response. The 

vehicle moves slower when the bilinear thruster model is used (Figure 6.13 (b3) 

(FALCON) and Figure 6.14 (b3) (URIS)) than for the affine model (Figure 6.13 (a3) 

(FALCON) and Figure 6.14 (a3) (URIS)).

The bilinear thruster model is more realistic than the affine model. Although the control 

allocator, implemented in the PDAS, was derived assuming affine thruster model, this test 

case demonstrated that the performance of the ROV control system, equipped with the 

PDAS, is satisfactory for both thruster models.

(A8) Choice of propeller spin direction

This test case is intended to examine the influence of the propeller spin direction on the 

performance of the PDAS. Two cases with different choice of propeller spin directions 

(i.e. different spin direction coefficients) were considered. In the first case, symmetrical 

pairs of horizontal thrusters ( 1HT&3HT and 2HT&*HT for FALCON, 1HT&*HT and 

3HT&*HT for URIS) had opposite spin direction coefficients (cw&ccw ), as indicated in 

Figure 6.15 (a) (FALCON) and Figure 6.16 (a) (URIS). In the second case, all horizontal 

thrusters had the same positive propeller spin directions (cw), as indicated in Figure 6.15 

(b) (FALCON) and Figure 6.16 (b) (URIS). The mission objective was to move the
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vehicle from the start point A through the pipe along the straight line. Snapshots from the 

virtual reality display, showing different stages of the motion in the virtual world, are 

shown at the bottom of Figure 6.15 (FALCON) and Figure 6.16 (URIS). The vehicle 

begins the motion at the start point A, enters the pipe, moves forward, leaves the pipe, 

decelerates and stops at the end point B. Figure 6.15 (a) (FALCON) and Figure 6.16 (a) 

(URIS) display time diagrams of r^(t), ^"(t), v(t), i//(t) and the plan view of 

trajectory (xE(t\yE (t)) for the first case. Diagrams for the second case are shown in 

Figure 6.15 (b) (FALCON) and Figure 6.16 (b) (URIS). It can be seen that if(t), 

TW (/), v(t) and y/(t) are identical in both cases. The only difference is noticeable in 

diagrams showing the plan views of trajectories (xB (t), ye (t)). In the first case the vehicle 

moves along the straight line without any drift. In contrast, the vehicle is shifted from the 

straight line in the second case, such that the drift at the end point B is approximately 

28 cm for FALCON and 2 cm for URIS. The reason why the drift is higher for 

FALCON in the second case is because for straight-line motion all four horizontal 

thrusters are actuated for FALCON, compared to only two actuated thrusters for URIS. 

Each thruster produces torque Qe and the net torque, created as a vector sum of torques of 

individual thrusters, is higher for FALCON than for URIS in the second case. This net 

torque is responsible for the difference in trajectories (xE (t),yE (t)) in both cases, as 

explained in the following. In the first case, symmetrical pairs of thrusters have opposite 

spin direction coefficients. This means that, if they rotate with the same velocity, resulting 

moment from the blade's angular motion will counteract each other and the net angular 

moment for each pair of symmetrical thrusters in total vector of propulsion forces and 

moments t will be zero. Components of the control vector u1"^) for this case are the 

same as those shown for test case (A7) (affine thruster model) in Figure 6.13 (a2)

6-18



Chapter 6: Testing and Evaluation of the PDAS

(FALCON) and Figure 6.14 (a2) (URIS), since these test cases were simulated using the 

same simulation settings (see Table 6.4). It can be seen that symmetrical pairs of thrusters 

have the same velocity during the mission, which yields zero net angular moments from 

these pairs. That is, the components Tx , TM and TN of T are equal to zero during the 

mission, which leads to perfect straight-line motion of the vehicle. In contrast, 

symmetrical pairs of thrusters have the same spin direction coefficients in the second 

case, which means that resulting torque Qe from each thruster generates non-zero net 

angular moment, that is, the components TK and TM of t are not equal to zero during the 

mission, which leads to non-perfect straight-line motion of the vehicle. 

The main conclusion of this test case is that the undesired effects of torques Qe on the 

straight-line motion of the vehicle can be reduced by careful choice of propeller spin 

direction: the symmetrical pairs of thrusters should have opposite spin direction 

coefficients.

(A9) Motion in vertical plane

This test case is intended to examine the performance of the PDAS for motion of 

FALCON in vertical plane. URIS is not considered in this example, since the modified 

thruster configuration shown in Figure 3.7 (b) does not allow motion in vertical plane.

Figure 6.17 (a) displays time diagrams of i7 (*) = £?(*). v(t), zE (t) and yf(t). Vector 

r^(t) was created using the "From File" Simulink block. Snapshots from the virtual 

reality display, showing different stages of the motion from different view points, are 

shown in Figure 6.17. The vehicle begins the motion at the start point A, ascends, 

decelerates and changes the direction of motion, descends and stops at the end point B. 

The torque Qe , exerted by a vertical thruster, produces undesired change of heading, as

depicted in time response of yf(t). The same effect was observed during test trials with
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FALCON in the experimental tank at the University of Southampton. Although the HCU 

sent commands for pure vertical motion, the change of heading was observed during the 

experiment, and the rate of change of heading was proportional to the vertical velocity of 

the vehicle: higher the velocity, higher the rate of change. Undesired effect of the torque 

Qe can be cancelled by introducing the "Heading-Keeping" controller. The main 

objective is to achieve tff(t) = 0, i.e. y/(t} = const. The input to the controller is the rate of 

change of heading \jr(t), which is measured by the on-board gyro sensor. The controller 

generates contra-moment t'N (proportional to <ff(t)) using horizontal thrusters in order to 

reject the effect of the torque Qe on heading. In order to prevent collision between the 

"Heading-Keeping" controller and the desired yaw motion TN , generated by the HCU, the 

controller should be disabled for case ?N * 0 and enabled for case TN = 0. In this way, in 

addition to cancellation of the effect of the torque Qe , the "Heading-Keeping" controller 

can be used to stop the rotation of the vehicle immediately after demand TN for rotation 

becomes equal to zero. Namely, in the absence of the controller, the vehicle continues to 

rotate for short time after TN = 0, due to inertia. This "extended" rotational motion can be 

removed using the "Heading-Keeping" controller, which generates contra-moment when 

tN = 0 to stop the rotation of the vehicle.

The main conclusion of this test case is that the undesired effects of torque Q€ on the 

heading, observable during the motion of the vehicle in the vertical plane, can be 

eliminated using the "Heading-Keeping" controller.

(A10) Difference between symmetrical and non-symmetrical T-curve

The hybrid approach for control allocation, implemented in the PDAS, was derived 

assuming symmetrical T -curve, shown in Figure 5.3, for each thruster. This test case is
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intended to compare the performance of the PDAS when two different shapes of T- 

curves are used (symmetrical (6.2) - (6.3) and non-symmetrical (6.4) - (6.5)). 

Symmetrical T-curve:

T(u}=Ku (6.2)

K = T^=T^ (6.3) 

Non-symmetrical T-curve:

, . frr,«, H>O r(«=L- (6.4)

(6.5)

Model parameters are given in Appendix D. Figure 6.18 (a) (FALCON) and Figure 6.19 

(a) (URIS) display time diagrams of rf (t), i"T (t}, u'HT (t), u OT (r), Tj(t), v(t) & yf(t] 

and plan views of trajectories (xE (t\ yE (t)) for the case when symmetrical T -curves were 

used. Diagrams for non-symmetrical T -curves are displayed in Figure 6.18 (b) 

(FALCON) and Figure 6.19 (b) (URIS). Vector if (*) was created using the "From File" 

Simulink block. The vehicle starts the forward motion from the start point A, passes 

through the pipe (in the case of URIS it comes close to the end of the pipe), decelerates, 

changes the direction (reverse motion), moves back and finishes the motion at the end

point B.

As explained in section 3.7.3, the PDAS transforms the non-symmetrical relationship 

between T and u into a symmetrical relationship by introducing auxiliary control 

variable «' (3.89) & (3.90) for each thruster. After the control allocator inside the PDAS 

finds the solution, the "Correction" block of the PDAS transforms the auxiliary control 

variable «' for each thruster back into the real control variable u using (3.91) & (3.92),
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compensating for the non-symmetrical T -curve and ensuring that the thrust (force) is the 

same for both variables (see Figure 3.13). For symmetrical T -curves, the auxiliary 

control variable u', and the real control variable w, for 'HT are equal. For non- 

symmetrical T -curves, variables «',. and «, are different. The "Correction" block 

transforms MV into «, such that individual thruster forces T_t are the same for both shapes 

of T -curves. This leads to T^sTf (t) in both cases, which further leads to identical 

diagrams of v(t), ys(t) and (xE (t),yE (t)).

Although the T -curves for the majority of propellers for underwater vehicles are non- 

symmetrical, this test case demonstrates that the hybrid approach for control allocation, 

implemented in the PDAS, is applicable for both shapes of propeller T -curves 

(symmetrical and non-symmetrical) and obtained performance is acceptable in both cases.

6.3.2 (B) Faulty situations

Test cases in this subsection demonstrate the ability of the PDAS to accommodate 

different fault types in thrusters. A joystick was used in the FDS to simulate different 

faulty situations (see Appendix D for more information). Test cases (Bl) - (B4) 

demonstrate the ability of the PDAS to complete the mission in the presence of a single 

fault in the 2HT. Diagrams for fault-free and faulty cases are shown next to each other, in 

order to provide easier comparison. The existing control software for FALCON and URIS 

does not provide a solution for thruster fault accommodation and the only option 

available is to switch off a faulty thruster. Test cases (B5) and (B6) compare the 

behaviour of the vehicle in the presence of consecutive faults in thrusters for cases when 

the PDAS is not active (faulty thruster is switched off) and when the PDAS is active 

(faulty thruster is accommodated as explained in section 5.5). As stated in test case (A3), 

the hybrid approach provides different approximations (T -, 5 - and FPI approximation)
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with different approximation errors for cases when the exact, feasible solution does not 

exists \r"T «• <&aT ). In test cases (B1) - (B6) the 5 -approximation is used to approximate 

unfeasible solutions, since it leads to zero direction error of approximation. This is 

important, since the priority in faulty situations is to preserve directionality of the 

command input vector, especially among the main body axes. Other simulation settings 

are given in Table 6.7. The ROV simulator was used for simulation and results (diagrams 

and movies) were saved on disk for post-simulation analysis. Command inputs in test 

cases (Bl) - (B6) are generated using pre-defined signals read from a file.

Test case T-curve

(B1)-(B6) Symmetrical (rt

Thruster Propeller spin di

-T- \
~»\»\> Affine (3.99)

'CHT = 2Cm- = 1 (CW)

3CHT = 4CHT=-1 (CCW)

rection

1 CHT = 3Cnr = 1 (CW)

2Cm-= 4Cnr= -1 (COW)

Table 6.7 Simulation settings for test cases in group B.

In contrast to the test cases in group A, a new diagram showing time response of criteria 

is introduced in this subsection. Two criteria are considered:

Weightedcriterion: J,

and

Normal criterion : J? = (u"r)Vr = (6.7)

The weighted criterion J™m , minimised by the hybrid approach, can be interpreted as a

weighted control energy cost function. In contrast, the normal criterion J"r represents 

the actual control energy cost function, that is, a real measure of control effort. In fault- 

free case J™a =J™, whereas in faulty situations, J r̂ >J^. Criteria /"„. and /f

are denoted in diagrams as Jw and Jn , respectively.
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(Bl) Partial fault - "Jammed propeller"

This test case compares the performance of the PDAS for two cases. In the first case a 

simulation was performed assuming fault-free states in all thrusters. The second case 

considered fault-free states in thrusters }HT, 3HT and 4HT, and a faulty state "Jammed 

propeller" in 2HT (partial fault, sf =0.75, see Table 5.8). The same command input 

vector ^(t), created using the "From File" Simulink block, was used to drive the 

vehicle in both cases. The mission objective was to move the vehicle from the start point 

A through the pipe along the straight line. Figure 6.20 (a) (FALCON) and Figure 6.21 (a)

(URIS) display time diagrams of tfW. s"(0, »"(?), !,('), /£„(*). /f W. v(r) 

and i/f(t), the plan view of the trajectory (xE (t\yE (t}} and partitions <b™ & &" of the

virtual control space Q_"T for the first case. Diagrams for the second case are shown in 

Figure 6.20 (b) (FALCON) and Figure 6.21 (b) (URIS). It can be seen that, in the fault- 

free case, the vehicle performs perfect straight-line motion, vector T^(?) lies inside 3>tfr 

for all time and r̂ (t) = yur (t), J^THr(t) = J"T (t), Vf. In addition, the velocity profile

v(t), which follows the profile of Tx (t), is exactly as desired, since £*(f) = £xa(<0- The 

situation is different for the second case, where the limited usage of 2HT causes 

shrinking of the ®"T and *OT (see section 5.5.2), and the trajectory T^(t) becomes

partially unfeasible, i.e. r^(t) lies partially outside ®"T . The PDAS uses the S- 

approximation to approximate unfeasible solutions in these cases, which leads to 

approximation T Wr (?) = ifr (f) with the same direction as unattainable command input 

v?(t), but lower magnitude. The unfeasible part of trajectory jf (f) is characterised by 

relationship r HT(t)^^T (t) and indicated as shadowed regions in time responses shown
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in Figure 6.20 (b) (FALCON) and Figure 6.21 (b) (URIS). Pairs of thrusters 1HT & 2HT 

and 3HT & 4HT are equally actuated for straight-line motion of FALCON (ul (t) = u2 (t) 

and H3(*) = w4 (f), respectively). In the case of URIS, u l (t) = rXll (t), but u 2 (t)<«,(*) and 

thrusters 3HT and 4HT are actuated in an asymmetrical sense {^(t) =-u 4 (t)), such that 

they produce the moment, which counteracts the moment produced by the difference in 

actuation of } HT and 2HT. The velocity profile v(t) follows the profile of tx (t), which 

is now different than r^ (t), and the vehicle moves slower in shadowed region than in the 

fault-free case. However, heading iff(t) is constant in both cases, but trajectories 

(xE (t\ yE (t)) are slightly different. The first difference stems from the fact that the higher 

forward velocity in the fault-free case means that the vehicle covers a longer distance than 

in the faulty situation, i.e. ABfauit-fm > AB»jammed PmpMr"m 2«r. The second difference 

comes from the shapes of the trajectories (xe (t\yE (t)). In the first case, it is a perfect 

straight line, whereas, in the second case, although symmetrical pairs of thrusters have 

opposite spin direction coefficients, the vehicle is shifted from the straight line, such that 

the drift at the end point B is approximately 2 cm for FALCON and 0.4 cm for URIS. 

The drift is caused by unequal actuation of symmetrical thrusters in the second case, 

which leads to non-zero angular moments from these pairs, resulting in non-perfect 

straight-line motion of the vehicle (see test case (A8) for more information about 

propeller spin direction).

This test case demonstrates that, in the presence of a single partial fault in 2HT and its 

limited usage of 75%, the faulty vehicle is able to perform straight-line motion with 

satisfactory performance. An unavoidable effect is the drop in forward velocity for cases 

when the command input vector rf(t) lies outside modified *"r .
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(B2) Partial fault - "Heavy jammed propeller"

This test case is similar to case (Bl), but in this case a faulty state "Heavy jammed 

propeller" in 2HT (partial fault, sf =0.50) was considered. Since the usage of 2HT is 

now limited to 50%, <b^ and &" shrink more than in the previous case and the 

unfeasible part of trajectory T^(i) is bigger, as indicated in Figure 6.22 (b) (FALCON) 

and Figure 6.23 (b) (URIS). In addition, the discrepancy between -£T (t) and i1"(t), as 

well as a drop in velocity v(t), is greater than in the previous case. The faulty vehicle 

covers a shorter distance \AB-jammedpropeUer-m 2m- > AB-Heavy jammedpropeua-m 1m) and the drift at 

the end point B is approximately 2.7 cm for FALCON and 0.8 cm for URIS. However, 

the heading y/(t) is constant for all time.

This test case shows that, in the presence of a single partial fault in 2HT and its limited 

usage of 50%, the vehicle is able to perform the straight-line motion with acceptable 

performance. The price paid is a drop in forward velocity for cases when the command

input vector j^T (t) lies outside modified ®m .

(63) Partial fault - "Unknown state"

In contrast to test cases (Bl) and (B2), a faulty state "Unknown state" in 2HT (partial 

fault, s^ = 0.25) was considered in this test case. Since the usage of 2HT is now limited 

to only 25%, &HT and &** shrink even more than in previous cases and the unfeasible 

part of trajectory T^r (r) is even bigger, as indicated in Figure 6.24 (b) (FALCON) and 

Figure 6.24 (b) (URIS). In addition, disagreement between rfW and TWT (f), as well as 

the drop in velocity v(t), is greater than in previous cases. The faulty vehicle covers a 

shorter distance (AS-y^^m^^/fer^ *HT > AS-iM*™,,™-*^) and the drift at the end
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point B is approximately 2.6cm for FALCON and l.lcm for URIS. However, the 

heading y(t) is constant for all time, as in previous cases.

This test case shows that, despite the presence of a single partial fault in 2HT and its 

limited usage of only 25%, the vehicle, equipped with the PDAS, is able to accomplish 

the straight-line motion with acceptable performance. As in previous cases, the price paid 

is a drop in velocity for cases when the command input vector r"r (?) lies outside 

modified *"" .

(B4) Total fault - "Broken propeller"

A faulty state "Broken propeller" in 2HT (total fault, sf =0.00) was considered in this

test case. This is an extreme case, where 2HT is switched off and mission must be 

accomplished with three remaining horizontal thrusters. Recall from section 5.5.2 that

$"T and $//T have the same shape (small parallelepiped inside the virtual control 

space), as indicated in Figure 6.26 (b) (FALCON) and Figure 6.27 (b) (URIS). The 

volume of fJ>"r and <&HT is smaller than in test cases (Bl) - (B3), which yields the

widest shadowed region, i.e. the biggest unfeasible part of trajectory ^(t). In addition,

disagreement between T*r (r) and T^^), as well as a drop in velocity v(*), is largest for 

this test case. The faulty vehicle covers the shortest distance 

^AB-unknownstate-in^T > AS-Broken proper" in* HT) and the drift at the end point B is 

approximately 2.4cm for FALCON and 1.3cm for URIS. Nevertheless, again the 

heading yr(t] is constant for all time.

This test case reveals an important feature of the PDAS; that is, despite the presence of a 

total fault in 2HT, which is switched off, the vehicle, equipped with the PDAS, is able to

continue the straight-line motion and complete the mission with acceptable performance.
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As in previous cases, the unavoidable consequence is drop in velocity for cases when the 

command input vector ^(t) lies outside modified <j>"r .

(B5) Consecutive faults - passing through the pipe

The performance of two different control architectures are compared in this test case for 

the straight-line motion of the vehicle in the presence of consecutive faults in the same 

single thruster. The first architecture, denoted as the "PDAS active", uses the PDAS for 

the thruster fault accommodation. The second architecture, based on the existing control 

software for FALCON and URIS and denoted as the "PDAS not active", does not provide 

method for thruster fault accommodation, and the only available solution in faulty 

situation is to switch off a faulty thruster. The same command input vector y!f(t), 

created using the "From File" Simulink block, was used to drive the vehicle in both cases. 

The mission objective was to move the vehicle from the start point A through the pipe 

along the straight line. Different faulty states in 2HT ("Jammed propeller", "Heavy 

jammed propeller", "Unknown state" and "Broken propeller") were injected during 

simulation at time instances t =5s, 15 s, 25s and 35*, respectively. Figure 6.28 (a)

(FALCON) and Figure 6.29 (a) (URIS) display time diagrams of if (*), **({), uHT (t), 

!i(0. -C^W. ^f ('). v(f) and p(t), and the plan view of the trajectory (xe (t\yE (t)) 

for the first architecture. It can be seen that, despite the presence of consecutive faults in 

2HT, the vehicle keeps a constant heading, with negligible drift from a straight line. The 

unfeasible parts of trajectory v?(t) are denoted as shadowed regions, in which there is a 

drop in the forward velocity of the vehicle. The situation is different for the second 

architecture, as indicated in Figure 6.28 (b) (FALCON) and Figure 6.29 (b) (URIS). In 

particular, disabling of the faulty thruster, without appropriate reconfiguration, introduces
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unbalanced moment components, which cause undesired rotation and the vehicle 

performs circular motion "passing" through the wall of the pipe. In real applications this 

unacceptable behaviour could cause damage and even loss of the vehicle. However, the 

PDAS in the first architecture provides the optimal redistribution of propulsion forces 

among three remaining thrusters and compensates unbalanced moment components, such 

that the faulty vehicle performs pure translational, straight-line motion. 

This test case shows that the performance of the control architecture "PDAS active" for 

the straight-line motion is superior compared to the control architecture 'PDAS not 

active" in the presence of consecutive faults in the same single thruster during the 

mission.

(B6) Consecutive faults - passing through the hole in the rock

As in the previous case, the performance of two different control architectures "PDAS 

active" and "PDAS not active" are compared in this test case for the straight-line motion 

of the vehicle, but this time in the presence of consecutive faults in different thrusters

during the mission. The same command input vector j_d (t), created using the "From 

File" Simulink block, was used to drive the vehicle in both cases. The mission objective 

was to move the vehicle from the start point A through the hole in the rock along the 

straight line. Different faulty states ("Jammed propeller" in 1 HT, "Heavy jammed 

propeller" in 2HT, "Unknown state" in 3HT and "Broken propeller" in 4#T) were 

injected during simulation at time instances t = 5s, 15 s, 25s and 35 s, respectively.

Figure 6.30 (a) (FALCON) and Figure 6.31 (a) (URIS) display time diagrams of r^(t), 

^(t), u^it), Tjh), J^r(t), J?(t), v(t) and p(t),and the plan view of the trajectory

(xE (t\yE (t)} for the architecture "PDAS active". It can be seen that, despite the presence 

of consecutive faults indifferent thrusters, the vehicle keeps the constant heading, with
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negligible drift from a straight line. The unfeasible parts of trajectory r"T (t) are denoted 

as shadowed regions, in which there is a drop in the forward velocity of the vehicle 

compared to fault-free case. The situation is very different for the architecture "PDAS not 

active", as depicted in Figure 6.30 (b) (FALCON) and Figure 6.31 (b) (URIS). 

Unbalanced moment components, introduced by disabling of faulty thrusters without 

reconfiguration, produce undesired rotation and the vehicle performs irregular motion 

"passing" through the wall of the rock. As in the previous case, this behaviour is totally 

unacceptable and could cause damage of the vehicle in real applications. However, the 

PDAS compensates for unbalanced moment components in the first architecture in an 

optimal way, such that the faulty vehicle performs pure translational, straight-line motion. 

One important distinction between X-shaped and cross-shaped thruster configuration can 

be observed from diagrams in Figure 6.30 (a) (FALCON) and Figure 6.31 (a) (URIS). For 

the X-shaped configuration (FALCON) all four horizontal thrusters contribute to the 

straight-line motion, and a fault in any one of them activates reallocation inside the PDAS 

and contraction of OOT in rx direction, leading to the loss of the forward velocity for 

cases when Txd is too high. In contrast, for the cross-shaped configuration (URIS) only 

thrusters 1HT and 2HT are actuated for the straight-line motion, and faults in thrusters 

3HT and 4HT are irrelevant in this case, i.e. the control vector for the straight-line 

motion is invariant to faults in 3HT and 4HT.

This test case demonstrates that the performance of the control architecture "PDAS 

active" for the straight-line motion is superior compared to the control architecture 

"PDAS not active" in the presence of consecutive faults hi different horizontal thrusters 

during the mission.
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Figure 6.19 (A10) Difference between symmetrical and non-symmetrical T -curve (URIS).
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6.4 Real-time application

6.4.1 Introduction

A number of test trials with FALCON were scheduled for period December 2003 - 

January 2004. One part of two-day experiments, performed at the QinetiQ Ocean Basin 

Tank at Haslar in December, was the evaluation of the proposed PDAS and comparison 

of the performance between standard control architecture ("PDAS not active", see test 

case (B5)) and improved control architecture ("PDAS active"). Preliminary results of 

these experiments are presented in this section.

6.4.2 Experiment set-up

In order to test the performance of the PDAS, the standard surface components in the 

distributed control system of FALCON (HCU and main surface unit, Appendix A, page 

A-21) were replaced by the joystick and laptop. The laptop was connected to the control 

network via a RS232-RS485 converter. The joystick was used as the input device to 

generate command input signals (Figure 6.32 (a)). Both control architectures were 

implemented using the control application ATC (Advanced Thruster Control) developed 

in Borland Delphi programming environment (Figure 6.32 (b)), which represents an 

implementation of the PDAS for real-time control of FALCON. The ATC was used as a 

master node to control thruster slave nodes. The HCU controls SPEED, LAT SPEED and 

TURN RATE are implemented in ATC as scaling factors for joystick sensitivity (slider 

controls) fx , fr and fN , respectively. The hybrid approach for control allocation, 

implemented in ATC, enables manual selection of saturation bounds s™ for each 

horizontal thruster 'HT using slider controls. Different faulty situations can be artificially 

generated by changing values of these sliders. Slider values 5™ = 1, 0 < s^ < 1 and 

s™ =0 means fault-free state, partial fault and total fault in thruster 'HT, respectively.
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During the trial, the ATC enables selection of the desired architecture using radio buttons. 

As stated in test case (B5), control architecture "PDAS not active" (based on the existing 

control software for FALCON) does not provide for thruster fault accommodation and the 

only available solution in faulty situation is to switch off a faulty thruster (regardless of 

fault type). In contrast, the control architecture "PDAS active" uses the PDAS to 

accommodate thruster faults. Switching between different architectures is instantaneous, 

enabling direct comparison of their performances during the same test trial. Neutral 

buoyancy was achieved by addition of weighting cells at the mounting points of the 

vehicle.

(a) Joystick as input device. (b) Control application ATC. 

Figure 632 Experiment set-up.

6.4.3 Day one

Since the Inertial Measurement Unit (IMU)5 was not available for the first day of 

experiments, it was decided to test the control allocation part of the PDAS. In the first 

experiment, FALCON was placed in a small tank (Figure 6.33). Different test trials were

5 Inertial Measurement Unit, developed by Nathan Sowerby (research fellow in IMPROVES project), is a 

device used to measure linear and angular velocities of the vehicle in body-fixed frame. See section 6.4.4 

for more information about IMU.
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performed with both architectures (separate and combined motion in four DOF (surge, 

sway, yaw and heave)). The limited tank size imposed reduction of joystick sensitivity, in 

order to prevent damage of the vehicle. The first observation was that FALCON has 

much faster dynamics than the ROV model used in the ROV simulator. This difference in 

dynamics was predicted in Appendix D (see page D-16). However, the response of the 

real vehicle on commanded inputs was qualitatively the same as the response of the 

model in ROV simulator, driven by the same command input signals. Different faulty 

situations were injected on-line, during the test trial. Poor performance was obtained in 

faulty situations in cases when the PDAS was not active, due to imperfect manual 

compensation of moment components, induced by disabling of a faulty thruster. In 

contrast, the control architecture with active PDAS gave superior performance. All three 

DOF in the horizontal plane were fully controllable. Although the manoeuvring space 

was limited due to the tank size, the control of FALCON was as easy as in the fault-free 

case. It is interesting to note that, from the ROV pilot point of view, no change in the 

response of the vehicle was noticeable in faulty situations, despite the limited usage of the 

faulty thruster. The reason for invariant behaviour of the vehicle in fault-free and faulty 

situations is because reduced joystick sensitivity resulted in limitation in the size of the 

desired control vector, such that it lies inside the attainable command set throughout the 

experiment, whereby the PDAS is always able to allocate the exact solution of the control 

allocation problem. In the second experiment, FALCON was driven through the narrow, 

shallow tunnel, which links two parts of the tank (Figure 6.34). A total fault in 2HT was 

artificially generated by setting the slider value s%* to zero. That is, ZHT was disabled 

and removed from the control allocation process and the mission had to be performed 

with only three working horizontal thrusters. This experiment is similar to "passing- 

through-the-pipe" experiments in the ROV simulator (see test case (B4)). After the
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FALCON entered the tunnel, real-time video from on-board camera was used as feedback 

information to control the motion. The experience gained from simulations resulted in 

successful completion of the mission. It should be emphasized that undesired drag effect 

of the umbilical cable was observable during the experiment. This effect was particularly 

noticeable for low-speed motion of the vehicle.

Figure 6.33 Tank trials with FALCON - Day one (the first experiment).

(a) "Faulty" FALCON in small tank. (b) Narrow tunnel.

,c, R*al -,ime video ,,0m on-boa* (d,

Figure 6.34 Tank trials with FALCON - Day one (the second experiment).
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6.4.4 Day two

The IMU, shown in Figure 6.35, was available for the second day of experiments. It was 

fitted on the chassis of the FALCON using waterproof case. From the control point of 

view, the IMU represents a slave node, supervised by a master node (control application 

ATC). Experimental data obtained by the IMU (time responses of surge, sway & heave 

linear accelerations and roll, pitch & yaw rates) were acquired and stored on hard disk for 

post-experiment analysis and identification of FALCON dynamics. It should be pointed 

that development of the IMU is an ongoing project and final versions of routines for data 

processing and interpretation of experimental results are not yet available. This means 

that the IMU diagrams, presented in this section, should not be considered as final 

versions and their accuracy will be improved in future work. Test trials were performed in 

a large tank. The same day SeaEye Marine Ltd. performed test trials with their new 

vehicle COUGAR. Figure 6.36 displays both vehicles in water, next to each other. 

Marker lines at the bottom of the tank were used for path following experiments, as 

explained later in this section. The first experiment of day two was similar to the first 

experiment of day one. A series of tests was performed, in which FALCON was driven in 

four DOF, but this time large tank size did not impose any limits on joystick sensitivity, 

i.e. full range of speed was available. A short description of tests is given in Table 6.8.

Figure 6.35 Inertial Measurement Unit (IMU). 
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Marker lines

Figure 6.36 FALCON and COUGAR in the tank.

Test Description Diagrams

FM1

FM2

FM3

FM4

FM5

FM6

Free motion in 4 DOF, fault-free state in all thrusters, PDAS active

Free motion in 4 DOF, total fault in 2HT (disabled), PDAS not active

Free motion in 4 DOF, total fault in 2HT (disabled), FDAS active

Free motion in 4 DOF, partial fault in 2HT (s2HT = 0.50), FDAS active

Free motion in 4 DOF, partial fault in 2HT (s2HT = 0.20), FDAS active

Free motion in 4 DOF, partial fault in 2HT (s2HT = 0.80), FDAS active

Figure 6.37 (pg. 6-66)

Figure 6.38 (pg. 6-66)

Figure 6.39 (pg. 6-67)

Figure 6.40 (pg. 6-67)

Figure 6.41 (pg. 6-67)

Figure 6.42 (pg. 6-68)

Table 6.8 Description of tests in the first experiment (Day two).

Time diagrams of desired & actual propeller angular velocities and absolute value of 

motor current for individual thrusters are shown in Figure 6.37 - Figure 6.42. In 

accordance with FALCON control protocol, all three variables are represented as an 

integer numbers between -100 and +100. Analysing these diagrams, the following 

features can be observed:

• Quality of signals. In contrast to noisy data, obtained in experiments with URIS 

(see section 5.4.3), adequate signal conditioning and shielding in the case of 

FALCON resulted in high-quality, low-noise data.
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• Effect of neglected thruster control loop dynamics. There is a small delay 

between desired and actual propeller angular velocities, due to dynamics in 

thruster control loops. This delay is unavoidable, since the thruster control loop is 

a dynamic system. The cumulative effect of these delays on global control 

performance is the appearance of delay between the desired and actual behaviour 

of the vehicle. That is, there is a time delay between commanded inputs and 

response of the vehicle. The size of this delay is small and acceptable in most 

ROV applications.

• Steady-state error. A steady-state error is noticeable in time response of actual 

propeller angular velocity. The size of the error is determined by two factors: 

propeller load and velocity controller settings. The steady-state error is 

proportional to propeller load: higher the load, higher the error. Since the propeller 

load depends on the magnitude of a desired propeller angular velocity, similar 

relationship can be derived between error and velocity: higher the velocity, higher 

the error. The propeller load is observable from motor current response: higher the 

load, higher the current. The velocity controller is developed by Seaeye Marine 

Ltd. as a digital PID controller, and adjustable parameters are proportional, 

integral and derivative gains. Actual parameter settings are obtained using 

heuristic methods. Although the current performance of the velocity controller is 

satisfactory for typical ROV applications, the size of steady-state error can be 

reduced using advanced controller designs.

• Nonzero response of actual propeller velocity on zero demand. Figure 6.38 

and Figure 6.39 display time diagrams of desired and actual propeller angular 

velocities for the case of total error in 2#J. Although 2HT was disabled 

(nuTi _ o) ail the time during the experiments FM2 and FM3, inconsistent water
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flow around propellers caused its rotation, resulting in nonzero actual propeller 

velocity (n^ # 0) in some segments, as indicated in Figure 6.38 and Figure 6.39. 

This undesired propeller rotation introduces uncertainty inside critical zone, 

making successful fault detection and isolation difficult to achieve. Similar 

behaviour for zero-velocity case was experienced during test trials with URIS. As 

stated in section 5.4.3, the solution for this problem is the exclusion of zero- 

velocity segments from the training and on-line fault detection phase. 

Limitation of desired propeller angular velocity in faulty situations. In the 

case of partial fault in *HT, the desired angular velocity is bounded between

limits determined by \nf-2 1 = roundflOO Jlsfl) -
1 I max \^ V* •/

Figure 637 Test FMl (free motion in 4 DOF, fault-free state in all thrusters, PDAS active).
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Figure 6.38 Test FM2 (free motion in 4 DOF, total fault in 2HT (disabled), PDAS not active). 

Segments with nf2 = 0 and n 2̂ # 0 are highlighted.
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Figure 6.39 Test FM3 (free motion in 4 DOF, total fault in 2HT (disabled), PDAS active).

Segments with n"Tl =0 and n are highlighted.

Figure 6.40 Test FM4 (free motion in 4 DOF, partial fault in 2HT (s"T = 0.50), PDAS active).

Figure 6.41 Test FM5 (free motion in 4 DOF, partial fault in 2HT (s"T = 0.20), PDAS active).
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na (HT4)
- nfl (VT,)
- - n (HT,)
- - n(HTj)
- - n

n (HT,)
- n(VT,)

Figure 6.42 Test FM6 (free motion in 4 DOF? partial fault in 2HT (s™ = 0.80), PDAS active).

In the second experiment of day two, the path following task6 was performed in different 

faulty conditions. The aim was to evaluate and compare the performance of the standard 

and improved control architectures performing path following tasks in different faulty 

situations. FALCON had to follow the virtual rectangular path, created by marker lines at 

the bottom of the tank (see Figure 6.36). The path following task, performed in the 

clockwise direction, started and ended at the same point (lower left corner of the 

rectangle). A series of tests was performed, each time with different fault state in thruster 

2HT. A short description of these tests is given in Table 6.9.

Test Description Diagrams

PF1

PF2

PF3

PF4

PF5

Path following, fault-free state in all thrusters, PDAS active

Path following, total fault in 2HT (disabled), PDAS not active

Path following, total fault in 2HT (disabled), PDAS active

Path following, partial fault in 2HT (Szm = 0.50), PDAS active

Path following, partial fault in 2HT (82^= 0.20), PDAS active

Figure 6.43 (pg. 6-70)

Figure 6.44 (pg. 6-71)

Figure 6.45 (pg. 6-72)

Figure 6.46 (pg. 6-73)

Figure 6.47 (pg. 6-74)

Table 6.9 Description of tests in the second experiment (Day two).

6 Path following tests with FALCON were performed in open-loop mode, i.e. command signals were 

generated exclusively by the ROV pilot using joystick, without any controHer-in-the-loop. The ROV pilot 

put great effort to perform path following task neutrally, without favouring any control architecture.
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Time diagrams of the IMU measurements (surge, sway & heave linear accelerations and 

roll, pitch & yaw rates), desired & actual propeller angular velocities and heading are 

shown in Figure 6.43 - Figure 6.47. Heading responses are obtained by integration of yaw 

rates. In order to improve readability, responses of motor currents are omitted in these 

diagrams. Analysing these diagrams, the following observations are noticeable:

• Quality of signals. The level of the noise in the IMU measurements is low, due to 

good signal conditioning and shielding inside the IMU.

• Improvements obtained by using the FDAS. Although the reference path was 

the same for each test PF1 - PF5, certain differences are noticeable in the obtained 

time responses. In particular, those obtained in test PF2 (Figure 6.44) are more 

disturbed (i.e. they have richer frequency contents) than in the other tests. The 

reason for this dissimilarity stems from the fact that the test PF2 was performed 

with disabled thruster 2HT and the FDAS was not active, so that the ROV pilot 

had to try to maintain the heading by applying manual compensation for 

unbalanced moment components, induced by switching off thruster *HT. 

However, this is a very difficult task and non perfect compensation led to poor 

tracking performance and an oscillatory character of the yaw response. In contrast, 

test PF3 was performed in a similar way, i.e. with disabled *HT, but this time the 

FDAS was active. The ability of the FDAS to accommodate total fault in ^t^T by 

performing automatic reallocation among remaining operable thrusters resulted in 

a much smoother yaw response, as indicated in Figure 6.45. This demonstrates the 

efficiency of the FDAS and highlights its main advantage compared to the 

existing control architecture: in the case of a fault in a single thruster, the ROV 

pilot will control the vehicle in the same way as in the fault-free case, without 

need to perform any compensation. However, the attainable command set shrinks
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for the case of a fault and velocity saturation bounds are reduced, resulting in a

reduction in ROV velocity. Smooth yaw responses are also obtained in tests PF4 

& PF5, where the usage of 2HT was restricted to 50% and 20% , respectively.
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Figure 6.43 Test PF1 (path following, fault-free state in all thrusters, PDAS active).
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Figure 6.44 Test PF2 (path following, total fault in 2HT (disabled), PDAS not active).
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Figure 6.45 Test PF3 (path following, total fault in 2HT (disabled), PDAS active).
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Figure 6.47 Test PF5 (path following, partial fault in 'HT (s"T = 0.20J, PDAS active).
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6.5 Concluding remarks

This chapter has evaluated the performance of the PDAS and highlighted its key features. 

Using both simulations and real-world tests, the performance was evaluated through a 

series of representative test cases, in order to examine the behaviour of the PDAS in fault- 

free and faulty conditions.

The evaluation of the FDU was conducted using the full set of data acquired during 

experiments with URIS. Despite the poor quality of training data, results show that the 

FDU identifies the new thruster state correctly, in a short time after the change in state, 

without any wrong detection and false alarms. It was not possible to perform a full set of 

tests with faulty thrusters to train the FDU for FALCON. These tests will be performed in 

follow-on work and results will be published at a later date.

Analysing the simulation results and real-world tests, presented in this chapter, the 

following conclusions can be drawn:

• The hybrid approach for control allocation, implemented in the PDAS, allocates 

the exact, feasible solution of the control allocation problem on the entire 

attainable command set. This solution minimises the control energy cost function, 

the most suitable optimisation criteria for underwater applications. In these cases 

the actual behaviour of the vehicle is the same as the desired behaviour, without 

undesirable effects of thruster velocity saturation.

• In cases when the command inputs lies outside the attainable command set, the 

exact, feasible solution does not exists and the hybrid approach provides different 

approximations with different approximation errors. The FPI approximation has 

the smallest magnitude error and the largest direction error. In contrast, the 5 - 

approximation has the largest magnitude error and zero direction error. Situations 

when the command inputs extend over the boundaries of the attainable command

6-75



Chapter 6: Testing and Evaluation of the PDAS

set can be signalised by the PDAS in different ways (graphically or using scalar 

indicators). These situations should be avoided by the ROV pilot, since they lead 

to the uncontrollable state of the vehicle.

• The performance of the ROV control system, equipped with the PDAS, is 

satisfactory for both thruster models (affme and bilinear), although the control 

allocation problem was formulated assuming the affine model. Reduction of the 

thrust, obtained in the case of bilinear thruster model, is acceptable in typical 

underwater applications.

• Undesired effects of propeller torque on motion in the horizontal plane can be 

reduced by careful choice of propeller spin direction: the symmetrical pairs of 

thrusters should have opposite spin direction coefficients.

• Undesired change of heading, caused by propeller torque exerted by a vertical 

thruster, can be eliminated using the "Heading-Keeping" controller.

• The PDAS automatically compensates for non-symmetrical shape of propeller T - 

curves in an optimal way.

• In the presence of a single partial or total fault in a horizontal thruster, the FDAS- 

controlled faulty vehicle is still fully controllable in all three DOF in the 

horizontal plane with very good performance. An unavoidable effect is shrinking 

of the attainable command set and the drop in velocity for cases when the 

command input vector is not attainable.

• The performance of the improved control architecture ("PDAS active") is superior 

compared to the control architecture "PDAS not active" hi the presence of partial 

or total fault in a single horizontal thruster or consecutive faults in different 

horizontal thrusters.
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• The effect of neglected thruster control loop dynamics is the appearance of a small 

delay between desired and actual behaviour of the vehicle, which is acceptable in 

most ROV applications.

6-77



Chapter 7: Conclusions and Further Work

7-1



Chapter 7: Conclusions and Further Work

7.1 Introduction

This chapter reviews and summarises the work described in the thesis, lists and discusses 

the main contributions and proposes suggestions for further work.

7.2 Review of the thesis

Chapter 1 is an introductory chapter, which provides background and motivation for work 

described in the thesis, identifies aims and objectives, lists the main contributions and 

gives an overview of chapter contents.

A literature survey is undertaken in Chapter 2 in order to explore the existing methods for 

fault diagnosis and accommodation of dynamic systems. Previous work on fault diagnosis 

and accommodation for underwater vehicles is discussed in more detail. Assumption of 

zero output of faulty sensor and absence of total solution for partial thruster faults are 

identified as weak points of the existing approaches. Due to similarity between the control 

allocation problem formulation for underwater vehicle and aircraft, recent advances in the 

control allocation techniques for aircraft are described in more detail. These techniques 

were used in Chapter 5 as a foundation to build a novel thruster fault diagnosis and 

accommodation system for overactuated, open-frame underwater vehicles. 

Experimenting with real underwater vehicles is time consuming and expensive. When 

designing advanced control systems, it is desirable to develop a dynamic model of the 

vehicle, which is useful for simulation purposes and investigation of different control 

algorithms. Chapter 3 provides background into modelling and simulation of ROVs. The 

full, non-linear ROV dynamic model in 6 DOF is described in a compact, vectorial form. 

Three different attitude representations (Euler angle attitude representation, Euler 

parameters attitude representation and Modified Rodrigues parameters attitude 

representation) are discussed. Simulation diagrams for all three attitude representations
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are developed, enabling easy simulation of ROV dynamics and kinematics. Two mostly 

used thruster models (affine and bilinear) are described and presented in a vectorial form, 

suitable for simulation purposes. A novel approach was proposed, whereby the affine 

thruster model is transformed into a symmetrical form, enabling easier normalisation and 

visualisation of the control allocation problem. A full thruster model is described, 

including dynamics of the thruster control loop. This model was used as a basis to build a 

realistic model of the propulsion system, which is implemented as a part of the ROV 

simulator.

The geometry of the general control allocation problem is fully exploited in Chapter 4. 

The general formulation of the control allocation problem was used to establish the 

criteria for separation of system control architecture into two independent tasks (control 

law and control allocation), thereby allowing the control allocation to be considered 

separately from the control law. Treating control allocation independently of the control 

law is convenient because actuator constraints can be taken into account and 

reconfiguration can be performed, without having to redesign the control law, providing 

easy adaptation to a particular application. Due to separation principle, the control 

allocation algorithm is the same for ROVs and AUVs. The task of the control allocator in 

both cases is to determine appropriate control settings for individual actuators, which 

produce the desired set of forces and moments. Actuator dynamics and non-monotonic 

nonlinearities are identified as the two most important difficulties for using control 

allocation in real applications. A number of methods for the solution of the general 

control allocation problem were presented, including the pseudoinverse method, fixed- 

point iteration method, direct control allocation method and daisy chain control allocation 

method. The simple control allocation problem, with the two-dimensional virtual control 

space and the three-dimensional true control space, is used as a common example to
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demonstrate main features of each method. Key features and limitations of each method 

are given with clear geometric interpretation. The hybrid approach for control allocation 

is gradually introduced. The pseudoinverse method is a member of a family of 

generalised inverses and is the one that yields minimum control energy. The main 

disadvantage of the pseudoinverse method is its inability to find the exact solution of the 

control allocation problem on the entire attainable command set, i.e. the feasible region 

for pseudoinverse is a subset of attainable command set. In contrast, the fixed-point 

iteration method can find the exact solution on the entire attainable command set. The 

price paid is the necessity to perform iterations at each program step. The number of 

iterations depends on design parameters and choice of initial iteration. The hybrid 

approach for control allocation originates from the integration of positive features of the 

pseudoinverse and fixed-point iteration method: the psudoinverse method is used for 

cases when control inputs lie inside the feasible region for pseudoinverse, and the fixed- 

point iterations method is used otherwise.

The control allocation problem for overactuated, open-frame underwater vehicles was 

defined in Chapter 5, using concepts and principles developed in Chapter 4. The problem 

was defined in normalised form, in order to make it more understandable and easier to 

visualize and solve. The hybrid approach for control allocation, introduced in Chapter 4, 

is extended for the case of the three-dimensional virtual control space and the four- 

dimensional true control space and used as a foundation to build an enhanced control 

allocator, with fault detection and accommodation capabilities. The hybrid approach for 

control allocation is implemented as a two-step process. The pseudoinverse solution is 

found in the first step. Then the feasibility of the solution is examined analysing its 

individual components. If violation of actuator constraints) is detected, the fixed-point 

iteration method is activated in the second step. In this way, the hybrid approach is able to
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allocate the exact solution, optimal in the 12 sense, inside the entire attainable command 

set. This solution minimises a control energy cost function, the most suitable criteria for 

underwater applications. A novel thruster fault detection and accommodation system for 

overactuated open-frame underwater vehicles was presented, which includes two 

subsystems: FAS and FDS. The FAS performs a hybrid approach for control allocation. 

This primary task of control allocation is enhanced with the FDS, able to monitor the state 

of the thrusters and inform the FAS about any malfunctions using the total fault indicator 

vector, carrying the codes of faulty states for each thruster. The FDS is a hybrid, on-line, 

model-free approach, based on the integration of SOM and fuzzy C -means clustering 

methods. In the training phase the FDS uses data obtained during test trial to find SOM 

prototypes for each fault type. In the detection phase the FDS categorises the fault type by 

comparing the position of feature vector relative to these maps. The FAS uses information 

provided by the FDS to accommodate faults by performing an appropriate 

reconfiguration, i.e. to reallocate control energy among operable thrusters. Using the fault 

code table, the FAS penalises the faulty thruster by increasing the corresponding weight 

in the weighting matrix, updating the criteria and restricting the saturation bounds. 

Despite the fact that in some cases it is necessary to perform iterations, the overall fault 

diagnosis and accommodation process is very fast, due to the computational efficiency of 

the PDAS algorithm, where the heaviest numerical calculations are performed off-line. 

This aspect of computational efficiency, combined with the adoption of a matrix 

formulation of the control allocation problem, means that the addition of the PDAS can 

be accomplished without the need to extend the cycle time.

Chapter 6 evaluated the performance of the PDAS and highlighted its key features. Using 

simulations and real-world tests, the performance was evaluated through a series of 

representative test cases, in order to examine the behaviour of the PDAS in fault-free and
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faulty conditions. Evaluation of the FDU is conducted using the full set of data acquired 

during experiments with URIS. Despite the poor quality of training data, results show that 

the FDU identifies the new thruster state correctly in a short time after the change hi state, 

without any wrong detection and false alarms. Simulation results show that the PDAS 

allocates the exact, feasible solution of the control allocation problem on the entire 

attainable command set. Using different indicators and visualisation tools, the PDAS 

informs the ROV pilot about position of actual command inputs relative to attainable 

command set. Using this information, even an inexperienced ROV pilot is able to detect 

the situation when thruster velocity saturation occurs and to correct the command inputs 

such that it becomes attainable. Results also show that the performance of the ROV 

control system, equipped with the PDAS, is satisfactory for both thruster models (affine 

and bilinear), although the control allocation problem was formulated assuming the affine 

model. Correct choice of propeller spin direction, such that the symmetrical pairs of 

thrusters should have opposite spin direction coefficients, reduces undesired effects of 

propeller torque on motion in the horizontal plane. Undesired change of heading, caused 

by propeller torque exerted by a vertical thruster, can be eliminated using the "Heading- 

Keeping" controller. The PDAS automatically compensates for non-symmetrical shape of 

propeller T -curves in an optimal way, making the command input space to appear 

symmetrical from the ROV pilot point of view. Preliminary results of real-world tests 

show that disabling the faulty thruster without appropriate reallocation leads to poor 

tracking performance and oscillatory character of yaw response. However, the PDAS 

provides automatic reallocation in faulty situations, keeping all three DOF in the 

horizontal plane fully controllable and making it easier to control the motion of the faulty 

vehicle and continue the mission. The control allocation problem was formulated and 

solved neglecting dynamics in thruster control loop. Results from real-world application
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show that the effect of neglected thruster control loop dynamics is the appearance of a 

small delay between desired and actual behaviour of the vehicle, which is acceptable in 

most ROV applications.

7.3 Realisation of aims and objectives

This section discusses accomplishments in realisation of the aims and objectives, given in 

section 1.3.

7.3.1 Aims

The thruster fault diagnosis and accommodation system, proposed in Chapter 5 and 

implemented in the ROV simulator (Appendix D), fulfil the following requirements:

• In fault-free case, optimal control allocation is guaranteed for all possible 

command inputs, since the hybrid approach for control allocation finds the exact 

solution on the entire attainable command set. This solution is optimal in the 12 

sense, i.e. it minimises a control energy cost function.

• In faulty situations, the fault diagnosis part of the system immediately detects and 

isolates any fault in a thruster using fault detection units and delivers knowledge 

about faults in the form of a fault indicator vector. The fault accommodation part 

of the system uses this vector to accommodate fault and eventually switch off the 

faulty thruster. At the same time, control reallocation is performed by 

redistribution of control energy among remaining operable thruster, such that the 

mission can be continued with a minimal loss of control performance.

73.2 Objectives

• Explore the existing methods for fault diagnosis and accommodation in 

dynamic systems. An extensive literature survey is undertaken in Chapter 2. This
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chapter provides an overview of traditional and modern approaches to fault 

diagnosis and accommodation in dynamic systems.

• Identify which of these methods are applicable to meet requirements and 

specific implementation issues, defined in the IMPROVES project

Requirements (section 5.1.2) and implementation issues (section 5.1.3) imposed 

certain limits on the choice of available approaches and restricted the designer 

freedom. A hybrid, on-line, model-free approach, based on the integration of 

SOM and fuzzy C -means clustering methods, was chosen to build the fault 

diagnosis part of the system. The fault accommodation part uses the hybrid 

approach for control allocation, which utilizes the best features of the 

pseudoinverse method and fixed-point iterations method.

• Develop module for detection of thruster faults. The fault diagnosis subsystem 

uses fault detection units (section 5.4.3) to monitor the state of thrusters. These 

units are software modules, able to detect and isolate external and internal thruster 

faults.

• Formulate and solve the control allocation problem for fault-free case. The 

control allocation problem for overactuated, open-frame underwater vehicles is 

formulated in section 5.2. The solution of the problem is presented in section 

5.5.2.

• Extend the algorithm to cover faulty situations. Introducing weights in problem 

formulations (section 5.2.5) provides a framework to accommodate thruster faults. 

The faulty thruster is penalised by increasing its weight and restricting the 

constraint bounds.

• Develop the simulation model to test the algorithm. The ROV simulator 

(Appendix D) is developed as Simulink model in the MATLAB environment in
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order to test the FAS algorithm. The model includes the non-linear model of an 

ROV with 6 DOF, propulsion system, hand control unit (HCU) and thruster fault 

detection and accommodation system (PDAS), proposed in Chapter 5. Simulation 

results are presented hi Chapter 6.

• Verify the performance of the algorithm with real-world applications. 

Preliminary results from the real-world application, presented in Chapter 6, 

confirm that the extension of the existing control system with the FAS algorithm 

leads to significant improvements in the global control performance of the vehicle 

in faulty situations.

7.4 Main contributions

This section discusses the main contributions of the work presented in the thesis.

• Development of the on-line fault detector units, able to detect external and 

internal thruster faults. The fault detection units are developed using a new, 

hybrid, on-line, model-free approach, based on the integration of SOM and fuzzy 

C -means clustering methods. In the training phase fault detection units use data 

obtained during test trial to find SOM prototypes for each fault type. In the 

detection phase the FDU algorithm is employed, which categorises the fault types 

by comparing the position of feature vector relative to these maps. Both external 

and internal thruster faults can be detected by FDU. The outputs of the FDUs are 

integrated inside the FDS into the total fault indicator vector, carrying the codes of 

faulty states for each thruster.

• Development of the hybrid approach for control allocation, able to allocate 

optimal solutions of the control allocation problem in fault-free and faulty 

situations. The hybrid approach for control allocation, based on the integration of 

the pseudoinverse and the fixed-point method, is implemented as a two-step
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process in the FAS algorithm. The weighted pseudoinverse solution is found in 

the first step. Then the feasibility of the solution is examined analysing individual 

components of the solution. If violation of actuator constraints) is detected, the 

fixed-point iteration method is activated in the second step, which results in 

guaranteed feasible solution. In this way the hybrid approach is able to allocate the 

exact solution, optimal in the /2 sense, inside the entire attainable command set. 

This solution minimises the control energy cost function, which is the most 

suitable criteria for underwater applications. Formulation of the control allocation 

problem using weighted norms provides an easy way to accommodate thruster 

faults, which is performed by increasing the weight of a faulty thruster and 

restricting the corresponding constraint bounds. Real-world application confirmed 

significant improvements in the manoeuvring capabilities of the faulty vehicle, 

obtained by augmentation of the existing control system with the FAS algorithm. 

• Visualisation of thruster velocity saturation bounds using the feasible region 

concept. Visualisation of thruster velocity saturation bounds, i.e. attainable 

command set, implemented as part of the PDAS, provides insight into constraints 

imposed by thruster configuration. During missions, the ROV pilot generates 

command inputs, which stretch out over the command space in different 

directions. Thruster velocity saturation occurs in some directions easier than in 

other. The position of saturation bounds inside the command space is determined 

by thruster configuration. In order to avoid thruster velocity saturation, command 

inputs should not stretch outside the saturation bounds. Any fault in a thruster 

causes a change in the shape of the attainable command set. The PDAS provides a 

dynamic update of saturation bounds such that the ROV pilot is informed with the 

effects of thruster fault accommodation, incorporated in the new shape of the
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attainable command set. In this way the ROV pilot can easy adapt to newly 

created changes and continue the mission.

• Formulation of the control problem in normalised form. Normalisation of the 

control allocation problem for underwater vehicles makes it more understandable 

and easier to visualize and solve. During normalisation, all physical parameters 

are removed from the control effectiveness matrix and included in limit 

constraints, which are used to scale individual components of control vectors. The 

normalisation process is not restricted to underwater applications and can be 

applied to simplify the control allocation in other fields, such as aerospace 

applications. The normalisation also allows the PDAS algorithm to be easily 

adapted to vehicles with different thruster configurations, i.e. vehicles with 

different number of thrusters with varying orientations and positions.

• Development of a method to compensate for non-symmetrical propeller T - 

curve. Normalisation of the control allocation problem can not be performed for 

the case of a non-symmetrical propeller T -curves. In order to compensate for 

non-symmetry, a new method has been developed, which introduces an auxiliary 

control variable, making the propeller T -curve temporarily symmetrical. In this 

way, the control allocation problem becomes linear and easy to solve using 

existing techniques.

• Design of a simulation model with virtual reality display. The ROV simulator 

can be used as a foundation to build advanced control systems and to compare 

different control strategies in future development of AUVs. With some 

improvements of the user interface, it may also be used for training purpose. A 

virtual reality display raises the level of graphical presentation into the new
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dimension. Real-world situations can be easily simulated, without the need to 

perform time-consuming and expensive trials.

7.5 Further work

The proposed PDAS is a part of the low-level control layer and its modular design 

enables easy integration into existing control laws. Further work will involve the 

following activities:

• A full set of tests with faulty thrusters, similar to those described in section 5.4.3, 

will be repeated with FALCON, and the obtained data will be used to train the 

FDS part of the PDAS.

• Integration of the PDAS into existing control architectures

URIS: The FDS will be built, using the FDU developed in section 

5.4.3. The final version of the PDAS will be integrated with 

the existing control system of URIS.

FALCON: The control application ATC will be updated with the full 

implementation of the PDAS. Then the PDAS will be 

incorporated into Seaeye Marine Ltd. distributed control 

system and tested in a real working environment.

• The global control performance of FALCON will be improved by redesigning the 

velocity controller inside thruster control units using advanced control techniques. 

The main objective will be reduction of a steady-state error, currently present in 

time responses of actual propeller angular velocity.

• Design of a universal controller for an AUV, robust to a partial/total fault in a 

single thruster, will be a real challenge. The main idea is to use information about 

effects of a fault in a thruster (new shape of the attainable command set) to 

alleviate criteria and set points in higher control layers. In this way, AUV will be
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able automatically to accommodate fault, adapt to change in shape of the 

attainable command set and continue the mission in presence of thruster fault. 

• An important part of further work will be the integration of feasible region with 

real-time video presented to the ROV pilot from the on-board camera.
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Appendix A: ROV models - Technical Details 

Introduction

This appendix contains technical details and specifications for two ROVs that are used in 

the ROV simulator to evaluate the performance of the PDAS. These pages are taken 

from:

* http://eia.udg.es/~pere/uris/uris auv.htm (URIS - general description)

* http://www.maxonmotor.cnrn (URIS - thruster control unit)

* http://www.seaeve.com/falcon.html (FALCON)

All information is valid as of 13* October 2003. The material presented herein is not 

modified by the author.

Underwater Robotic Intelligent System (URIS)

Description
The URIS (Underwater Robotic Intelligent System) vehicle is still in the development

process. It was designed with the aim of developing a small, light weight, low cost AUV 1 

to be used as a research testbed in a water tank testing facility. With URIS we expect that 

a single person will be able to run an experiment with the vehicle. Moreover, the vehicle 

is small enough to transport in a conventional car. This vehicle has been conceived as an 

AUV, hence it carries its own source of power, which gives about an hour of autonomy. 

The vehicle can also be powered by an external source using an umbilical cable. This 

option facilitates running long-term experiments. The hull has been designed as a sphere. 

As a result, it offers equal hydrodynamic coefficients in any direction. There have been

1 Throughout the thesis the URIS is considered as an ROV and test trials in July 2002 were performed using 

a joystick as a command input device. However, the research group at University of Girona developed 

control architecture such that the URIS can be treated as an AUV.
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precedents with this shape, such as the ODIN AUV from the University of Hawaii-USA 

or the ROBIN robot from CNRIAN-Italy, as well as the HYBALL from the Heriot-Watt 

University-UK. The hull consists of two stainless steel hemispheres joined with wing nuts 

and bolts. The vehicle's mass has been distributed in a way so that the centre of mass is 

below the buoyancy centre (as in the GARBI vehicle) making the vehicle passively stable 

hi roll and pitch. Propulsion is achieved with 4 thrusters placed equidistant on the 

vehicle's exterior. Due to the stability in pitch and roll, there are four degrees of freedom; 

X, Y, Z and Yaw. The vehicle incorporates a magnetic compass, a pressure sensor, water 

speed sensors, DGPS, water leakage sensors, computer vision and a laser-based 3D 

computer vision system (still in development). An on board Pentium PC 104 is in charge 

of the control of the vehicle's sub-systems. During the development, the optional 

umbilical cable is used to connect the on board computer to the surface computer where 

the development environment (Tornado/VxWorks) resides. The sphere radius is about 35 

cm and the weight is approximately 35 kg. 

Features

Type

D.O.F.

Stability

Propulsion

Energy

Max. depth

Sensors

Autonomous Underwater Vehicle (AUV)

4 (x,y,z,Yaw)

Passively stable in Roll and Pitch

4 thrusters (20W x 15V DC motor + dynamo)

4 packages of NiCd batteries (50 W x 12V)

30 meters

Magnetic compass (Yaw) 
Pressure sensor (z) 
Vision system (RGB+laser) 
Down-looking camera 
Speed sensor 
DGPS 
Water and battery charge detection
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Pictures

Original thruster configuration of URIS. 
with two horizontal and two vertical 
thrusters.

URIS in the water.

Model of URIS in CAD software. Internal connections.

Components of thruster control loop
Thruster control loop for URIS consists of the following components:

• DC motor Maxon RE 25, 025 mm, Graphite Brushes, 20 Watt (Order Number: 

118750)

• DC-Tacho 022 mm, 0.52 V (Order Number: 118909)

• Planetary Gearhead GP 32A, 032 mm, 0.75 - 4.5 Nm (Order Number 114467)

• Thruster control unit 4-Q-DC Servoamplifier ADS 50/5 (Order number: 145391) 

Technical specifications of the thruster control unit are given in the following.
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maxon motor control 4-Q-DC Servoamplifier ADS 50/5 
_____________ ______Order number 145391 
Operating instructions June 2002 edition

The ADS 50/5 is a powerful servoamplifier for driving 
permanent magnet DC motors up to 250 Watts. 
Four modes can be selected by DIP switches on the 
board:
• Speed control using tacho signals
• Speed control using encoder signals
• IxR compensated speed control
• Torque or current control
The ADS 50/5 is protected against excess current, 
excess temperature and short circuit on the motor 
winding. With the FET power transistors incorporated in 
the servoamplifier, an efficiency of up to 95 % is 
achieved. A built in motor choke combined with the high 
PWM frequency of 50 kHz allows the connection of 
motors with a very low inductivity. In most cases an 
external choke can be omitted.
Thanks to the wide input power supply range of 12 - 50 
VDC, the ADS 50/5 is very versatile and can be used 
with various power supplies. The aluminium housing 
makes installation simple, with terminal markings for 
easy connection.
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maxon motor
^Q-p^Servoamplifier ADS 50/5______________________________Operating Instructions

1 Safety Instructions

Skilled Personnel
Installation and starting of the equipment shall only be performed by experienced, 
skilled personnel.

Statutory Regulations
The user must ensure that the servoamplifier and the components belonging to it 
are assembled and connected according to local statutory regulations.

Load Disconnected
For primary operation the motor should be free running, i.e. with the load discon­ 
nected.

Additional Safety Equipment
An electronic apparatus is not fail-safe in principle. Machines and apparatus must 
there-fore be fitted with independent monitoring and safety equipment. If the 
equipment breaks down, if it is operated incorrectly, if the control unit breaks down 
or if the cables break, etc., it must be ensured that the drive or the complete appa­ 
ratus is kept in a safe operating mode.

Repairs
Repairs may be made by authorised personnel only or by the manufacturer. It is 
dangerous for the user to open the unit or make repairs to it.

Danger
Do ensure that during the installation of the ADS 50/5 no apparatus is connected to 
the electrical supply. After switching on, do not touch any live parts.

Max. Supply Voltage
Make sure that the supply voltage is between 12 and 50 VDC. Voltages higher 
than 53 VDC or of wrong polarity will destroy the unit.

Short circuit and earth fault
The ADS 50/5 amplifier is not protected against winding short circuits against 
ground safety earth or Gnd!

Motor choke
The built in motor choke allows operation with almost all maxon DC motors with an 
output power higher than 10 Watt. For a few exeptions (A-max 026, 11 W as well 
as RE 025 and RE 026 with terminal inductance lower than 350 nH) an extra in­ 
ductance (choke) of at least 200 nH is necessary.

Electrostatic Sensitive Device (ESD)

_ June 2002 edition/subject to change maxon motor control
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2.2 Inputs

2.3 Outputs

2 Performance Data

2.1 Electrical data
Supply voltage Vcc (Ripple < 5%)................................................................. 12 - 50 VDC
Max. output voltage .............................................................................................0.9 • V^,
Max. output currentimax .................................."...!!.!!!."!!"!!"!"""!!!!"!!"!!'.!'.!!..".'.. .......... 10 A
Continuous output current !,„,......................................................................................5 A
Switching frequency..............................................................................................50 kHz
Efficiency..................................................................................................................95 %
Band width current controller................................................................................2.5 kHz
Built-in motor choke...................................................................................... 160 nH/5 A

Set value.................................................................................-10...+10 V (R, = 20kn)
Enable............................................,...................................+4 ... + 50 VDC (R, = 15 kn)
Input voltage DC tacho ,,Tacho Input"..............min. 2 VDC, max. 50 VDC (R( = 14 kn)
Encoder signals ..Channel A, A\, B, BV .....................................max. 100 kHz, TTL level

Current monitor ..Monitor I", short-circuit protected ...........10 ...+10 VDC (R0 = 10 kn)
Speed monitor ..Monitor n", short-circuit protected...........-10 ...+10 VDC (R0 = 10 kn)
Status reading ..READY"
Open collector .......................................................................max. 30 VDC (IL < 20 mA)

2.4 Voltage outputs
Aux. voltage, short-circuit protected .............................+12 VDC, -12 VDC, max. 12 mA
Encoder supply voltage..................................................................+5 VDC, max. 80 mA

2.5 Trim potentiometers
IxR compensation 
Offset

g"ain

2.6 LED indicator
2 coloured LED.................................................................................... READY / ERROR
green = ok, red = error

2.7 Ambient temperature- / Humidity range
Operating.............................................-...—.—————-——-...........-10... +45°C
Storage......................-.........-.....-......--..-..—————————-——-40... +85°C
Non condensating.....................———————————————.......................20 ... 80 %

2.8 Mechanical data
Weight.....................................---•..•••••••••-••••-"•••--.............................—ca. 360 g
Dimensions.......................................———————-.——.see dimension drawing
Mounting plate............——...———..............——-.....-.--.——.——.. for M4 screws

2.9 Terminal
PCB-clamps............—............................................. Power (5 poles), Signal (12 poles)

pjten . ...................................................................................3.81 mm
suitable for wire cross section........................0.14 -1 mm2 multiple-stranded wire or

........................................—...................——0.14-1.5 mm single wire

for flat cable, pitch 1.27 mm, AWG 28
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3 Minimum External Wiring for Different Modes of Operation

Power 
Supply

12-50VDC

©0=,

€3,t'
»»S 

> 5 - *

L-=I latatatfm

.
M

HI

n.c. 

CHANNEL 
CHANNEL •5WBOm

0

Ground Safty Earth

Power GND

U
Enable

10ki!
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4 Operating Instructions
4.1 Determine power supply requirements

You may make use of any available power supply, as long as it meets the 
minimal requirements spelled out below.
During set up and adjustment phases, we recommend separating the motor 
mechanically from the machine to prevent damage due to uncontrolled motion.
Power supply requirements
Output voltage V^ min. 12 VDC; max. 50 VDC ;;
Ripple < 5 %
Output current depending on load, continuous 5 A

(short-time 10 A)

The required voltage can be calculated as follows: 
Known values:
• Operating torque MB [mNm]
• Operating speed nB [rpm]
• Nominal motor voltage UN [Volt]
• Motor no-load speed at U N , n0 [rpm]
• Speed/torque gradient of the motor An/AM [rpm/mNm"1] 
Sought values:
• Supply voltage Vcc [Volt] 
Solution:

CC ™" " ' a
An M-

n0 \ - AM °J 0.9
Choose a power supply capable of supplying this calculated voltage under load. 
The formula takes into account a max. PWM cycle of 90 % and a 2 volt max. 
voltage drop.

Consider:
The power supply must be able to buffer the back-fed energy from brake opera­ 
tion e.g. in a condenser. With electronically stabilized power supply units it is to 
ensure, that the overcurrent protection responds in no operating condition.

4.2 Function of the potentiometers
rr 8 | 9i S I J
^- (N CO ^t 
0.0.0.0.

^l_)luD D a a n Y[|D|Q|o|D|a|o|n|n|np!n[o| !• HJ° c^ HHISIgllgjc1UP ' • ' • """•"'" -••••• - •" - •" - lu,.

Potentiometer

P1

P2

P3

P4

P5

IxR

Offset

"max

max

gain

Function

IxR compensation

Adjustment n = 0 
at set value 0 V

max. speed 
at 10 V set value

current limit

amplification

Turn 
left C)

weak 
compensation

motor turns 
CCW
speed 
slower
lower 

min. 0.5 A
lower

o the 
right (^

strong 
compensation

motor turns 
CW

speed 
faster
higher 

max. 1 0 A
higher
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4.3 Adjustment of the Potentiometers 

4.3.1 Pre-adjustment
With the pre-adjustment, the potentiometers are set in a preferred position. 
ADS units in original packing are already pre-adjusted.

P1 P2 P3 P4 P5

-TTT TTT VV! TTT

Pre-adjustment of potentiometers
P1
P2
P3
P4
P5

IxR

Offset

nmax

max

gain

0%

50%

50%

50%

10%

4.3.2 Adjustment
Encoder mode

DC-Tacho mode
IxR compensation

Current controller mode

6 maxon motor control

1. Adjust set value to maximum (e.g. 10 V) 
so far that the required speed is achieved.

2. Set potentiometer P4 !,„.„ at the limiting value desired. 
Maximum current in the 0 ... 10 A range can be adjusted in linear fashion 
with potentiometer P4.
Important The limiting value l max should be below the max. continuous 
current as shown on the motor data sheet and may not exceed 5 A con­ 
tinuously.

3. Increase potentiometer P5 gain slowly until the amplification is set large' 
enough.
Caution: If the motor vibrates or becomes loud, the amplification is ad­ 
justed too high.

4. Adjust set value to 0 V, e.g. by short circuiting the set value. Then set the
motor speed to 0 rpm with the potentiometer P2 Offset. 

In addition, only in the case of IxR compensation:
5. Slowly increase potentiometer P1 IxR until the compensation is set large 

enough so that in the case of high motor load the motor speed remains 
the same or decreases only slightly.
Caution: If the motor vibrates or becomes loud, the amplification is ad- 

§ justed too high.

1. Set potentiometer P4 lra, at the limiting value desired. 
Maximum current in the 0 ... 10 A range can be adjusted in linear fashion 
with potentiometer P4.
Important The limiting value l max should be below the max. continuous 
current as shown in the motor data sheet and may not exceed 5 A con­ 
tinuously.

Motel
A set value in the -10 ... +10 V range is equal to a current range of approx.
+10...-10 A

Note 2
Configured as a current controller, P1, P2, P3 and P5 are not activated.____
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5 Functions

5.1 Inputs 

5.1.1 Set value
The set value input is wired as a differential amplifier.

Input voltage range 
Input circuit 
Input resistance 
Positive set value

Negative set value

-10... +10 V
differential
20 kft (differential)
(+ Set Value) > (- Set Value)
negative motor voltage or current
motor shaft turns CCW
(+ Set Value) < (- Set Value) 
positive motor voltage or current 
motor shaft turns CW

5.1.2 Enable
If a voltage is given at "Enable", the servoamplifier switches the motor voltage to 
the winding connections. If the "Enable" input is not switched on or is connected 
to the Gnd, the power stage will be highly resistant and will be disabled. 
The "Enable" input is short-circuit protected.

Enable Minimum input voltage 
Maximum input voltage 
Input resistance 
Switching time

Disable Minimum input voltage 
Maximum input voltage 
Input resistance 
Switching time

+ 4.0 VDC
+ 50 VDC
15k£2
typ 500 |is (by 5 V)

OVDC
+ 2.5 VDC
15 kn
typ 100 us (by 0V)

5.1.3 DCTacho

Minimum input voltage 
Maximum input voltage 
Input resistance

2.0V 
50V 
14 kQ

Speed control range:
The speed range is set using Potentiometer P3 n^ (max. speed at maximum
set value).
For full speed control with ± 10 V, the tacho input voltage range must be at least
±2V.

Example for DC-Tacho with 0.52 V /1000 rpm:
2.0 V tacho voltage is equivalent to a speed of approx. 3850 rpm. If the full set 
value range has been used, the lowest adjustable speed with the nmax potenti­ 
ometer is 3850 rpm.
Lower speed ranges can be reached through a reduced set value range or by 
using a DC tacho with a higher output voltage, such as 5 V /1000 rpm.
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5.1.4 Encoder
Encoder supply voltage 
Maximum encoder frequency

Voltage value • -

+ 5 VDC max. 80 mA
DIP - Switch 5 ON: 10kHz
DIP - Switch 5 OFF: 100kHz
TTL
low max. 0.8 V
high min. 2.0 V

It is strongly recommended that the encoder be used with a built-in line driver. 
If the encoder is used without a line driver (without ChA\ and ChB\), speed 
breakdowns and max. speed limits must be expected because of the slower 
switching slope.

The servoamplifier does not need any home impulse I and IV

Male header (front view)

Pin configuration at "Encoder" input:

1 n.c. Not connected ,
2 +5 V +5 VDC max. 80 mA

I 3 Gnd Ground .,,,.v, lis|
4 n.c. Not connected

f 5 A\ Inverted Channel A
6 A Channel A

j 7 B\ Inverted Channel B i
8 B Channel B

*£' 9 n.c. Not connected -... i^^.:^;^=i^.~^^t;i;^i\.i..::»G§
10 n.c. Not connected

This pin configuration is compatible with the flat cable plugs in Encoder HEDL 
55xx (with Linedriver) and the MR encoders with line driver, type ML and L.

8 maxon motor control
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5.2 Outputs

5.2.1 Current monitor ..Monitor I"
The servoamplifier makes a current actual value available for monitoring pur­ 
poses. The signal is proportional to the motor current. 
The ..Monitor I" output is short-circuit protected.
Output voltage range 
Output resistance 
Gradient
positive voltage on current monitor
output
negative voltage on current monitor
output

-10...+10VDC 
10 kQ
approx. 0.8 V/A
corresponds to a negative motor cur­ 
rent
corresponds to a positive motor cur­ 
rent

5.2.2 Speed monitor ..Monitor n"
The speed monitor is primarily intended for the qualitative estimation of the dy­ 
namics. The absolute speed is determined by the properties of the speed sen­ 
sors and by the setting of the n^ potentiometer. The output voltage of the 
speed monitor is proportional to the number of revolutions. The output voltage 
of the speed monitor is 10 V when the maximum number of revolutions set by 
the nmax potentiometer has been reached. 
The "Monitor n" output is short-circuit protected.

Output voltage range 
Output resistance

-10...+10VDC 
10 kQ

Example: -10V corresponding speed -nmax (CCW)
0 V corresponding speed 0 rpm

+10V corresponding speed +nmax (CW)

5.2.3 Status reading „ Ready"
The "Ready" signal can be used to report the state of operational readiness or a 
fault condition on a master control unit. The »Open Collector" output is, in nor­ 
mal cases, i.e., no faults, switched to Gnd. In the case of a fault with excess 
temperature or excess current, the output transistor is not conducting (high re­ 
sistance).

max. 30VO-—O-—O

An external additional voltage is required:
Input voltage range 
Load current

max. 30 VDC 
<20mA

The fault condition is stored. In order to reset the fault condition, the servoam­ 
plifier must be re-released (Enable). If the cause of the fault situation cannot be 
removed, the output transistor will immediately change to the not conducting 
state again.

June 2002 edition / subject to change
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6 Additional Possible Adjustments
Potentiometer

P6

P7

P8

V

U

com

Function

speed gain

current gain

continuous current limit

Pos 

left C)

low

low

lower

tion 
right (J>

high

high

higher

6.1 Adjustments potentiometer P6 ngaln and potentiometer P7 lgaln
In most applications, regulation setting is completely satisfactory using potentio­ 
meters P1 to P5. In special cases the transient response can be optimized by 
setting the P6 "speed regulation gain" potentiometer. The P7 "current regulator 
gain" potentiometer can, in addition, be adapted to the dynamics of the current 
regulator.
It is recommend that the success of changes to the settings of P6 n^ and P7 
I in be checked by measuring the transient response with an oscilloscope at the 
"Monitor n" and "Monitor I" outputs.

Pre-adjustment P6 n^n = 25 % and P7 l^ = 50 %.
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6.2 Adjustments potentiometer P8 and current limit mode DIP-Switeh 6
It is standard that a maximum current limiter is activated (DIP switch 6 OFF). In
this way the motor current is limited to the value set on potentiometer P4 l max
(0.5... 10 A).
If DIP switch 6 is turned to ON, a cyclical current limiter is also activated. This
current limiter method makes a certain level of motor protection against thermal
overload possible.
For 0.1 seconds the motor current is limited to the value set on potentiometer
P4 l ma, (0.5 ... 10 A) and then for 0.9 seconds current is limited to the value set
on potentiometer P8 !„„, (0.5 ... 10 A). After one second the cycle will repeat it­
self.

Pre-adjustment P8 !,„„, = 50%.
DIP-Switch 6 ON t

I
j 

•'•max

Icon,

cyclical current limiter active 

* P4 U

[P8U,

0.1 s 1s t

DIP-Switch 6 OFF i
maximum current limit active

I

U f P4 Imax

*'

6.3 Maximal encoder frequency DiP-Switch 5
DIP switch 5 permits selection of the maximum encoder input frequency. 
A max. encoder frequency of 100 kHz is standard.

DIP-Switch 5 ON t
Max. Input frequency is 10 kHz

Encoder pulse 
per turn

16
32
64

maximum 
motor speed
37 500 rpm
1 8 750 rpm

9 375 rpm

DIP-Switch 5 OFF 4
Max. Input frequency is 100 kHz
Encoder pulse 

per turn
100
500

1000

maximum 
motor speed
60 000 rpm
12000 rpm

6 000 rpm

Note:
To achieve good control characteristics, encoders with low impulse counts per
turn should be run with the DIP switch 5 ON t.
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7 Operating Status Display
A two coloured red/green LED shows the operating mode. 

7.1 No LED

Reason:
• No supply voltage „,,..,.,„..
• Fuse fault 

|» Wrong polarity of supply voltage

7.2 LED shines green

7.3 LED shines red

• Supply voltage applied
• No error status (overheating or overcurrent)

• If the power stage temperature exceeds a limit of approx. 75°C, the 
power stage is switches off (Disable-status). 
The LED shows red.

• If a motor current of more than approx. +/- 12.5 A is detected at the cur­ 
rent actual value, the power stage will be switched off (disable status). 
The LED shows red.

The fault condition is stored. In order to reset the fault condition, the servoam- 
plifier must be re-released (Enable). If the cause of the fault condition cannot be 
eliminated, the error output will be disabled again immediately.

Reason:
• High ambient temperature
• max. continuous current > 5 A 

i"» bad convection
• Short circuit on the motor winding

12 maxon motor control June 2002 edition / subject to change



maxon motor
Operating Instructions 4-Q-DC Servoamplifier ADS 50/5

8 Error Handling

Defect Possible source of defect
Supply voltage <12 VDC 
Enable not activated 
Set value is 0 V 
Current limit too low 
Wrong operational mode 
Bad contacts 
Wrong wiring

Measures
Shaft does not rotate check power plug pin 4 

check signal plug pin 3 
check signal plug pin 1 and pin 2 
check adjustment pot. P4 l max 
check DIP switch settings 
check wiring 
check wiring

Speed is not controlled Encoder mode: encoder signals 
DC-Tacho mode: tacho signals 
IxR mode: compensation wrong

check plug encoder
check plug signal pin 5 and 6 (polarity)
check adjustment pot. P1

9 EMC-compliant Installation

HF blocking
HF current blocking generally improves resistance to interference compared to 
external interference couplings by means of a ferrite toroidal core in a line 
(power or signal line).

Shield earthing
The earth impedance must have the lowest possible resistance.

Connecting cable
Power and signal lines must generally be installed as screened lines on a low- 
coupling basis and without looping.

"Power" terminal clamps
A screened cable should be used to minimise noise emissions. The screen 
must be connected to the amplifier side and also coupled with the motor on the 
motor side, via the plug casing wherever possible.

"Signal" terminal clamps
Signal lines for sensitive analogue signals must also be screened. The signal 
lines' screen should be earthed on one side, the amplifier's side.

In practical terms, only the complete unit, comprising all individual com­ 
ponents (motor, amplifier, power supply unit, EMC filter, cabling etc) can 
be subjected to an EMC test in order to ensure noise-free and 
CE-approved operation.
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10 Block Diagram
(H2VOUT 1-12V OUT

Vco 12-50VDC 

Power Grid

Motor

-Motor

Monitor I

11 Dimension Drawing
Dimensions in [mm]

2 -Motor 
3 Ground Sateiy 6artfi 
4 »\fcc 12-50 VDC 
5 Power Ond

• LED green - ok / red - fault

1 +Setwlue 
2 -Set value 
3 Enable 
4 Qnd 
5 *Tacho Input 
6 -Tacho Input 
7 htonilor n
8 Monitor I 
9 Haady 

10 *t2V/12mAOUT 
11 -12V/12mAOUT 
12 Gnd

10 n.c. 9 nc 
S CHANNELS 7 CHANNEL B\ 
6 CHANNEL A 5 CHANNEL A\ 
4 n.c. 3 Gnd 
2 +5V/80mA 1 nc.

Power

Signal

Encoder
it R Tachp Encoder Current

76
103
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Appendix A: ROV models - Technical Details

FALCON

Seaeye FALCON Features:

• 300 metre depth rating, 16 kilo payload,

• Magnetically coupled brushless DC thrusters with velocity feedback loop,

• 4 Vectored and 1 vertical thruster,

• 50 kgf thrust with 1:1 power to weight ratio,

• Distributed intelligence control system,

• Integral system diagnostics,

• High resolution colour camera on 180° Tilt Platform,

• Variable intensity 150 watts of lighting,

• Auto heading, depth, compass and rate gyro,

• Portable surface control system with video overlay and daylight readable display,

• Low drag umbilical,

• Single phase A/C power input - universal 100-270 VAC at 2.5 kw.

Introduction
Since 1986, Seaeye Marine's focus has been to supply the most powerful and reliable

electric ROVs for operations in the challenging environment of the international offshore
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oil and gas industry. Today, Seaeye has the widest range of electric powered systems 

operating worldwide and the largest share of this demanding market. 

Seaeye FALCON is the first ROV designed and built by Seaeye Marine to meet the 

operational requirements of coastal and inshore operators. In developing this system the 

same criteria of performance, reliability and ease of operation were set, but with the 

added challenge of creating a system that was to be portable and affordable.

Seaeye FALCON & its Surface Units
The Seaeye FALCON incorporates many of the features that have proved so successful in

other Seaeye ROVs but with a number of technical innovations never before seen in a 

lower cost ROV. The Seaeye FALCON sets a new standard for inshore and coastal 

operations to 300 metres depth. 

The vehicle

Vehicle Specifications

Maximum Working Depth:

Length:

Height:

Width:

Launch Weight:

Thrust Forward:

Thrust Lateral:

Thrust Vertical:

Payload:

300 msw

1000 mm

500 mm

600 mm

50kg or 62kg with additional buoyancy module fitted

50kgf

28kgf

13kgf

4kg or 16kg with additional buoyancy module fitted

Propulsion
All Seaeye ROVs feature brushless DC thrusters, which, apart from having the greatest

power density, have drive electronics with velocity feedback for precise and rapid thrust 

control. These thrusters are interfaced to a fast PID control system along with a solid-state 

rate gyro for enhanced azimuth stability, a feature that automatically prevents overshoot
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on a change of heading. These essential building blocks enable Seaeye Marine to provide 

superior control and response from their powerful ROVs, setting them apart from the 

competition. The innovation for Seaeye FALCON was the development of a Magnetically 

Coupled brushless DC Thruster unit (MCT1) capable of resisting higher torque loads than 

competing units. Seaeye FALCON is powered by 5 Seaeye Magnetically Coupled 

Thruster units (MCT1) each capable of achieving 13 kgf thrust at 320W or a combined 

forward thrust (bollard pull) of 50 kgf. For an ROV weighing only 50 kilos this represents 

an impressive 1:1 power to weight ratio. These thrusters run cool without being oil filled 

and having no moving shaft seals, are low maintenance, extremely reliable and ideal for 

use in sensitive areas such as fisheries and on reefs. Thruster vector angles can be 

changed by the operator to reconfigure the vehicle to best suit the particular mission 

requirements.

MO 

300

,-. *>

Jaoo
I"
o- tdO 

SO

MCT1 Thruster:- Thrust vs. Power

< s 7>
ft s

I

> S
f*\

** f
S

^
1*

~f* t*s
H
-
-j

In

Y^S
r-

o — , — , — . — . — . — . — , — . — ̂
1.38 2.39 4.08 5.37 «.24 7.2S 7.98 8.90 8.68 10.60 11.0$ 

THRUST Kgf

s*•

11.83 13.10

MCT1 Thruster Performance

Thruster Configuration

4 Vectored Horizontal Thrusters

1 Vertical Thruster
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Control System

The FALCON is the first Seaeye ROV to enter production with a distributed intelligence 

control system. This is a multi-drop network which allows up to 128 devices to be 

connected together on a single RS485 serial network. Each device connected to the 

network, be it a thruster, light, compass or a future option, contains a microprocessor and 

interface electronics and is called a 'node'. These 'nodes' are controlled by a master 

processor in the Surface Unit and are fully isolated to maximise system reliability. Each 

node is connected to the Network's Star Point at the ROV junction box. The Star Point is 

a printed circuit board that provides each node with its own fused power supply and 

telemetry. This modular approach eliminates the need for a complex central electronics 

pod and significantly reduces the number of subsea connectors used. The result is a very 

flexible modern and simplified system architecture designed to improve reliability and 

ease of maintenance.

Control System Diagnostics
A software routine automatically checks each node when the system is powered up with

alarms provided on the video overlay to alert the operator. Local diagnostics are also 

provided for each node in the Junction Box. A test button is provided with colour coded 

LEDs that confirm green if the fuse is intact or red if it is blown on a particular node. A 

further LED indicates the presence of telemetry to the node.

The ROV Junction Box
The one atmosphere junction box contains the Network Star Point and the video line- 

driver. The line driver allows quick and easy 'gain' adjustments to be made if different 

umbilical lengths are to be used. A standard bulkhead connector is used to connect each 

node to the Network Star Point at the junction box.
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Standard Surface 
Equipment

Monitor SVGA
Daplayng Sonar 

(Optional)

Sonar Proceator
(Optional)

CPUWtctooRx

Power Supply UnttMIM

s mm
Ttwutt
Port A

i

m Standard Vehicle 
"| Configuration
ft [

Sonar
(Optional)

Junction Box PCS

Sonar

DC. '^ 50VDC

Telemetry

Aux
Video

!•

— .1,. ......

Thrtnter
StbdAft

il*wK« •M**

Compass Gyro

it
Depth

Thnntor]
PortFwdl

UffM
Port

_

Thnwter ,— TW Vertical I

——— ——— Camera I

j Srod

Thnwttr
StbdFwd

FALCON control architecture

Navigation System & Auto Functions
Seaeye FALCON's navigation sensors and aids are housed in a single hardened

aluminium pod. A compass is provided for heading information and a solid state rate gyro 

for auto heading control. A depth sensor provides depth information in feet or metres on 

the video overlay as well as control of auto depth.
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Specification

Compass Accuracy:

Depth Sensor Accuracy:

Gyro:

Surface Update Rate:

±2°

±0.5% of FSD

0.1 °/s 

<40mS

Surface equipment
Power Requirements
Single phase "Universal Input" of between 100VAC - 270VAC at 2.5kw (compatible with

generators fitted with auto voltage regulation).

Standard Surface Unit
The FALCON'S power supply unit, processors and video systems are rack mountable and

supplied in portable enclosures. The power supply unit provides a galvanically isolated 

500VDC output protected by a L.I.M. All equipment is fitted into a transit case complete 

with handles and heavy splash-proof covers.
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Standard Hand Control Unit

FALCON'S Standard Hand Control Unit (HCU) is formed within a rugged case and

contains all the ergonomically designed vehicle controls.

Seaeye FALCON hand controller & 5 metre lead

Hand Control Unit specifications

Height:

Width:

Depth:

Weight:

180mm

280mm

120mm

0.5kg

Vehicle Controls

The following Seaeye FALCON controls are provided:

• Single 3 axis joystick for horizontal vehicle control,

• Rotary control for vertical thruster power UP or DOWN,

• Rotary control for lights intensity,

• Auto pilot functions for both heading & depth,

• Vehicle power switches,

• Auxiliary vehicle controls (including manipulator).
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Appendix B: Some Results from Optimal Control Theory

Some results from optimal control theory are presented in this appendix. The material 

presented herein is mostly used in Chapter 4 and Chapter 5.

Definition B.I (lp norm)

The lp norm of a vector u e 9?" is defined as

For p = l,2,oo the following norms are obtained:

(B.2)

(B.3)

I (B.4)

Definition B.2 (Weighted sphere)

The weighted sphere 5w (u0,r)p with centre u0 and radius r is set of vectors ue 9tm for 

which |W(u -un | < r, where W is a positive definite weighting matrix. If W = Im , the 

sphere J,(u0 ,r)p =5(u0 ,r)p is called a standard sphere.

Definition B.3 (Range and Nullspace)

Let L: X —» Y be a linear operator. The range space ^.(l,) is defined as the set of values 

in Y that are reached from X by application of L. That is, 3(,(L) = {y = Lx:xe.X}. 

The nullspace 9f(L) is defined as the set of values in X that are transformed to 0 in Y 

by L. That is, w(L) = {\e X:L\ = 0}.
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Lema B.I (Pseudoinverse)

The problem

subject to Bu = v 

where v(r)e SR*, u(f)e 9T, m>k and rank(B) = k, has the unique solution

u = B+v (B.5) 

w/zere

is the pseudoinverse of B. The operator + is called the pseudoinverse operator. 

Proof: The Lagrangian of this optimisation problem is defined as

(B.7)

where X denotes the Lagrange multipliers. Differentiating the Lagrangian L with respect 

to u yields

— = u-BrX (B.8) 
du

= BrX (B.9) 
8u

v = Bu = BBT X (BIO) 

Since rankfo) - k , matrix BBr is non-singular and the optimal solution for the Lagrange 

multipliers is

Finally, the optimal solution of the given optimisation problem is
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Lema B.2 (Weighted pseudoinverse)

The problem

minllWull
u " "2

subject to Bu = v 

where W is a positive definite matrix, has the unique solution

u = B^v (B.13)

where the weighted pseudoinverse B^ is defined by

B; = W-'(BW-')" = Vr'B^BW-'B^' (B.14)

Proof: Substitution e = Wu leads to u = W~'e and the equivalent problem can be 

defined as

muin Hz
subject to B(W-JC)= v «• (BW'Je = v 

Now, the solution can be found using Lema B.I:

e - (BVT1 )* v => u = W-1 ( 

Lema B .3 (Pseudoinverse - General case) 

The problem

minin Iw(u-u

subject to Bu = v 

where W is a positive definite matrix, has a solution (Harkegard, 2003)

where

F-I-GB
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Proof: Substituting e = w(u -u J yields u = up + W~'e and the equivalent problem can 

be defined as

muin ¥1
subject to 6(11, + We) = v <=> (fiW"1 )e = v - Bu,, 

Now, the solution can be found using Lema B.I:

+ Gv
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Appendix C: Some Results from 3D Geometry

Introduction

In this appendix, some results from the 3D geometry are presented. The material, taken 

from the Internet web site (http://astronomv.swin.edu.au/~pbourke/geometry), is used in 

Chapter 4 (for geometric interpretation of the control allocation problem) and Chapter 5 

(for visualisation of the feasible region).

The intersection of two planes

Given the two planes n\ and tf2

*,: Nf-p = rf, (CD

tf2 : N£-p = <*2 (C.2)

where Nj and N2 are normal vectors on the planes and p = [x y zf is a point that

belongs to both planes. To find the intersection of the planes #, and #2 , three cases are

possible:

1. The intersection is a line, if the planes are not parallel or coincident,

2. The intersection does not exist, if the planes are parallel and not coincident,

3. If the planes are coincident, the intersection is the same plane.

An easy way to verify that two planes are not parallel is to check that the cross product of 

their normals is not a zero vector, i.e.

In the following, it is assumed that planes are not parallel, i.e. that condition (C.3) is 

satisfied and that the intersection of the planes *, and #2 is a line / (Figure C.I). The 

equation of the line / can be written as

C-l



Appendix C: Some Results from 3D Geometry

(C.4)

where t is the parameter of the line. Taking the dot product of both side of (C.4) with Nf 

yields

Nf p = d, = Nf -(qN, + c2N 2 + «N, xN 2 ) = c,Nf -N, + c2Nf -N 2 (C.5) 

since Nf • (N, x N 2 ) = 0. In the same way it is possible to obtain

Nj-p = d2 =Nj-(cjN, + c2N 2 + «N,xN 2 ) = c,Nf'Nj + CjNj-Nj (C.6) 

Solving (C.5) and (C.6) for c, and c2 yields

c, =•

where

Note that A # 0, since it is assumed that condition (C.3) holds.

(C.I)

(C.8)

(C.9)

Figure C.I The intersection of two non-parallel planes.

The intersection of three planes
The intersection of three planes, if no two of them are parallel, is a point. Given the three

planes #p #2 and #3

C-2



Appendix C: Some Results from 3D Geometry

the intersection point P (see Figure C.2) is given by

(C.10) 

(C.ll) 

(C.12)

(E.13)Nf-(N2 xN3 )

Note that the denominator in (C.13) is equal to zero if any two of the planes are parallel. 

The assumption that no two of planes are parallel ensures that denominator is different 

than zero.

Figure C.2 The intersection of three planes, where no two of them are parallel.
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Appendix D: ROV simulator

Introduction

A general ROV simulator, developed as Simulink model in MATLAB environment, is 

described in this appendix. This simulator was used to derive simulation results, presented 

in Chapter 6. The model includes the non-linear model of an ROV with 6 DOF, 

propulsion system, hand control unit (HCU) and thruster fault detection and 

accommodation system (PDAS), described in Chapter 5. In order to enhance user 

interface and to improve understanding of the underlying hybrid approach for control 

allocation, a virtual underwater world has been developed with two ROV models 

(FALCON and URIS) in a realistic underwater environment. A joystick is used as the 

input device to generate command input signals. Different fault conditions can be injected 

into the simulation using joystick buttons.

Requirements

Software requirements

• MATLAB (version 6.5 or higher),

• Simulink (version 5.0 or higher),

• Dials & Gauges Blockset (version 1.1.2 or higher),

• Virtual Reality Toolbox (version 3.0 or higher)

• Windows 98, 2000 or XP 

Hardware requirements

Virtual Reality Display active Virtual Reality Display not active

• Pentium 4 or Athlon based PC

• 256 Mb RAM

• Powerful graphic card (min 64 Mb 
memory & advanced Open GL)

• Pentium 4 or Athlon based PC

• 128 Mb RAM

• Standard graphic card
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Quick start

1. Set current directory: C:\WINDOWS\Desktop\PhD\Matlab\ROV.

2. Open model rov. mdl.

3. Double click on the block "Underwater World" to open the block 

parameters dialog box.

4. Click on the View button to open Virtual Reality Display.

5. Click on the Ok button to close the block parameters dialog box.

6. Arrange windows and displays as you like (see Figure D.I for one 

possibility).

7. Start simulation by choosing SimulationlStart from menu. After simulation 

is started, new displays (Feasible Region and Horizontal Thrusters) will 

appear on the screen.

Figure D.I Screenshot showing a possible arrangement of windows and displays.
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ROY simulator history 

June - September 2001

Lauvdal and Fossen (1994) developed a MATLAB simulation program for marine and 

flight vehicles. The complete MATLAB-simulator included the main simulation program 

(sim.m) and 16 different vehicle models, originally written as MATLAB script files. 

One of these vehicles was a ROV, weighted m = 185£g and described as a non-linear 

model with 6 DOF. In order to use the powerful features of Simulink, the original script 

file was transformed into a S-function and associated with a Simulink custom block. This 

block and other auxiliary blocks were wrapped in the Subsystem block "ROV model". All 

model parameters were adjustable through the associated block parameters dialog box. 

The first version of the ROV simulator is shown in Figure D.2.

These blocks are generators 
of inputs, normalised on 
interval [0,1]. The user defines 
the points (ti.yi) and Simulink 
performs linear interpolation 
between adjacent points.

These sliders are gains 
of normalised inputs.

Radian; (.. (0)t p jich yjtw 
<e«i (Eiith-fix«<!)

Figure D.2 The first version of the ROV simulator.
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October 2001 - April 2002

The next stage was the design of the propulsion system and the HCU. The block diagram 

showing the second version of the ROV simulator is displayed in Figure D.3. Since the 

only available actuators for FALCON and URIS are thrusters, the propulsion system was 

built using the full thruster model (shown in Figure 3.16 & Figure 3.17), assuming the 

vector form of the affine thruster model (3.99). Both thruster configurations were 

implemented. The HCU was developed combining a joystick (as input device) and 

joystick & knob controls from the Dials & Gauges Blockset. The signal conditioning 

block performed shaping and denormalisation of the HCU output. The first version of the 

control allocator, obtained by logic reasoning, performed simple, sub-optimal 

transformation from desired control vector to actuator settings. Heading and velocity 

responses were visualised using gauge controls from the Dials & Gauges Blockset. The 

position of the ROV in space was visualised by a single point (representing the position 

of CG in {E}). The orientation of the vehicle was visualised using the linear velocity 

vector (originated in CG) and its projections to co-ordinate planes of {E}.

Figure D.3 Block diagram showing the second version ol the KUV simulator.

May-October 2002

The block diagram of the third version is displayed in Figure D.4. This time the first 

version of the PDAS was included into the ROV simulator. The FDS was implemented as 

the state machine, realised as MATLAB function, with joystick buttons signal as input. 

The aim was to use the joystick to generate the fault indicator vector. The FAS,
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implemented as a series of MATLAB functions, used pseudoinverse to find the solution 

of the control allocation problem. Unfeasible solutions were approximated by T - or 5 - 

approximation. The parameters of the fault code table were adjustable through the block 

parameters dialog box. The user interface was enhanced with two new displays. The first 

display performed dynamic visualisation of the feasible region inside the virtual control 

space. The second display visualised the distribution of propulsion forces and moments 

among thrusters.

Hand 
Control Unit

f^e,

Joystick 
input

Id 

But

Signal 
conditioning

tons

, Fault Code 
Table

1
Fault 

Accommodatior 
Subsystem:,,

FD

ft

Fault 
Diagnosis

AS

u Propulsion - T ROV
1 * system * model

'\.\

Display (User 
interface)

November 2002 - September 2003

The graphic presentation of simulation results was significantly improved in the fourth 

version of the ROV simulator by introducing the Virtual Reality Display, as indicated in 

Figure D.5- A virtual underwater world has been developed with models of FALCON and 

URIS in a realistic underwater environment. Different testing objects were created, in 

order to evaluate manoeuvring capabilities and performance of the vehicle. The vehicle 

can be viewed from different angles, using the joystick hat switch (point of view) control. 

Since the simulation with active Virtual Reality Display and thruster control loop 

dynamics was slow and uncomfortable for work, the later was removed from the model 

(the effects of neglected thruster control loop dynamics are discussed in section 6.4.4).
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Fault
Accommodation 

Subsystem

Hat switch (Point of View)

Fault Code 
Table

1 T
Display (Use 

interface)

Virtual
Reality 
display

Figure D.5 Block diagram showing the fourth version of the ROV simulator.

October - December 2003

In this period overall performance of the ROV simulator was improved. Internal 

reorganisation of the code was performed, in order to accelerate execution, improve 

efficiency and compatibility with the nomenclature used in Chapter 5. The new version of 

the PDAS, using the hybrid approach for control allocation2, has been developed. The 

display showing the feasible region was enhanced adding the visualisation of the 

attainable command set. A set of new displays was developed, including time responses 

of desired and actual propulsion forces, velocity and heading. In addition, a set of "To 

Workspace" sink blocks was added, in order to save representative variables for post- 

simulation analysis.

2 During the conference MCMC 2003 (Oirona, Spain), the author discussed the control allocation problem 

with Professor Tor A. Johansen, Department of Engineering Cybernetics, Norwegian University of Science 

and Technology, Trondheim. Weaknesses of the pseudoinverse solution were identified and the initial idea 

about improvements of the solution was developed, which resulted in a novel, hybrid approach for control 

allocation, described in section 5.5.2.
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Description

Block diagram of the ROV simulator (last version) is identical to those shown in Figure 

D.5. A description of each component is given in the following.

Hand Control Unit & Joystick

The HCU (Figure D.6 (a)), used by the ROV pilot to control motion of the vehicle, is 

implemented with functionally equivalent combination of Joystick (Figure D.6 (b)) and a 

group of knob controls from the Dials & Gauges Blockset (Figure D.6 (c)). HCU controls 

and their functions are described in Table D. 1.

Buttons

Hat switch 
(Point of View)

Stick

Rudder TURN RftTE

(b) Joystick. (c) Knob controls ("trimmers") from Dials & 
Gauges Blockset.

Figure D.6 Implementation of the HCU. 
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Control Function

Joystick

F/R 
SET

SPEED

LAT 
SET

LAT 
SPEED

TURN 
SET

TURN 
RATE

Controls movement of the vehicle as 
follows:

Stick forward: X^ e [0,l]

Stick reverse: X^ e [- 1,0]

Stick right: Y_ * e [0,l]

Stick left: Y^ e [- l,o]

Stick rotation right: N_'d € [0,l]

Stick rotation left: N_'a € [- 1,0]

Rudder reverse: Z^ e [0,l]

Rudder forward: Z^ e [- 1,0]

Hat switch: used by the Virtual Reality 
Display to change Camera Side View

Buttons: used by the FDS to inject 
different thruster faults

Rotating the control clockwise or 
anticlockwise introduce the proportional 
amount of the force in forward or reverse 
direction, respectively.

Scaling factor of the force in 
forward/reverse direction.

Rotating the control clockwise or 
anticlockwise introduce the proportional 
amount of the force in right or left 
direction, respectively.

Scaling factor of the force in right/left 
direction.

Rotating the control clockwise or 
anticlockwise introduce the proportional 
amount of the moment for rotation in right 
or left direction, respectively.

Scaling factor of the moment for rotation
in right/left direction.

ROV motion: forward

ROV motion: reverse

ROV motion: starboard

ROV motion: port

ROV motion: turn to starboard

ROV motion: turn to port

ROV motion: descend

ROV motion: ascend

Total desired surge force: 

r\d = .««[_, ,, |x; + F/R SET)- SPEED]

Total desired sway force: 

r'yil = sot{ _, „[(£; + LATSET)- LATSPEED]

Total desired yaw moment:

i™ =tt"H.'ife + TURN SET)- TURN RATE]

Table D.I HCU controls.
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Signal conditioning

This block performs two functions. The first function is conditioning of raw signals (£, , 

ILd ' ILd and Zj ) obtained from joystick and their integration with knob controls 

("trimmers") in accordance to Table D.I. The parameters are adjustable through the block 

parameters dialog box "Signal Conditioning" (Figure D.7), which include Dead Zone 1 

(region of zero output around stick centre position), Gain 2 (scaling factor g > I to 

ensure that the entire range [- l,l] is covered) and Number of discretisation levels (HT) 3 

and (VT) 4 . Discretisation is performed to compensate imprecise joystick output and to 

emulate the signals from real HCU, which are discretised. Parameters 3 and 4 denote the 

number of discretisation levels on interval [0,l]. After conditioning and integration, 

signals are saturated to interval [-1,1] an(l tw° vectors are obtained:

L,

1-

2-

3-

4-

SigriaCondtooning_pafameters (mask)

Patameleis idated with conditioning of (aw |oy*tick outputs and thet
integration with knob contiok
Dead zone <z ieg»n ol zeto output aiound stick centre posSicn.
Gar* g> 1 it scaling facia used to scale joystick signati in ofdei lo enttre
that the entile rteival [-1.11 rs coveied
Nunbei o( disaetisalion levels |HT) and f^T | denolg Ihe ntmb« ol
di*cfcitation teveb on mtetval [0,11

Paameteis 
Dead Zone:

-|OOS 

Ban

Nunta ol otaetBalion lovalt IHT):

Numbei o( draeli«8tion levels (VTl

Cancel

Figure D.7 Block parameters dialog box "Signal Conditioning".

The second function is selection of the command input source: Joystick or Constant 

command input. The block representation in Simulink model is shown in Figure D.8 (a), 

and associated block parameters dialog box is shown in Figure D.8 (b).
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Joystick Constant

1

2-

3

Block Parameter*; Command Input Seleclo

CommandlnpulSelectofjMianieleisllMsk] 

Selection ol command inpuls.
II checkbox is checked, comlanl veclois tau dHTn and lau oVTn are 
used as command inputs Olheiwise, joystick cutpuls (aim condlionng 
and nlegiation) ale selected

Patametas

Command Input Selector

— -pConaant iau_dHTn-|Xd.Yd;Nd]
7;0.8;09| 

ComlanUau.oVTnHZdl

Help

(a) Block representation in the model. (b) Block parameters dialog box 
"Command Input Selector".

Figure D.8 Selection of the command input source.

If checkbox 1 is checked, constant command input vectors -^ (2) and T^ (3) are 

selected as source signals. Otherwise, joystick outputs (after conditioning and integration) 

are selected.

Fault diagnosis subsystem

The FDS, described in section 5.4, is able to detect faults in a single thruster in real-time 

conditions. The FDS monitors real-time signals for external and internal faults and 

generates a total fault indicator vector f . However, these signals are not available during 

simulation. In order to be able to test the performance of the proposed PDAS, the FDS in 

the ROV simulator is implemented as a MATLAB function wrapped in a Simulink 

subsystem block (Figure D.9 (a)), whose functionally equivalent Stateflow machine is 

shown in Figure D.9 (c). The aim is to use joystick to generate the fault indicator vector 

f. Faults in vertical thruster(s) are not considered. The machine has two superstates 

(PDAS active and PDAS not active) and two outputs (fault indicator vector f and PDAS 

status signal s). The PDAS active superstate (s = l) is the parent of the five substates 

(Fault-free, Fault in HT1, Fault in HT2, Fault in HT3 and Fault in HT4). The PDAS not 

active superstate (s = 0) is the parent of two substates (Fault-free and Selected thruster
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uncontrollable). Transitions between states are triggered by pressing any of the active 

joystick buttons AB1-AB7. Inside each substate there is a mark showing which active 

joystick button will activate it. For example, substate Fault in HT1 has mark AB1, which 

means that pressing the button AB1 will activate this substate. Activation of the substate 

Fault-free inside the FDAS active superstate by pressing AB5 will generate the vector 

f = [1 1 1 ij as the output of the machine. Activation of any other substate, whose 

parent is the FDAS active superstate, will modify the output vector as explained in the 

following. Substates Fault in HT1, Fault in HT2, Fault in HT3 and Fault in HT4 have 

associated faulty codes (2 - "Jammed", 3 - "Heavy jammed", 4 - "Broken", 5 - 

"Unknown"). The block parameters dialog box, shown in Figure D.9 (b), establishes the 

link between substates and faulty codes using combo boxes 1, 2, 3 and 4. After 

activation any of these substates, associated faulty code replaces the corresponding 

element in vector f .For example, pressing the AB2 causes activation of the Fault in HT2 

substate with associated faulty code 4 ("Broken") and new output vector of the machine is 

f = [l 4 l l]. The FDAS not active superstate is included in the machine in order to 

demonstrate difficulties related with the control of the vehicle's motion in the presence of 

a failure in a single horizontal thruster for the case when the FDAS is not active (see 

examples (B5) & (B6) in Chapter 6 for more information). Selection of the faulty 

(uncontrollable) thruster is performed using combo box 5 in Figure D.9 (b). In particular, 

pressing AB6 will switch off the selected uncontrollable thruster HT2, but fault 

accommodation will not be performed. Control of the vehicle's motion is very hard in this 

case because disabling one of the thrusters without reconfiguration introduces unbalanced 

moment components, which cause undesired rotation of the vehicle. By pressing AB2 the 

same case (broken propeller in HT2) can be simulated, but this time with FDAS turned
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on. The PDAS provides optimal redistribution of propulsion forces among three 

remaining thrusters in order to compensate unbalanced components.

Block Parameters: fault Diagn

FDS_parameteis (mask)

Thu block eslabfches the ink between lau»y stale: in HT and joystick 
active buttons AB
Foul taufcy stales ate avaiabte: "Jammed popeta". "Heavy jammed 
piopetet", 'Bioken ptopelw" and 'Unknown state".

FOAS active

AB 1 • FaJl in HT1 I PDAS active 
A8 2 • Fault m HT2 J FDAS active 
AB 3 • Paul n HT3 1 FDAS active 
AB 4 - Faut in HT4 1 FDAS active 
AB 5 • FaJt-liee state n al HT

FDAS not active

AB 6 - Unconuolabte thrustei 
AB 7 • FauMiee slate n al HT

Fault Detection Subsystem

(a) Simulink block.

Parameleis ____— 

AB1 • Faulty stale of HT1 (FDAS active) | Unknown

AB2- Faulty stale of HT2 (FDAS active) j Broken prapefel

AB 3 Faulty stale of HT3 (FDAS active) f Heavy jammed propete _^j-

AB4 - FaJly state ol HT« |FDAS active) i Jammed piopelec 3"

AB6 • Uncontiolable thiustei IFOAS not aclivel: |HT2 "*}•

| OK | Cancel | Help | |

-1

-2
-3
-4
-5

(b) Block parameters dialog box "Fault Diagnosis Subsystem".

'FDAS active (s = l)
Jammed
Heavy]. [Fauft in HT1 
Broken I AB1 
Unknown

Heavy). 
Broken 
Unknown

Jammed
Heavy]. fFaulinHT4
Broken
Unknown

FDAS not active (s = 0)
ted thruster uncontrolable 

AB6________
('Select!

fFault-free
I AB7

(c) Functionally equivalent Stateflow machine. 

Figure D.9 Implementation of the FDS.

Fault accommodation subsystem

The inputs to the FAS block (Figure D.IO (a)) are the fault indicator vector f (the output 

of the FDS) and vectors T_"T and T^ , in accordance to selected command input source. 

The FAS performs the hybrid approach for control allocation using the FAS algorithm 

(Algorithm 5.2, page 5-65). The fault code table can be edited using the block parameters
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dialog box shown in Figure D. 10 (b). In accordance to Table 5.8, the parameters 1,2,3, 

4 and 5 denote constraint bounds s"T for thruster states "Fault-free", "Jammed 

propeller", "Heavy jammed propeller", "Broken propeller" and "Unknown state", 

respectively. The output of the FAS is a composite control vector u" = [u'*"7 u'* W j (see 

page 5-33). The inversion and approximation stages are realised as MATLAB functions. 

The hybrid approach settings can be changed using the block parameters dialog box, 

associated with the approximation stage and shown in Figure D.10 (c). In particular, if the 

check box 1 (2) is checked, the fixed-point iteration method is enabled in fault-free case 

(faulty situations). The type of approximation (T -approximation or S-approximation) 

can be selected using the combo box 3. The initial iteration for the fixed-point iterations 

can be chosen using the combo box 4. Available choices are: T -approximation, S - 

approximation or Output from previous sample. Design parameters eps and tol of the 

fixed-point iterations are adjustable using the fields 5 and 6.

Fault Accommodation Subsystem

(a) Simulink block.
Block Parameter:: Fault Code Table

FCT j>aamelets (maskl
This block enables editng of the Paul Code Table.

Paiameteis
Conslrart bound la Nomal IFauHiee) date |lau» code - 1 )

Consliar* bound lor Jammed propeter llaut code = 2|

(075—2

Constant bound (of Heavy Jammed piopelel llauH code • 3|
pi50^; 3 ——
Coralrart bound fa Broken propefei |laul code • 4)

Comliairt bouid Id Unknown state (lautl code . 5) 

I0.2S — 5

Cancel

;: Approximation

Atptoximation_pafameler$ (ma$k)

This block enables change ol sellings of the hjtrid approach la conliol 
akcation

Paiamelerc
ri laii-tice casjJFRtfj

Appioiflmation type: jS-appiownationlScalingl 

InitiaJ Heialion lOutpull(ompievioussarr«)le 

Rxed-poml method • eps: ___

Fsied-poirt method • lot 
!__;__.

Cancel

(b) Block parameters dialog box "Fault Code (c) Block parameter dialog box 
"Approximation".

Figure D.10 Implementation of the FAS. 
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Propulsion system

Components "Correction", "Transformation", "Adaptation" and "Thrusters" of the overall 

PDAS architecture (Figure 5.9) are implemented as one, composite MATLAB function, 

wrapped in a Simulink subsystem block called Realisation. The input to the block is 

control vector u", the output of the FAS block. The output is the vector of propulsion 

forces T . The block parameters dialog boxes, shown in Figure D.I 1 (a) & (b), enables the 

selection of affine or bilinear thruster model (1) and customizing the thruster 

configuration parameters (1-22).
Block Parameter*; Ihrusters Lonttgurat

Label Reference

1, 4. 5, 6, 7, 8

2, 3, 9

10, 11

12

13, 14. 15. 16

16

18, 19, 20, 21, 22

Figure 3. 7 (pg. 3-26) 
Table 3.5, Table 3.6

Technical 
specifications

Eq. (3.83) (pg. 3-33)

Eq. (3.72) (pg. 3-30)

Eq. (3.79) (pg. 3-32) 
Eq. (3.80) (pg. 3-33)

Eq. (6.5) (pg. 6-21)

Example 3.1 (pg. 3-27)

Setedion d tftnaa ««W. 

PtMoelen
|A*K

Cmxt b*

SJWWM™*)
Cdrobart

CcrfiguatoolHT: !x

9760/60 —— 2 

GetrRtfia 
|23/4 ———^3"

;0.3 ———— 4

LiWF=8——
Pnpefai ma force Tm* (NJ: 

Prapdtoidmet«D|ntF=10——
Dentiy d **sttf (ho [kfl/m"^ 

Wakefiwten rurtia *r5^=12——

|013553-ir13" 

ILZISO-^M."

Posbve routart HT1 [ctekwte

Podwe rgtaion: HT2 jQoefcwite -

PraSvoiottfatHTS [carter OaDnmt— 2Q 

PodbveioUtatKM ICarte. Doetxne— 21 ~-22~

u* I

Pofltmi(X4bon VT Ctoct-w

(a) Block parameters dialog box (b) Block parameters dialog box "Thruster 
"Realisation". configuration . 

Figure D.ll Implementation of the propulsion system.
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Parameters rmax , Nmax , GR (Gear Ratio), p and a2 are related by constraint

=p£>X=rnW
" (D.I)

GR

As stated in section 3.7.4, modelling of FALCON' s propulsion system is an ongoing 

research project and, unfortunately, the thruster model is not yet available. In order to 

perform simulations and testing of the PDAS, some parameters of the model had to be 

assumed. However, obtained simulation results are expected and acceptable, which 

confirm that assumed parameters are close to real parameters.

ROV model

The ROV dynamics and kinematics model is implemented as a 5 -function block. This 

block and other auxiliary blocks are wrapped in the Subsystem block "ROV model", 

shown in Figure D.12 (a). In the original MATLAB script (Lauvdal and Fossen, 1994) 

model-dependent parameters were included (hard-coded) into the script file. This 

approach was not practical from the user point of view, since any change in the model 

required editing of the script. In order to make the model more user-friendly, all model- 

dependent parameters are transferred from the script file into the associated block 

parameters dialog box, which is easy accessible from the ROV simulator. In this way, all 

adjustable parameters of the ROV model can be easily changed through the block 

parameters dialog box, depicted in Figure D.12 (b). This flexibility enables easy addition 

and simulation of other ROVs, not included in the original version of the ROV simulator. 

The model, implemented in S -function, is functionally equivalent to the simulation 

diagram shown in Figure 3.4, where the attitude of the ROV is represented with Euler 

angles. The additional damping terms (lift & drag forces and rotational damping) are 

included in the 5 -function (see (Fossen, 2002) for more information).
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Label Reference

1,2,3,4

5

6

7

8, 9

Section 3.3 (pg. 3-3)

Eq. (3.38) (pg. 3-13)

Eq. (3.57) (pg. 3-19)

Eq. (3.53) (pg. 3-1 8)

(Fossen, 2002)

Block Parameters: ROV modal
ROVmoddjjarameters (mask) 

Model of the ROV dynamic! and kremalcs in 6 DOF

v10-|"0.vO:wO]{B>
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For olher parameter* *ee Figure G12 in Appendix G
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! In* vector: elalO Iml {£>:

3:0.0| 

Ir* vector etoa]|deg)fe):

MflB parameters: (IxWzJxyjyzjzx.m;
1(25.50.50.0.0:0:185aO.D.O;0;-01] ^^ 5

D parameters: ^u.YvZw.Kp;MoJlrXuu,YwZ»iwJCpp>lqii:Nrrl
||-100.-100;-100;-400;-300;-300,-0,fl;O.D.O.O] —— 6

MA parameter*: |Xud:YvdZwd.Kpd;Mqd.t)rd)_________

Drag and IH parameter* (

Olher paameleiE: |Qp:Di Cmq Cms [toA J.h W B] 
|(-01.0l,-2;-1;l025;1:05:05:1850:1850l —— 9

I OK I Cancel i Help I

ROV model

(a) Simulink block. (b) Block parameters dialog box "ROV
model". 

Figure D.12 Implementation of the ROV model.

Development of dynamic models of FALCON and URIS are ongoing projects, expected 

to be completed in spring 2004. In order to test the performance of the PDAS, some ROV 

model had to be included in the ROV simulator. Since the original script (Lauvdal and 

Fossen, 1994) had already incorporated a ROV model in 6 DOF, it was decided to keep 

this model until the work on modelling and identification of FALCON and URIS is 

completed and corresponding dynamic models become available. Hence, parameters 

shown in Figure D.12 (b) describe dynamics of the ROV model from the original script 

file. The ROV, weighted 185/tg, is neutrally buoyant (W = 5) and its dynamics are 

much slower than the real dynamics of FALCON and URIS. This should be taken into 

account during interpretation of simulation results and responses in the Virtual Reality
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Display. When dynamic models of FALCON and URIS become available, it is expected 

to obtain faster response of the vehicle and better agreement between virtual reality 

behaviour and real-time behaviour. All simulations in Chapter 6 were performed 

assuming the ROV model from the original MATLAB script. Because of this reason, 

simulation results should be interpreted from the qualitative perspective.

Display (User interface)

The standard user interface includes the following displays:

Fault states. Time diagrams of fault states of each HT are shown in this display (Figure

D.13 (a)).

tau_d & tau. This display shows time diagrams of components of vectors

lf = bxrf £ia lAwF and r"1 = {rx Tr TN J (Figure D.13 (b)).

(a) Display "Fault states". (b) Display "tau_d & tau".

Figure D.13 Displays "Fault states" and "tau_d & tau".

Display Panel. Various information is displayed in this panel (Figure D.14). Scaling 

factor fUT for 5 -approximation indicates the position of if relative to &? : if 

f"T = 100% , then rf e *f . Otherwise, f"T < 100% => t
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Velocity & Heading. This display shows time diagrams of linear velocity v(r) =

and heading ^(f)=£n 2 (3) (Figure D.15). In order to be compatible with the input of the 

Angular Gauge control "Compass" in Dials & Gauges Blockset (Figure D.14), the 

heading response is normalised on interval 0° < \ff(t) < 360°. This normalisation 

introduces jumps in heading responses for cases y/(t ) < 0°.

Figure D.15 Display "Velocity & Heading".

Feasible Region. Vectors v"T and -i™ are displayed in Figure D.16 relative to the 

feasible region for pseudoinverse $"r and attainable command set & HT (see section 

5.5.2 for more information). This display is dynamically updated during simulation to 

reflect any change in thruster's states and command inputs. In addition, values of 

parameters 1, 2, 3 and 4 from the block parameters dialog box "Approximation" 

(Figure D.10 (c)) and magnitude & approximation errors are indicated at the bottom of 

the display, in order to inform the user about the current settings of the hybrid approach 

for control allocation. Magnitude and approximation errors are defined as HT HT 
It -I

and 6 = a cosy L'~ , respectively (see Definition 4.1 on page 4-38).\<"YT
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Figure D.16 Display "Feasible Region".
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Figure D.17 Display "Horizontal Thrusters".
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Horizontal thrusters. This display (Figure D.17) visualises the distribution of propulsion 

forces (thrusts) ' T and moments (shaft torques) ' Qe , exerted by horizontal thrusters, in 

the horizontal plane. The display shows the plan (top) view of the vehicle. Axes of the 

body-fixed frame {fi} are denoted as follows: longitudinal axes x (directed to front side), 

transversal axes y (directed to starboard) and normal axes z (directed to bottom). Each 

'HT is represented with a symbolic picture, showing its physical position and orientation 

in the horizontal plane. The length of all vectors is scaled to fit the display and to improve 

visibility. The force vector 'T, / = 1,4, is represented by a red line, with origin at the 

centre point of 'HT (3, 9, 15 and 21). The normalised module of 'T is represented by

r'T —
T_i=-—— (1, 7, 13 and 19). The moment vector'Q,,, i = 1,4, is represented by a blue

tn

line, with origin at the centre point of 'HT (4, 10, 16 and 22). The normalised module

1'Q 
of 'Q, is denoted by G f . =-—— (2, 8, 14 and 20), where <2m is equal to ?Nm in

*£m

(5.14) & (5.19) for X-shaped and cross-shaped configuration, respectively. Spin direction 

coefficients ' CHT , i = lA (page 3-27), are represented by labels 5, 11, 17 and 23, where 

label cw (ccw) denotes 'cm = +l (-l). Recall that the value i cHT =+l means that T 

and 'Q, have the same direction CHT and 2HT for X-shaped configuration, ] HT and 

3HT for cross-shaped configuration, see Figure D.17), and that the value 'cHT =-l 

means that they have opposite direction CHT and 4 HT for X-shaped configuration, 

2HT and 4HT for cross-shaped configuration). Labels 6, 12, 18 and 24 indicate 

thruster states (see Figure D.9 (c)). When the PDAS is active, labels Ok, Jammed, Heavy 

j., Broken and Unknown are used to represent the states "Fault-free", "Jammed propeller", 

"Heavy jammed propeller", "Broken propeller" and "Unknown state", respectively. When
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the PDAS is not active, label Ok denotes "Fault-free" state, and the label Off denotes 

uncontrollable thruster, selected using combo box 5 in the block parameters dialog box, 

shown in Figure D.9 (b). The vector of total forces j"7', exerted by horizontal thrusters, 

is represented by a thick red line 25, with origin at CG . Similarly, the vector of total 

shaft torques Q^T is represented by a thick blue line 26, with origin at CG . Modules of 

T"7" and Q^7 are represented by 27 and 28, respectively. Vector j"7 is normalised

such that it represents the orthogonal projection of vector T OT in T X -Tr plane, as 

indicated in Figure D.I6.

Virtual Reality Display

User interface is further enhanced with a virtual underwater world using the Virtual 

Reality Toolbox3 . Simulating the ROV simulator generates signal data for ROV dynamics 

and kinematics (vectors B \(t) and E r\(t)). By connecting the Simulink model to a virtual 

world, this data can be used to control and animate the virtual underwater world. The 

connection between the Simulink model and virtual underwater world is shown in Figure 

D. 18. A brief description of individual components is given in the following. 

Underwater world. The block "Underwater world" ("block 1 in Figure D. 18,1 provides the 

GUI interface to output signals from Simulink to the virtual underwater world. Double 

click on this block opens the block parameters dialog box, shown in Figure D.19. 

Description of individual parameters is given in the following.

3 Virtual Reality Toolbox is a solution for viewing and interacting with dynamic systems in a three- 

dimensional virtual reality environment. It extends the capabilities of MATLAB and Simulink into the 

world of virtual reality graphics. The Virtual Reality Modelling Language (VRML; is used to define a 

virtual world that is displayed with a VRML viewer and connected to a Simulink model with VR sink 

block. See Virtual Reality Toolbox User's Guide (2002; for more information.
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T*ftifitj &bj*d)

Figure D.18 Connection between Simulink model and virtual underwater world.
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Figure D.19 Block parameters dialog box "Underwater World".
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Source file- VRML file name 1 specifying the virtual world which this block is connected

to. The View button 2 allows viewing the world in the Virtual Reality Toolbox viewer or

a Web browser. The Edit button 3 launches an external VRML editor, and the Reload

button 4 reloads the world after the changes are made. By default, the full path to the

associated . wrl file appears in this text box. If only the filename is entered in this box,

the Virtual Reality Toolbox assumes that the .wrl file resides in the same directory as

the model file. The default filename of the virtual underwater world is rov.wrl, and

this file resides in the same directory C : \WINDOWS\Desktop\PhD\Matlab\ROV as

the main file rov. mdl.

Open VRML viewer automatically: If this check box is checked, the default VRML

viewer displays the virtual world after loading the Simulink model.

Allow remote access to world: If this check box is checked, the virtual world is accessible

for viewing on a client computer. If it is not selected, the world is visible only on the host

computer (see Virtual Reality Toolbox User's Guide (2002) for more information).

Description: Description that is displayed in all virtual reality object listings, in the title

bar of the Virtual Reality Toolbox viewer, and in the list of virtual worlds on the Virtual

Reality Toolbox HTML page.

Sample time: Enter the sample time or -1 for inherited sample time. Lower sample time

improves the quality of animation, but decrease simulation speed. The default value is

0.15s.

VRML Tree: This box shows the structure of the VRML file and the virtual world itself.

The user should not change any value in the VRML Tree.

Figure D.20 shows the Virtual Reality Display. It is the Virtual Reality Toolbox Viewer,

which displays a virtual scene with a control panel at the bottom. Only two of these

controls (Viewpoint control and Headlight toggle) are used in the ROV simulator. These
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controls will be described in the following. More information about the other controls can 

be found in Virtual Reality Toolbox User's Guide (2002).

Viewpoint Control: There are three buttons on the control panel that affect the viewpoint 

of the scene. The centre circular button resets the camera to the current viewpoint. Two 

different viewpoints are defined in the virtual underwater world: Camera Front View and 

Camera Side View. The right and left arrows associated with Viewpoint Control can be 

used to browse through these predefined viewpoints. It is also possible to use the Page Up 

and Page Down keys to navigate through these viewpoints.

Headlight toggle: This control is used to rum the camera headlight and the lighting of the 

scene on or off. When Headlight is off, the camera does not emit light. It is recommended 

to turn the camera headlight off during simulation, since two sources of directional lights 

are already available to light the scene.

Hide panel
Viewpointcontrol

Information

Headlight toggle
wiremetoggle

Navigation wheel 
Figure D.20 Virtual Reality Display.

Interface {E}-*fyR}. VRML uses the right-handed Cartesian coordinate system 

which is different from the MATLAB graphics coordinate system. VRML uses the world 

coordinate system in which the *-axis points to the right, y -axis points upward and the

D-25



Appendix D: ROV simulator

z -axis places objects nearer or farther from the front of the screen. Each rotation in 

VRML requires four parameters (three coordinates of principal axes unit vector and 

principal angle). Because of this, quaternions are a natural way for attitude representation 

of objects in a virtual world. 

Position and orientation of {V7?} relative to {#} is indicated in Figure D.21, which

displays FALCON in its initial position £ Ti,(0) = [0 0 Of and £ ti2 (o) = [0 0 Of in 

the virtual underwater world. The scene is displayed from two different perspectives (rear 

view, Figure D.21 (a), and side view, Figure D.21 (b)).

(b) Side view. 

Figure D.21 Coordinate frames {#} and {V/?} in virtual underwater world.
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Origins of {E} and {VR} was chosen to coincide. Position vectors £ ij, = [XE ye zEJ

are related by

~ X

-» +XVR (D.2)

Orientation vectors £ H2 =[<*£ QE ^F and are related by

(D.3)

The block "Interface {f}->{v/?}" (block 2 in Figure D.I8) performs transformation of 

£ H]-»v*ili and £ H2 -V*H2 using (D.2) and (D.3). In addition, VR i\2 is transformed into 

quaternion form using the "Euler Angles to Quaternions" block from Aerospace Blockset. 

Propeller's rotation. The block "Propeller's rotation" (block 3 in Figure D.18) generates 

signals to animate the rotation of propeller blades. Double click on this block opens the 

block parameters dialog box, shown in Figure D.22. The angular velocity of propeller 

blades in animation depends on the performance of the host computer: faster the 

computer, faster the animation. Parameter AS (1) can be used for fine tuning of 

animation speed, in order to obtain natural rotational motion of propeller blades.

AS (animation speed):1-Hi——————

Cancel Help

Figure D.22 Block parameters dialog box "Propeller's rotation".

Camera Side View. This viewpoint enables viewing of the scene from the eight fixed 

points V,, V2 , ..., Vg , as indicated in Figure D.23. These points lie on the sphere J. The 

origin of S coincides with the origin of {fl}. The orientation of S is fixed in {E}. Hence,
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sphere S moves together with the vehicle, such that points Vn i = l$, have constant 

distance r from the origin, constant elevation q> from the horizontal plane and constant 

orientation in {£}. Only one of these viewpoints can be active at any time. The hat switch 

(Point of View control of joystick) is used to select/change active point, as shown in 

Figure D.24.

Figure D.23 Viewpoint Camera Side View.

Double click on the block "Camera Side View" (block 4 in Figure D.I8) opens the block 

parameters dialog box, shown in Figure D.25. The adjustable parameters are: distance r 

(1), elevation <p ( 2) and Field of View (3) ( FoV , the parameter which defines the scene
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perspective). The FoV parameter can be used to obtain telephoto effect (compressed 

perspective) and wide-angle lens effect (exaggerated perspective).

"•
SW-NE

v.
NE SW

v,
W-E

V,

E-W

V4

NW-SE

v,

SE NW

Figure D.24 Hat switch is used to choose which point V, is active.

Hlnrk f'ArMnrt*r«: I AmrrA Snip Virw

whdKMraCamu Side View vmponl (tee

1
2 HO

3 HST

Cancel Ji*_J___I

Figure D.25 Block parameters dialog box "Camera Side View".

The concept of Camera Side View viewpoint is illustrated by two examples. In the first 

example, Figure D.26 displays the scene seen from the viewpoint V,. The parameter 

0> = 0° is fixed, and parameters r and FoV are variable. Figure D.26 (b) displays the 

initial view (r = 3m,FoV = 30°). Figure D.26 (a) displays the same scene for FoV = 50°. 

Similarly, Figure D.26 (c) shows the scene for r = 5m. It can be seen that increasing 

FoV produces wide-angle lens effect (exaggerated perspective, where a view appears 

much wider than observer's eyes would normally see it).

In the second example, the same scene is seen from different viewpoints V,, / = 1,8 

(Figure D.27). All parameters have fixed values (r = 3m, <p = 10°, FoV = 45°). Heading of 

the FALCON is V
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(a) r = 3m,p = 0°,F0V=50°.(b) r = 3m,(p = Q°,FoV =30°. (c) r = 5m,<p = 0°,FoV = 30° 

Figure D.26 Different perspectives obtained from the viewpoint Vj by varying r and FoV .

Figure D.27 Scene seen from different viewpoints V,, i = 1,8 with fixed parameters r = 3m,

= 10° and FoV=45°.
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Camera Front View. This is a body-fixed dynamic viewpoint, bounded to the vehicle, 

which gives the picture similar to one from the on-board camera. The position of this 

viewpoint was chosen such that the small part of the front side of the vehicle is visible 

(see Figure D.28). The FoV parameter, which defines perspective, can be adjusted using 

the block parameter dialog box, associated with the block 5 in Figure D.I8.

(a) FALCON. (b) URIS. 

Figure D.28 Viewpoint Camera Front View.

Testing objects. Relative position between objects in the virtual underwater world4 is 

shown in Figure D.29. The ROV (FALCON) is shown in the initial position (origin of the 

Earth-fixed frame). Three particular objects (the rock with a hole in the middle, the long 

pipe (cylinder) and "Stonehenge"-like group of rocks) are used in examples in section 6.3 

to evaluate the performance of the PDAS. Before the simulation is started, the initial 

positions P{ and P2 can be used to place the vehicle close to the pipe or the rock with the 

hole, respectively, as indicated in Figure D.30. Double click on the block "Testing 

objects" (block 6 in Figure D.I8) opens the block parameters dialog box, shown in 

Figure D.31. Parameters in this dialog box define the geometry of the pipe. By default,

4 Virtual underwater world in ROV simulator was inspired by wonderful underwater world "Ocean Walk" 

designed by Ryoichiro Debachi (http://www.atom.co.ip/vrml2/ocean)
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the pipe is located at the origin of {V7?} and oriented vertically. Parameter 1 defines 

translation of the pipe relative to origin. Parameter 2 determines rotation of the pipe 

relative to default vertical orientation. Figure D.32 displays orientation of the pipe for the 

case Rotation = [0 0 1 -80°]. Parameters 3 and 4 define the height (length) and 

radius of the pipe.

FALCON

1

Figure D.29 Relative position between objects in the virtual underwater world.
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-16 Ol £i, 20 = [0 0 90°]) (b) P2 ( £ n, 0 =[270 -155 0-35], £n ffl =[0 0 254° 

Figure D.30 Initial positions of the vehicle, close to the pipe and the rock with the hole.

Pjpe_pajamete« (mask) 
Parameters whch define geometiy of the pipe (cylinde4

Translation • position relative to default position [otigr> of (VRI) 
Rotation - orientation relative to default orientation (vertical cyindetl 
Height • height ol cylinder 
Radus - radius of cytindei.

Parameters 
Translation [m] WR):

—j(0.-0 3~ 30J—————————————————————

Rotation |deg| (VR):______________________
-poiTaoj

Height |ml

Raduslmt

U*

Figure D.31 Block parameters dialog box "Testing objects".

Figure D.32 Change of pipe's orientation: Rotation = [0 0 1 - 80°].
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Visibility range. In real operating conditions, the visibility range varies from a few 

meters to hundreds of meters, depending on the cleanliness of the water. Different 

visibility ranges can be simulated using the fog effect. The fog colour (dark blue) and fog 

type (exponential) are fixed parameters and cannot be changed from the ROV simulator. 

The visibility range of the fog can be changed using the block 7 in Figure D.I8. 

Lights. The light in the virtual underwater world is provided from the two light sources 

(directional lights Light 1 and Light 2). Double click on the block "Lights" (block 8 in 

Figure D. 18) opens the block parameters dialog box, shown in Figure D.33. Parameters 1 

and 2 define direction of the light sources Light 1 and Light 2, respectively.

Ughts_paiamelei$ (mask) 
Directions ol lighl sowces

Parameters
U^*1 d» ecton [degl

-[30

Light 2 (Section [deal

—(210

I OK 1 Cancel j Help

Figure D.33 Block parameters dialog box "Lights".

Run-time behaviour

One of the features of the ROV simulator is dynamic updating. This means that, while a 

simulation is running, any change of parameters can be performed without need to stop or 

pause the simulation. For example, during simulation the thruster configuration can be 

changed from the X-shaped to cross-shaped; propeller spin directions can be changed; 

thruster model can be changed from affine to bilinear; different faults can be injected 

using joystick buttons; different viewpoints of the scene can be selected, etc. All displays 

and windows are automatically updated to accommodate these changes, and their effects 

can be immediately observed and analysed.
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1. INTRODUCTION

Underwater vehicles are liable to faults or failures 
during underwater missions. Thrusters are the most 
common source of faults. In all but the most trivial 
cases the existence of a fault may lead to cancelling 
the mission. Implication of small faults could be very 
expensive and time consuming. Although good 
design practice tries to minimize the occurrence of 
faults and failures, there is a certain probability that 
faults will occur. Recognition that such events do 
occur enables system designers to develop strategies 
by which the effect they exert is minimised. In the 
case of a partial or total fault in a horizontal thruster 
it is possible to reconfigure the control system in 
order to keep the high level of the control 
performance and complete a mission. This paper 
introduces new approach associated with fault 
detection and accommodation for remotely operated 
underwater vehicles to cope with this problem.

Rauch (1994) proposes three approaches for control 
reconfiguration of the underwater vehicles: 
• to have specific procedures to accommodate 

modelled (anticipated) potential faults,

• to represent unmodelled (unanticipated) faults 
as unknown forces and moments,

• to use a high level system which replans the 
mission to mitigate the effects of the fault.

In the first approach the procedure monitors system 
response to look for specific failure modes. When a 
failure mode is recognized, the procedure 
implements the appropriate control change. Control 
reconfiguration can be based on stored control laws 
tailored to each anticipated fault condition. The 
proposed fault detection and accommodation system 
belongs to this group. The second approach 
represents the unmodelled (unanticipative) faults as 
unknown forces or moments acting on the vehicle 
(Sullivan, et al, 1992). Forces and moments are 
estimated on-line first. Then, the adaptive control is 
adjusted to compensate for these disturbances. A 
rapid estimate recognises the existence of a fault, but 
a slower, more deliberate estimate determines the 
correlation of the fault with a force or moment. The 
third approach treats high-level fault accommodation 
(Parrel, etal, 1993). The implementation extends the 
range 'of mission responses by approximating 
decision-making of an experienced crew. The two 
facets of the response are reactive capability (which



directly accommodates to the recognised faults) and 
assessment capability (which determines how to 
modify the mission to accommodate faults).

A fault-tolerant system for use in an experimental 
AUV was outlined in (Yang, et al, 1998; Yang, et 
al., 1999). The system was subdivided into 
individual fault-tolerant subsystems for dealing with 
thrusters and sensor failures separately. The thruster 
subsystem consisted of a rule base for detection and 
isolation purposes, and an algorithm for 
reconfiguring the thrusters control matrix by 
eliminating the corresponding column to 
accommodate the failure. Only a total fault (failure) 
of the thruster was considered. The authors used a 
constraint-based method instead of the pseudo- 
inverse method to find inverse of the thruster 
configuration matrix. Experimental investigation was 
conducted on a 6 DoF AUV, ODIN at the University 
of Hawaii to evaluate the performance of the 
proposed approaches and experimental results 
showed that the overall system was capable of 
performing effectively.

If the number of control inputs is equal to or more 
than the number of controllable DoF, it is possible to 
find an "optimal" distribution of the control energy, 
which minimises the quadratic energy cost function 
i.e. a measure of the control effort (Fossen, 1995). 
This approach uses the generalised inverse matrix to 
find the optimal control vector. The problem of 
thruster velocity saturation was not considered.

Ideas from (Rauch, 1994; Yang, et al, 1998; Yang, 
et al, 1999; Fossen, 1995) were used as the initial 
basis for the design of the novel PDAS for a ROV. A 
general thruster model is described in the second 
section. The problem of the optimal distribution of 
propulsion and control forces, exerted by thrusters, is 
described in the third section. An original solution of 
the problem is proposed, for two common 
configurations of horizontal thrusters. The concept of 
a feasible region, described in the fourth section, has 
been developed in order to cope with the problem of 
thruster velocity saturation. This problem is 
neglected by many authors, who found "optimal" 
control laws, without taking care of saturation. The 
significance of this problem is discussed. The fifth 
section describes architecture of the proposed PDAS. 
Finally, conclusions are given in the sixth section.

The proposed fault detection and accommodation 
system has been implemented as a Matlab Simulink 
model and includes a non-linear model of an ROV 
with 6 DoF, thruster dynamics and a hand control 
unit. Different fault conditions can be simulated in 
order to investigate the performance of the proposed 
PDAS.

2. THRUSTER MODEL

Many modern underwater vehicles have four 
horizontal thrusters that control three degrees of 
freedom (surge, sway and yaw). Hence, the control 
system for motion in the horizontal plane is over 
actuated and there is redundancy, which provides a 
space to perform reconfiguration in the case of a fault 
in a single horizontal thruster. Two underwater 
vehicles with different thruster configurations are 
used to demonstrate the performance of the proposed 
PDAS (FALCON, SeaEye Marine Ltd. and URIS, 
University of Girona, see Fig. 1.). The thruster 
configuration of URIS has two horizontal and two 
vertical thrusters. Due to its flexibility, vertical 
thrusters were reoriented to the horizontal in order to 
examine the performance of the proposed PDAS.

X-shaped configuration 
FALCON

Cross-shaped configuration
URIS

Fig. 1. Two common configurations of the horizontal 
thrusters: FALCON (left) and URIS (right).

Fig. 2. Simplified diagram showing full thruster model, including thruster control loop dynamics.



A full thruster model, including dynamics of the 
thruster control loop, is shown in Fig. 2. A DC 
motor, designed for underwater operating conditions, 
drives a thruster in the ROV. Input to the thruster 
control loop is a control variable nd (desired angular 
velocity). The motor is equipped with a tachometer, 
which measures actual angular velocity. A gearbox is 
used to reduce the output speed and to enhance the 
output torque. Orientation and position of the thruster 
in the body-fixed frame are defined with vectors e 
and r, respectively. Each thruster exerts thrust T 
and torque Qe . The thrust T also generates moment
Qr = r x T, so the total moment vector exerted by a 
thruster is given by Q = Qe + Qr . Contributions of 
each thruster are summed together to form force 
vector T . The undesired effects of torques Q on
the control performance can be reduced by carefully 
choice of propeller blade's spin direction: for the 
couple of symmetrical thrusters blades should have 
opposite spin direction i.e. one should rotate clock­ 
wise and other anti clock-wise. In such a way, 
resulting moment from the blade's angular motion 
will counteract each other and the net angular 
moment for each pair of symmetrical thrusters in 
total force vector T will be zero, if they rotate with 
the same velocity. The full thruster model includes 
motor dynamics, tacho and velocity controller inside 
the thruster control loop. However, the dynamics of 
the thruster control loop are much faster than the 
dynamics of the vehicle and can be initially 
neglected.

In the general case, the thrust T and torque Q, 
exerted by a thruster, are complicated functions 
depending on the vehicle's velocity vector V and 
control variable n . The bilinear thruster model, 
shown in Fig. 2. and described in (Fossen, 1995; 
Fossen and Blanke, 2000), can be used to 
approximate these functions. However, in practical 
applications, the bilinear thruster model can be 
approximated by an affine model, where ROV 
velocity V is equal to zero. Hence, optimal 
distribution of propulsion and control forces will be 
initially found with the assumption that the 
relationship between propeller thrust/torque and 
control variable is given by the affine thruster model. 
The dynamics of the thruster control loop will be 
initially neglected. The influence of these factors on 
the performance of the ROV control system can be 
later investigated in the ROV simulator using the 
bilinear thruster model with the dynamics of the 
thruster control loop included.

3. OPTIMAL DISTRIBUTION OF PROPULSION 
FORCES

The input command vector Td =\Xd ,Yd ,NjJ for 
the motion in the horizontal plane, generated by the 
hand control unit, belongs to the input space 3

(1)

and has three components (desired forces in x and 
y directions and desired moment about z axis in 
the body-fixed frame). The problem is to find the 
optimal control vector u = [«1 ,M2 ,M3 ,«4 f,«,. = MJ |K,|, 
which belongs to the control space K

(2)

that should be applied to drive each horizontal 
thruster such that the total force vector 
t-[X,Y,Nj exerted by thrusters, which belongs 
to the output space 91

(3)

is as close as possible to the input vector Td . For the
affine thruster model the relation between T and U 
is described by

T = Bu (4)

where B is a thruster configuration matrix. General 
expressions for the matrix B are

URIS (cross-shaped configuration)

~C C 0 0
0 0 C C

RC -RC RC -RC

FALCON (X-shaped configuration)

(5)

B =
Ccostf Ccos<? Ccos6> Ccostf' 
CsxiO -Csin<? Csintf -Csin<9

CA -CA -CA CA

(6)

where C=7f, and = Q.5(bsm0 + acos0). A
very important issue, which shouldn't be neglected, 
is thruster velocity saturation i.e. the thruster cannot 
rotate faster than its maximum speed. This leads to a 
mapping from the original control space K to the
constrained control space K

K* = •JX,W2 ,M3 ,W4 ): K - "max} (7>

The system of equations (4) has many solutions, 
because there are 3 equations (3 DoF) and 4 
unknowns (4 horizontal thrusters), but only one 
(optimal) solution will minimise the criteria J 
(weighted norm of the control vector i.e. control 
energy cost function), defined by

-
2

(8)

The problem can be formulated as follows: find 
U* e K*, which minimise criteria (8) subject to 
constraint (4).



The weighting matrix W is a positive definite, 
diagonal matrix, weighting the control energy 1 :

W =

w, 0
0 M>-

0 0 \v3 0 
0 0 0 w4

(9)

The optimal control vector u e K is obtained by 
using the general inverse (Fossen, 1995):

u = (10)

Using normalised variables U,T and Td simplifies 
the calculations and improves the readability

max ™*

r = [K,LNj =

Id=\

Normalised spaces are defined as

" X Y
X ' Y '

' Xd Yd

N '

#..]

T

Nd '

X '7 'Nmax max max

(12)

(13)

05) 
(16)

In normalised form the relationship between u and 

Td is given by the simple matrix B^,:

(17)

(18)

URIS (cross-shaped configuration)

} + w 4 3 - w4 ) 2(w3 + w 4 )

FALCON (X-shaped configuration)

+ if 3
(19)

The optimal solution consists of three 
transformations: inversion, scaling and realisation 
(Fig. 3). Inversion uses the relation (17) to transform
the input vector Td from the 3D input space (unit 
cube 3) to the temporary control vector u in the 4D

1 w _ ^ j - 1^4 in a fault-free case (see section 5).

control space «. Scaling maps the vector u € K to 
the constrained vector u* 6 K* using the formula

u* =ku

""

(20)

(21)
max«

Depending on the position of the input vector Td 
inside the input space, it is possible that one or more 
components of the control vector u have an absolute 
value greater than unity, i.e. it is possible that the 
vector u lies outside the unit cube. In this case, 
k < 1 and scaling multiplies each component of U 
by k. The resulting vector iT e K^ has reduced size 
and remains on the boundary of the unit cube, but 
keeps the same direction as the original vector u.
This is very important, because in this case vector T
will have the same direction as Td , but reduced size. 
It would be wrong to saturate just individual 
components of U which are greater than one and to 
leave other components unchangeable, because in 
this case vectors T and Td would differ in the
direction and size. Realisation has a different 
meaning, depending on the method used (simulation 
or real-time application). For simulation purposes, 
realisation means actuation of the thrusters with the 
control vector u* and generation of the force vector
exerted by thrusters T = Bu*. In real-time 
applications, realisation is performed by 
denormalisation u* —»u* and transformation of the
control vector u* to the control vector nd , which is 
applied as set values for the thrusters' speed.

3D JNPUT SPACE 
CUBE)

.
INVERSION

C

4D CONTROL SPACE
^_^^s (CONVEXPOLYHEDRON)

SCALING
4D CONSTRAINED CONTROL SPACE

M 6 gL^ (UNIT CUBE)

REALISATION
3D OUTPUT SPACE

_I_f__^ (UNIT CUBE)

Fig. 3. Optimal solution for the distribution of the 
propulsion forces.

4. FEASIBLE REGION

The value of the scaling factor k depends on the 
position of the input vector Td in the input space 3 - 

If the input vector Td belongs to the specific region



QcS.then k = l. Otherwise, Td e3 
This leads to the following definition:

Definition 1: Feasible region <J> is defined as

(22)

In other words, the feasible region is defined as a set 
of all input vectors from the input space for which 
the corresponding control vector defined by (17) 
belongs to a 4D unit cube. Vectors from the input 
space, which lie outside the feasible region, are 
mapped by (17) to the control vectors that lie outside 
the 4D unit cube and must be scaled to fit this cube, 
because of the constraint (thruster velocity 
saturation). The shape of the feasible region can be 
found by solving a set of equations (saturation 
bounds)

IM I = 1 / = 1234 (1V\\ui\ i> i J-j^j-V* (.•'••3 )

The feasible region is a convex polyhedron inside the 
input space determined by intersection of the four 
pairs of parallel planes defined by (23). Feasible 
region is shown in Fig. 4.

Fig. 4. Input space and feasible region for URIS 
(left) and FALCON (right).

The following expressions summarise the main 
properties of the feasible region concept:

(24)
(25)

Hence, input vectors that belong to the interior and 
boundary of the feasible region in the input space are 
mapped to the same vectors in the output space (one- 
to-one mapping). Vectors from the exterior of the 
feasible region in the input space are scaled and 
mapped onto the boundary of the feasible region in 
the output space. If thruster velocity saturation is 
neglected, then scaling is not needed and solution 
(10) guarantees that each point in the output space 
can be reached i.e. it performs a one-to-one mapping 
between full input and output spaces. However, in 
real applications saturation always exist and the 
effective part of the output space that can be reached 
has the shape of the feasible region. The main 
conclusion of this important issue is that desired 
input vector should always be located inside or on 
the boundary of the feasible region for the particular 
thruster configuration, regardless of how it is 
generated (either by joystick or control algorithm).

Example 1: This example demonstrates the features 
of the proposed solution and clarifies the feasible 
region concept.

INPUT SPACE 3 OUTPUT SPACE 9?

Fig. 5. Input space, output space and feasible region 
for FALCON, with two characteristic cases.

Fig. 5. displays two characteristic cases described by 
(24) and (25). In the first case, input vector Td 
belong to the feasible region and resulting output 
vector T, is the same as input vector (26). In the 
second case, input vector Td lies outside the 

feasible region and output vector T2 (collinear with 
Tdj ) is the best approximation of Td , which lies
on the boundary of the feasible region in the output 
space (27). Analysing the temporary control vector 
u 2 it can be seen that u 2 (l) = 2.1>l. If only this
component is saturated to unity (28), instead of 
scaling all components, than the resulting output
vector T,' is not collinear with TH .

—— 4 ——U£

'-0.06
-- -0.22 

+0.24

"0.8"

0.6
0.7_,

=>l

"0.8"

0.6
0.7

=>u

=>u,=

1 (=

2 =

-0.04'

-0.08 
-0.52 ^ ' 

+ 0.40
+ 2.1

=> k 2 = 0.4
+ 0.7 2
+ 0.9

+ 2.1
-0.5
+ 0.7
+0.9

• + j
•• — 0

^ = +0
+ 0

=> lll=l*

,
^g _., 1 82 = °-48ffl2

[T2 =0.48T4

r,'
"0.525"

=> T 2 ' = 0.325
0.425

9.

(27)

(28)

5. THRUSTER FAULT DETECTION AND 
ACCOMMODATION SYSTEM

The proposed PDAS, shown in Fig. 6., consists of 
two subsystems: a fault detection subsystem (FDS) 
and a fault accommodation subsystem (FAS). The 
FDS uses fault detector units (FDU), associated with 
each thruster, to monitor their healthy state. The FAS 
uses information provided by FDS to accommodate 
faults and perform an appropriate reconfiguration. 
The FDU provide reliable and fast information about 
faults in thrusters. It is trained to recognize external 
faults (such as a jammed or broken propeller) and 
internal faults (such as low bus voltage, lost 
communication with control centre etc.).



Fault Accommodation 
Subsystem (FAS)

Control Unit: Thiuster 1 
=^=== 
Control Unit: Thruster2

discrepancy between predicted and real behaviour of 
the vehicle caused by thruster velocity saturation.

Fig. 6. The proposed PDAS for ROV.

The model-free approach for detection of the 
external faults integrates self-organising map (SOM) 
and neuro-fuzzy clustering techniques. More 
information about FDS can be found in (Omerdic, et 
a/., 2003) The output of each FDU is mapped to the 
weights of the weighting matrix W (9) used in the 
criteria (8). In a fault-free case all weights are equal 
to one. A faulty thruster is penalised such that its 
weight is increased according to predefined rules. 
Hence, a fault in a single thruster is immediately 
detected and appropriate reconfiguration is 
performed by updating the weights in the inversion 
transformation. In the case of a fault in a single 
thruster, the feasible region shrinks, as shown in Fig. 
7. and 8. In particular, Fig. 7. displays the feasible 
region for the case of a partial fault in Thruster 2 and 
its usage of 50%. In this case Thruster 2 is penalised 
by increasing its weight (w2 =3) and its 
corresponding saturation bound in (23) is changed to 
|«j| = 0.5. This guarantees equality between input
and output vectors inside the feasible region and, at 
the same time, the value of |n2 | will never be greater
than 0.5. Similarly, Fig. 8. shows the feasible region 
for the case of a total breakdown in Thruster 2. In 
this case Thruster 2 is switched off and w2 -> oo. 
Only three remaining thrusters are capable to track 
the input vector without any error inside the feasible 
region, because of the inherent redundancy in the 
thruster configuration.

6. CONCLUSION

A novel thruster fault detection and accommodation 
system for ROVs has been presented in the paper. In 
the case of a partial or total fault in a thruster it is 
possible to reconfigure the control system in order to 
keep the high level of the control performance and 
complete a mission. Knowledge about position of the 
input vector inside the feasible region and its 
distance from the saturation bounds can be used to 
improve existing control laws and to avoid

Fig. 7. Feasible region for URIS (left) and FALCON 
(right) in the case of a partial fault in Thruster 2 and 
its usage of 50%.

Fig. 8. Feasible region for URIS (left) and FALCON 
(right) in the case of a total breakdown (failure) in 
Thruster 2 and its usage of 0%.
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Abstract: A new approach for fault detection and accommodation for remotely operated 
underwater vehicles is proposed in this paper. The proposed Fault Detection and 
Accommodation System (PDAS) consists of two subsystems: Fault Detection Subsystem 
(FDS) and Fault Accommodation Subsystem (FAS). The FDS uses fault detector units 
(FDU), associated with each thruster, to monitor their healthy state. Robust and reliable 
fault detection units are based on integration of self-organising maps and fuzzy logic 
clustering methods. These units are able to detect internal and external faulty states of a 
thruster. The FAS uses information provided by the FDS to accommodate faults and 
perform an appropriate reconfiguration. A control energy cost function is used as the 
optimisation criteria. In fault-free and faulty cases the FAS finds the optimal solution, 
which minimise this criteria. The proposed FDS is evaluated with data obtained during 
test trials. Copyright © 2003IFAC
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1. INTRODUCTION

This paper introduces new approach associated with 
fault detection and accommodation for remotely 
operated underwater vehicles (ROVs). Underwater 
vehicles are liable to faults or failures during 
underwater missions. Thrusters are one of the most 
common and most important sources of faults. In all 
but the most trivial cases the existence of a fault may 
lead to cancelling the mission. The implication of 
small faults could be very expensive and time 
consuming. Although good design practice tries to 
minimize the occurrence of faults and failures, there 
is a certain probability that faults will occur. 
Recognition that such events do occur enables 
system designers to develop strategies by which the 
effect they exert is minimised. A large number of 
underwater vehicles have four horizontal thrusters 
for the motion in the horizontal plane in three 
degrees of freedom (surge, sway and yaw). This 
paper, together with (Omerdic and Roberts, 2003), 
demonstrates that, for this class of vehicles, in the 
case of a partial or total fault in a horizontal thruster, 
it is possible to reconfigure the control system in an

optimal manner, in order to maintain a high level of 
manoeuvrability of the faulty vehicle and complete 
the mission.

In the literature, numerous applications of fault 
diagnosis are reported for aeronautical and aerospace 
systems, automotive and traffic systems, chemical 
processes, electrical and electronic systems, nuclear 
plants, power systems and transportations systems 
(Isermann and Balle, 1997). Only recently attention 
has been devoted to fault diagnosis for ROVs. The 
integration of fault-tolerant capabilities within the 
frameworks of the various control architectures for 
unmanned underwater vehicles is still an open 
problem. A comprehensive discussion of this topic 
for general fault-tolerant systems is reported in 
(Blanke, etal., 2001; Blanke, 2001).

Takai and Ura (1999) proposed a model-based 
approach for self-diagnosis of an autonomous 
underwater vehicle (AUV). A key element of the 
self-diagnosis scheme was a recurrent neural network 
representation of the dynamics of the AUV. The 
scheme was implemented on a test bed AUV, and



results showed its ability to cope with sensor and 
actuator failures. A fault-diagnostic system for 
unmanned underwater vehicles was designed and 
tested in real operating conditions by (Alessandri, et 
al., 1999). They considered total and partial actuator 
faults. An approximate model of the vehicle was 
used. Fault detection and diagnosis was 
accomplished by evaluating any change in the 
normal behaviour of the system by comparing the 
state, the parameters and other related quantities of 
the observed process with those of the normal and 
faulty processes. On the basis of the healthy and fault 
models, a bank of estimators was used for the 
nominal plant, the left and the right actuator fault. 
Extended Kalman filters were implemented in the 
process of residual generation for each actuator fault 
type, including the no-fault case. This scheme 
showed effective isolation, at the cost of greater 
computational efforts. Experimental results proved 
the effectiveness of the proposed approach. A fault- 
tolerant system for use in an experimental AUV was 
outlined in (Yang, et al, 1998; Yang, et al., 1999). 
The system was subdivided into individual fault- 
tolerant subsystems for dealing with thruster and 
sensor failures separately. The thruster subsystem 
consisted of a rule base for detection and isolation 
purposes, and an algorithm for reconfiguring the 
thruster control matrix by eliminating the 
corresponding column to accommodate the failure. 
Only a total fault (failure) of the thruster was 
considered. The authors used a constraint-based 
method instead of the pseudo-inverse method to 
compute the inverse of the thruster configuration 
matrix. An experimental investigation was conducted 
on a 6 DoF AUV, ODIN at the University of Hawaii 
to evaluate the performance of the proposed 
approaches and experimental results showed that the 
overall system was capable of performing 
effectively. A fault detection, isolation and 
accommodation system, based on operationally 
experienced faults in ROV actuators, is proposed in 
(Bono, et al, 1999). The authors designed a fault 
management system for underwater vehicles, able to 
satisfy the basic requirement of handling experienced 
faults (e.g. flooded thruster) and conventional zero 
output failures treated in the literature. In addition, 
the fault management system had to be easily 
integrated in the hierarchical control architectures. 
The authors published experience from the sea trials, 
when the water penetrated inside the thruster and 
modified the internal electrical connections in such a 
way that the actual angular speed was higher than the 
desired one, and current consumption was higher 
than normal. Fault detection was performed by 
monitoring the servo-amplifiers residuals, while fault 
isolation required the vehicle to execute steady-state 
manoeuvres. Actuator fault accommodation was 
performed by inhibiting the faulty thruster and by 
reconfiguring the distribution of the control actions 
cancelling the corresponding column in the Thruster 
Control Matrix (TCM). The problem of optimal 
distribution of propulsion forces for over actuated 
underwater vehicles is addressed in (Fodder, et al, 
2000). The authors investigate how to exploit the

excess number of thrusters to accommodate thruster 
faults. First, a redundancy resolution scheme is 
presented, which takes into account the presence of 
excess number of thrusters along with any thruster 
faults and determines the reference thruster forces to 
produce the desired motion. In the next step, these 
reference thruster forces are utilized in the thruster 
controller to generate the required motion. This 
approach resolves the thruster redundancy in the 
Cartesian space and allows the AUV to track the 
task-space trajectories with asymptotic reduction of 
the task-space errors. Results from both computer 
simulations and experiments were provided to 
demonstrate the viability of the proposed scheme. 
The paper is a development of the preliminary 
concept proposed in (Fodder and Sarkar, 1999). If the 
number of control inputs is equal to or more than the 
number of controllable DoF, it is possible to find an 
"optimal" distribution of the control energy, which 
minimises the quadratic energy cost function i.e. a 
measure of the control effort (Fossen, 1995). This 
approach uses the generalised inverse matrix to find 
the optimal control vector. However, the problem of 
thruster velocity saturation was not considered. The 
method for process condition monitoring, based on 
integration of fuzzy inference system and Self- 
Organising Map (SOM), is proposed in (Cuadrado, et 
al, 2001). The method identifies regions in the SOM 
visualisation space, corresponding to different 
conditions of a monitored process, by means of a 
fuzzy rule system, which incorporate expert 
knowledge about process in region identification 
procedure.

Ideas from (Fodder and Sarkar, 1999; Fodder, etal, 
2000; Yang, etal, 1998; Yang, etal, 1999; Fossen, 
1995) were used as the initial basis for the design of 
the novel PDAS for a ROV, presented herein. A 
general thruster model is described in the second 
section. The third section describes the architecture 
of the proposed PDAS. Details about FDS are given 
in the fourth section. The performance of the 
proposed FDS is evaluated with data obtained during 
test trials and results are given in the fifth section. 
Finally, the sixth section summarizes the concluding 
remarks.

2. THRUSTER MODEL

Many modern underwater vehicles have four 
horizontal thrusters that control three degrees of 
freedom (surge, sway and yaw). Hence, the control 
system for motion in the horizontal plane is over 
actuated and there is redundancy, which provides a 
space to perform reconfiguration in the case of a fault 
in a single horizontal thruster. Two underwater 
vehicles with different thruster configurations are 
used to demonstrate the performance of the proposed 
PDAS (FALCON, SeaEye Marine Ltd. and URIS, 
University of Girona. See Fig. 1.). In order to 
examine the performance of the proposed PDAS, the 
original thruster configuration of URIS, with two 
horizontal and two vertical thrusters, is transformed 
into a configuration with four horizontal thrusters.



X-shaped configuration 
FALCON

Cross-shaped configuration 
URIS

Fig. 1. Two common configurations of the horizontal? 
thrusters: FALCON (left) and URIS (right).

A full thruster model, including dynamics of the 
thruster control loop, is shown in Fig. 2. A DC 
motor, designed for underwater operating conditions, 
drives a thruster. The input to the thruster control 
loop is a control variable nd (desired angular
velocity). The motor is equipped with a tachometer, 
which measures actual angular velocity. A gearbox is 
used to reduce the output speed and to enhance the 
output torque. Orientation and position of the thruster 
in the body-fixed frame are defined by vectors e and 
r, respectively. Each thruster exerts thrust T and 
torque Qt (Fig. 3). Depending on propeller spin
direction, vectors T and Qe have the same direction
(for clockwise rotation looking from the back) or 
opposite direction (for counter clockwise rotation). 
The thrust T also generates moment Qr = r x T, so 
the total moment vector exerted by a thruster is given 
by Q=Q +Q . Contributions of each thruster are
summed together to form force vector T. In the 
general case, the thrust T and torque Q, exerted by 
a thruster, are complicated functions depending on 
the vehicle's velocity vector V and control variable 
n. The bilinear thruster model, shown in Fig. 2. and 
described in (Fossen, 1995; Fossen and Blanke, 
2000), can be used to approximate these functions. 
However, in practical applications, the bilinear 
thruster model can be approximated by an affine 
model, where ROV velocity V is equal to zero. 
Hence, optimal distribution of propulsion and control 
forces will be initially found with the assumption that 
the relationship between propeller thrust/torque and 
control variable is given by the affine thruster model. 
The dynamics of the thruster control loop were 
initially neglected. The influence of these factors on 
the performance of the ROV control system will be 
investigated later in the ROV simulator using the 
bilinear thruster model with the dynamics of the 
thruster control loop included.

Fig. 2. Simplified diagram showing full thruster model, 
including thruster control loop dynamics.

Fig. 3. Thrust and torque, exerted by a thruster, for two 
possible propeller spin direction: clockwise (left) and 
counter clockwise (right).

3. THRUSTER FAULT DETECTION AND 
ACCOMMODATION SYSTEM

The proposed PDAS, shown in Fig. 4., consists of 
two subsystems: a Fault Detection Subsystem (FDS) 
and a Fault Accommodation Subsystem (FAS). The 
FDS uses fault detector units (FDU), associated with 
each thruster, to monitor their state. The FAS uses 
information provided by FDS to accommodate faults 
and perform an appropriate reconfiguration. Full 
description of the FAS can be found in (Omerdic and 
Roberts, 2003). In the same paper the concept of a 
feasible region has been developed in order to cope 
with the important problem of thruster velocity 
saturation. The FDUs, which provide reliable and 
fast information about faults in thrusters, are 
described in more detail in the next section.

Fault Accommodation 
Subsystem (FAS)

Fault Detection 
Sybsjst_em_(FDSl

Fig. 4. The proposed PDAS for ROV.



The fault detection and accommodation process 
involves these steps:

1. FDU detects fault (type and degree of 
damage in thruster),

2. The corresponding weight is increased i.e. 
weighting matrix is updated and criteria 
(control energy cost function) is changed,

3. Inversion and scaling find the new control 
vector which minimise new criteria,

4. New control vector is denormalised and
used to actuate the thrusters. 

Hence, a partial or total fault in a single thruster is 
immediately detected and appropriate 
reconfiguration is performed by updating the weights 
in the inversion transformation.

4. FAULT DETECTION SUBSYSTEM

Thrusters are liable to different fault types during the 
underwater mission e.g. propellers can be jammed or 
broken, water can penetrate inside the Thruster 
Control Unit (TCU), communication between TCU 
and main control unit (MCU) can be lost etc. Some 
of these faults (partial faults) are not critical and the 
thruster is able to continue operation in the presence 
of a fault with reduced maximum velocity (% of 
usage o</><100) In other cases (total faults - 
failures) thruster must be switched off (p = o) and
mission has to be continued with remaining thrusters. 
Thruster faults are classified into two main classes 
(Table 1): internal faults (e.g. temperature of the 
windings is out of range, lost communication 
between TCU and MCU, water penetration inside 
TCU, drop in bus voltage etc.) and external faults 
(e.g. jammed or broken propeller). Indicator/ the 
output of the FDU, is the code for the fault. The last 
column in the table represents desired percentage of 
usage p of the thruster. Signals for detection of 
internal faults are already available in existing TCU 
for both vehicles. In particular, TCU for URIS, based 
on Maxon Servoamplifier ADS 50/5, has status- 
reading signal "Ready", which can be used to report 
internal fault (excess temperature or excess current). 
Similarly, communication protocol for FALCON 
provides temperature of the windings and bus 
voltage of each thruster. In order to build an 
universal FDU, capable to detect both internal and 
external faults, it is necessary to augment existing 
internal protection with a software module for fast 
and reliable detection of external faults.

Table 1

Thruster state

Normal 
Jammed 
propeller 
Heavy 
jammed pr. 
Broken pr. 
Unknown 
fault 
Internal fault

! Classification of thruster faults

Class

Ext. 

Ext.

Ext. 
Ext.

Int.

Type

Partial 

Partial

Total 
Partial

Total

Indicator

1
2

3

4 
5

6

%of 
usage/?

100
75

50

0
25

0

The problem of thruster fault detection for 
underwater vehicle has special features, due to 
environmental conditions in which the vehicle 
operates. The most important requirements that the 
FDU should fulfil are:
• Reliable and fast fault detection, without false 

alarms,
• Easy integration with the existing control 

system,
• On-line learning and adaptation to the new 

types of faults,
• Cost efficient i.e. the FDU should use resources 

already available, without introducing new 
hardware,

• Easy transfer to and implementation in other
vehicles.

By carefully examination of the available resources 
in the existing TCUs, the model-free approach, based 
on integration of Self-organising Map (SOM) and 
fuzzy clustering techniques, is chosen as the best 
candidate for FDU to fulfil all these requirements. It 
is possible to monitor actual speed of the motor shaft 
n and current consumption / of the thruster for both 
vehicles (for URIS, these signals are called 'Monitor 
n' and 'Monitor F, respectively; for FALCON, 
communication protocol enables to read output speed 
and winding current). By monitoring n and /, 
together with desired speed nd, the FDU should be 
able to detect external thruster fault. Finally, the 
universal FDU integrates both parts (internal and 
external) into one unit, which is able to detect 
internal and external faults (Fig. 5.). Integration is 
performed using priority scheme, where total faults 
have higher priority than partial faults.

Implementation of the FDU involves two phases: off­ 
line training and on-line fault detection. First step for 
the training phase is acquisition of training data. Test 
trials were performed with URIS at University of 
Girona in July 2002 (Fig. 6.), and training data were 
saved in files. Normal state and three different fault 
cases were considered (jammed, heavy jammed and 
broken propeller). Jammed propeller was simulated 
such that an object was attached to the propeller. 
When the thruster is actuated, propeller and the 
object rotate together, representing additional load 
for the motor. Heavy jammed propeller was 
simulated with two objects attached. In order to 
simulate broken propeller, blades were removed from 
the shaft. Each record in file consists of acquired data 
from the TCU (nd, n and /) and associated fault code 
/ Sampling time was 0.1 s, long enough to ensure 
that all transient responses decay.

Fault Detection nmt,, ̂ ^M.

Fig. 5. Connection between FDU and TCU.



Normal (f = 1)

Fig. 6. Test trials for acquisition of training data.

(a) ' " (b) ' 
Fig. 7. (a) Training data; (b) SOM representatives.

URIS motion was controlled by joystick, such that 
all range of possible thruster speeds was covered 
with enough data points. Fig. 7a. displays the 
training data in the 3D input space, where each fault 
type is coded with colour. Because the real-time 
experiments were undertaken during URIS 
development stage, poor signal conditioning, wiring 
and shielding generated the noisy data. Nevertheless, 
design of robust FDU, able to cope with poor data 
quality is a real challenge. Preprocessing (filtering 
and elimination of outliers) reduces presence of the 
noise. The main idea is to replace each fault type 
(Fig. 7.a) with SOM (Fig. 7.b), which serves as a 
representative of the particular fault type. A fault 
with code/ = i is replaced with SOM /. Each SOM / 
is one-dimensional array of 100 neurons. Each of 
these neurons has associated codebook (prototype) 
vector with three coordinates. The distribution of 
codebook vectors in the input space is found using 
fuzzy c-means clustering. Each codebook is cluster 
centre and representative of all data from its cluster. 
Fig. 7.b shows distribution of codebook vectors.

Jammed propeller (f = 2

Broken propeller (f = 4)
•'••\3

(Normal) (Jammed)

(Heavy jammed) (Broken)

Fig. 8. On-line detection: position of feature vector is 
determined relative to SOM representatives.

During the on-line fault detection phase, three closest 
codebook vectors (Best Matching Units - BMUs) 
from each map to feature vector jc (which consists of 
preprocessed, actual measurements of nj, n and /) are 
computed, together with corresponding distances 
(Fig. 8.), where 'BMUj means/1 BMU in SOM i,

while 'd means Euclidian distance between x and 

iBMUj ,i = l~4, 7 = 1,3. In the next step matrix 

A/ = l'rf.| is created. Minimum values of each
I J J4x3

column of M are found and the indices of the 
minimum values are stored in row vector b. For 
example, ft = [i 3 2] means that the closest first 
BMU is in SOM 1, second - in SOM 3 and third - in 
SOM 2. In order to avoid false detection, final 
decision about faults is done using present and past 
vectors b, which are stored in the buffer with size 
s x 3 . If all buffer elements have the same value, then 
the fault indicator/ output of the FDU, is set to this 
value.
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Fig. 9. Evaluation of the proposed FDS. 

5. FDS EVALUATION

A large data set was acquired during test trials and 
only a part of this data was used for training. 
Evaluation of the proposed FDS is performed using 
entire data set. Only signals nd, n and / are presented 
as inputs to the FDS, which must estimate the faulty 
state of the thruster using only these inputs. Fig. 9. 
displays actual fault code and FDU output, together 
with actual data. It can be seen that the FDU, 
identifies the new faulty state correctly in a short 
time after the change in faulty state. This delay is 
unavoidable, because the thruster must spend some 
time in faulty state before it can be identified. Delay 
is proportional to the buffer size s. A conservative 
value 5 = 25 was used in Fig. 9., in order to prevent a 
wrong detection. It is expected that the buffer size 
and delay will be reduced in the case of FALCON, 
due to advanced signal conditioning and better 
quality of measured signals.

5. CONCLUDING REMARKS

This paper is focused on FDS, integral part of a 
novel PDAS for underwater vehicles. The proposed 
FDS is hybrid, on-line, model-free approach, based 
on integration of SOM and fuzzy clustering methods. 
In training phase FDS uses data obtained during test 
trial to find SOM representatives for each fault type. 
In detection phase FDS makes decision by 
comparing position of feature vector relative to these 
maps. Evaluation results demonstrate efficiency and 
robustness of the FDS. Future work will include 
implementation of the proposed approach and its 
integration into existing control architecture for both 
vehicles. Special attention will be devoted to the 
design of universal controller, robust to a partial/total 
fault in a single thruster. An important part of the 
future work is the integration of feasible region with 
real-time picture presented to the ROV pilot from the 
on-board camera.
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19 This paper introduces a novel thruster fault diagnosis and accommodation system (PDAS) for open-frame underwater vehicles.
Basically, the PDAS is a control allocator, but this primary function is enhanced with the ability of automatic thruster fault 

21 detection and accommodation. The proposed PDAS consists of two subsystems: a fault diagnosis subsystem (FDS) and a fault
accommodation subsystem (FAS). The FDS uses fault detector units (FDUs), associated with each thruster, to monitor their state. 

y Robust and reliable FDUs are based on integration of self-organising maps and fuzzy logic clustering methods. These units are able
to detect internal and external faulty states of thrusters. The FAS uses information provided by the FDS to accommodate faults and 

« perform an appropriate control reallocation. A control energy cost function is used as the optimisation criteria. The FAS uses
weighted pseudo-inverse to find the solution of the control allocation problem, which minimise this criteria. Two approximations
(truncation or scaling) can be used to ensure feasibility of the solution. The proposed FDS is evaluated with data obtained during 

^' test trials. The feasible region concept, related with the problem of thruster velocity saturation, is developed in order to provide
geometrical interpretation of the control allocation problem. The proposed PDAS is implemented as a Simulink model (ROV 

29 simulator), in order to evaluate its performance in different faulty situations.
© 2003 Published by Elsevier Ltd. A"^y^ *>

Keywords: Fault detection; Fault-tolerant systems; Feasible region; Optimal design; Simulators; Underwater vehicles

1. Introduction

A large number of open-frame underwater vehicles 
have no other actuators except thrusters. This paper 
introduces new approach associated with thruster fault 
diagnosis and accommodation for this class of under­ 
water vehicles. The work presented herein is applicable 
to wide class of open-frame underwater vehicles. 
However, the application is focused on two remotely 
operated vehicles (ROVs) with different thruster config­ 
uration. The paper expands upon the work previously 
reported by the authors (Omerdic & Roberts 2003; 
Omerdic, Roberts, & Ridao, 2003).

Underwater vehicles are liable to faults or failures 
during underwater missions. Thrusters are one of the 
most common and most important sources of faults. In

"Corresponding author. Tel.: +44-78-132-40-419; fax: + 44-1633- 
432-442.

E-mail addresses: edin.omerdic@newport.ac.uk (E. Omerdic), 
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0967-0661/$-see front matter © 2003 Published by Elsevier Ltd. 
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all but the most trivial cases the existence of a fault may 
lead to cancelling the mission. The implication of small 
faults could be very expensive and time consuming. 
Although good design practice tries to minimize the 
occurrence of faults and failures, there is a certain 
probability that faults will occur. Recognition that such 
events do occur enables system designers to develop 
strategies by which the effect they exert is minimised. A 
large number of underwater vehicles have more hor­ 
izontal thrusters for the motion in the horizontal plane 
than controllable DOF. This paper demonstrates that, 
for this class of vehicle, in the case of a partial or total 
fault in a horizontal thruster, it is possible to reconfigure 
the control system in an optimal manner, in order to 
maintain a high level of manoeuvrability of the faulty 
vehicle and complete the mission.

In the literature numerous applications of fault 
diagnosis are reported for aeronautical and aerospace 
systems, automotive and traffic systems, chemical 
processes, electrical and electronic systems, nuclear 
plants, power systems and transportation systems (for
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j example, see Isermann & Balle, 1997). Only recently 
attention has been devoted to fault diagnosis for

3 unmanned underwater vehicles. The integration of 
fault-tolerant capabilities within the frameworks of the

5 various control architectures for unmanned underwater 
vehicles is still an open problem. A comprehensive

I discussion of this topic for general fault-tolerant systems 
is reported in Blanke, Staroswiecki, and Eva Wu (2001), 

9 Blanke (2001).
Takai and Ura (1999) proposed a model-based

II approach for self-diagnosis of an autonomous under­ 
water vehicle (AUV). A key element of the self-diagnosis 

13 scheme was a recurrent neural network representation of
the dynamics of the AUV. The scheme was implemented 

15 on a test bed AUV, and results showed its ability to cope
with sensor and actuator failures. 

II A fault-diagnostic system for unmanned underwater
vehicles was designed and tested in real operating 

19 conditions by Alessandri, Caccia, and Veruggio (1999).
They considered total and partial actuator faults. An 

21 approximate model of the vehicle was used. Fault
detection and diagnosis was accomplished by evaluating 

23 any change in the normal behaviour of the system by
comparing the state, the parameters and other related 

25 quantities of the observed process with those of the
normal and faulty processes. On the basis of the healthy 

II and faulty models, a bank of estimators was used for the
nominal model, the left and right actuator faults. 

2? Extended Kalman filters were implemented in the
process of residual generation for each actuator fault 

31 type, including the no-fault case. This scheme showed
effective isolation, at the cost of greater computational%j, 

B efforts. <n
A fault-tolerant system for use in an experimental 

15 AUV was outlined in Yang, Yuh, and Choi (1999,
1998). The system was subdivided into individual fault- 

II tolerant subsystems for dealing with thruster and sensor
failures separately. The thruster subsystem consisted of 

19 a rule base for detection and isolation purposes, and an
algorithm for reconfiguring the thruster control matrix 

(1 by eliminating the corresponding column to accommo­ 
date the failure. Only a total fault (failure) of the 

§ thruster was considered. The authors used a constraint- 
based method instead of the pseudo-inverse method to 

45 compute the inverse of the thruster configuration
matrix. An experimental investigation was conducted 

*7 on a 6 DOF AUV, ODIN at the University of Hawaii to
evaluate the performance of the proposed approaches 

" and experimental results showed that the overall system
was capable of performing effectively. 

!l A fault detection, isolation and accommodation
system, based on operationally experienced faults in 

8 ROV actuators, is proposed in Bono, Bruzzone,
Bruzzone, and Caccia (1999). The authors designed a 

8 fault management system for underwater vehicles, able
to satisfy the basic requirement of handling experienced

faults (e.g. flooded thruster) and conventional zero 
output failures treated in the literature. In addition, the 
fault management system had to be easily integrated in 
the hierarchical control architectures. The authors 
published experience from the sea trials, when the water 
penetrated the thruster and modified the internal 
electrical connections in such a way that the actual 
angular speed was higher than the desired one, and 
current consumption was higher than normal. Fault 
detection was performed by monitoring the servo- 
amplifiers residuals, while fault isolation required the 
vehicle to execute steady-state manoeuvres. Actuator 
fault accommodation was performed by inhibiting the 
faulty thruster and by reconfiguring the distribution of 
the control actions cancelling the corresponding column 
in the thruster control matrix.

The problem of optimal distribution of propulsion 
forces for over actuated underwater vehicles is addressed 
in Fodder, Antonelli, and Sarkar (2000). The authors 
investigate how to exploit the excess number of thrusters 
to accommodate thruster faults. First, a redundancy 
resolution scheme is presented, which takes into account 
the presence of excess number of thrusters along with 
any thruster faults and determines the reference thruster 
forces to produce the desired motion. In the next step, 
these reference thruster forces are utilized in the thruster 
controller to generate the required motion. This 
approach resolves the thruster redundancy in the 
Cartesian space and allows the AUV to track the task- 
space trajectories with asymptotic reduction of the task- 
space errors. The results from both computer simula­ 
tions and experiments were provided to demonstrate the 
viability of the proposed scheme. The paper is a 
development of the preliminary concept proposed in 
Fodder and Sarkar (1999).

If the number of control inputs is equal to or more 
than the number of controllable DOF, it is possible to 
find an "optimal" distribution of the control energy, 
which minimises the quadratic energy cost function i.e. a 
measure of the control effort (Fossen, 1995). This 
approach uses the generalised inverse matrix to find 
the optimal control vector. However, the problem of 
thruster velocity saturation was not considered.

The method for process condition monitoring, based 
on the integration of a fuzzy inference system and a self- 
organising map (SOM), is proposed in Cuadrado, Diaz, 
Diez, Obeso, and Gonzalez (2001). The method identi­ 
fies regions in the SOM visualisation space, correspond­ 
ing to different conditions of a monitored process, by 
means of a fuzzy rule system, which incorporate expert 
knowledge about process in the region identification 
procedure.

Significant efforts have been undertaken in research 
community over last two decades to solve the control 
allocation problem for modern aircraft. Different 
methods were proposed such as direct control allocation
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1 (Durham, 1994, 1993), optimisation-based methods 
using /2 norm (Enns, 1998; Virnig & Bodden, 1994;

3 Snell, Enns, & Garrard, 1992) and l\ norm (Ikeda & 
Hood, 2000; Enns, 1998; Lindfors, 1993), fixed-point

5 method (Burken, Lu, & Wu, 1999; Burken, Lu, Wu, & 
Bahm, 2001) and daisy chain control allocation (Bor-

I dignon, 1996). However, the problem of fault accom­ 
modation for underwater vehicles is closely related with 

9 the control allocation problem for aircrafts. In both
cases, the control allocation problem can be defined as 

[1 the determination of the actuator control values that
generate a given set of desired or commanded forces and 

13 moments.
For the unconstrained control allocation problem 

15 with a control energy cost function used as optimisation
criteria the optimal solution is weighted pseudo-inverse 

\1 (Fossen, 1995). Pseudo-inverse is a special case of
general inverse (GI). GI solutions have the advantage 

19 of being relatively simple to compute and allowing some
control in distribution of control energy among avail- 

21 able actuators. However, in real applications actuator
constraints must be taken into account, which leads to a 

23 constrained control allocation problem. Handling of
constrained controls is the most difficult problem for GI 

25 approach. In some cases, the solution obtained by the
generalised inverse approach is not feasible, i.e. it 

27 violates actuator constraints. Durham (1993) demon­ 
strated that, except in certain degenerate cases, a general 

29 inverse cannot allocate controls inside a constrained
control subset Q that will map to all attainable 

31 command set <P, i.e. only a subset of $ can be covered.
Two methods are suggested to handle cases where 

33 attainable control inputs cannot be allocated. The first
approach (truncation) calculates a GI solution and 

35 truncates any controls (components of control vector)
which exceed their limits. The second approach (scaling) 

!1 maintains the direction of the desired control input
command by scaling unfeasible pseudo-inverse solution 

35 to the boundary of Q (Bordignon, 1996). Even if the
controls do not saturate, care must be taken in choosing

II the GI. When weighted pseudo-inverse solutions are 
used for problems where the actuator settings are

C measured in different physical dimensions, the elements 
of the weighting matrix must be chosen carefully if the

45 resulting solution is desired to be invariant to changes in 
units and coordinate systems (Doty, Melchiorri, &

fl Bonivento, 1993). The PDAS overcomes this problem 
by performing normalisation, such that all physical

* parameters are removed from the thruster control 
matrix and included in limit constraints, which are used

" during normalisation process to scale individual com­ 
ponents of vectors on standard interval [-1,1].

" Recently, some authors reformulated the constrained 
control allocation problem as a quadratic programming

SS (OP) problem. QP generally refers to the numerical 
solution of the optimisation problems with an k norm.

An explicit solution approach is developed by T0ndel, 
Johansen, and Bemporad (2001). An on-line algorithm 
is presented in Tendel, Johansen, and Bemporad (2003), 
while the application to marine vessels is given in 
Johansen, Fossen, and T0ndel (2002). An alternative to 
the explicit solution is to use an iterative solution to 
solve the QP problem. The drawback with the iterative 
solution is that several iterations may have to be 
performed at each sample in order to find the optimal 
solution. An advantage of the iterative approach is that 
there is more flexibility for on-line reconfiguration. 
Computational complexity is also greatly reduced by a 
"warm start", i.e. the numerical solver is initialised with 
the solution of the optimisation problem from the 
previous sample (Fossen, 2002).

Ideas from Podder et al. (2000), Yang et al. (1999), 
Yang et al. (1998), Bordignon (1996), Fossen (1995) 
were used as the initial basis for the design of the PDAS, 
presented herein. Two common thruster configurations 
are described in the second section. The third section 
describes a standard control architecture for ROVs 
(without the PDAS) and an improved architecture (with 
the PDAS). A general thruster model is described in the 
fourth section. The control allocation problem is 
analysed in the fifth section, which begins with the 
general problem formulation, followed by the decom­ 
position of motion. A normalisation procedure is then 
described, followed by the problem formulation for 
horizontal thrusters and an analysis of the choice of 
weighting matrix. Finally, the section ends with the 
remarks about a vertical thruster. The sixth section 
describes the architecture of the proposed PDAS. This 
section begins with the short description of the overall 
architecture, followed by a detail description of the FDS 
and the FAS structure. The potential application of the 
PDAS is addressed in the seventh section. Finally, the 
eighth section summarizes the concluding remarks and 
contributions of the paper.

2. Thruster configuration

For underwater vehicles the most common actuators 
are (Fossen, 2002):

• Azimuth thrusters: Thruster units that can be rotated 
an angle a about the z-axis during the mission and 
produce two force components (Fx .Fy ) in the 
horizontal plane. They are attractive in dynamic 
positioning systems, since they can produce forces in 
different directions, leading to an overactuated 
control problem that can be optimised with respect 
to power and possible faulty situations.

• Fixed direction (non-rotable) thrusters: In contrast to 
azimuth thrusters, where an angle a can vary with 
time, fixed direction thrusters are characterised with a
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fixed angle « = afl , i.e. orientation of these thrusters is
fixed in advance and cannot be changed during the
mission.
Control surfaces: Control surfaces can be mounted at
different locations to produce lift and drag forces,
like fins for diving, rolling and pitching, rudders for
steering, etc.

Two underwater vehicles (FALCON, SeaEye Marine 
Ltd. and URIS, University of Girona, see Fig. 1) with 
different thruster configurations are used to demonstrate 
the performance of the PDAS. These ROVs have no 
other actuators except fixed direction thrusters, and the 
following discussion will be concentrated on this type of 
actuate:.;, while more information about other types can 
be found in Fossen (2002).

The main assumption for successful control allocation 
in the case of a fault in a single thruster is that the 
control system for motion in the horizontal plane is 
overactuated. From this reason the original thruster 
configuration of URIS, with two horizontal and two 
vertical thrusters, is transformed into a configuration 
with four horizontal thrusters, without any vertical 
thruster, as shown in Fig. Ib. This modification was 
possible, because the tank for test trials and acquiring of 
training data at University of Girona was very shallow 
and there was no space and need for motion in vertical 
plane. Three-dimensional view of the FALCON and 
URIS are shown, respectively, in Fig. la and b. Plan 
views of the vehicles, with corresponding configuration

37 

39 

41 

fl 

IS 

4? 

I 

51

Front

:HT

Starboard

of the horizontal thrusters, are shown in bottom part of 
Fig. 1. The origin of the body-fixed reference frame {B} 
is chosen to coincide with the centre of gravity. The axes 
are chosen to coincide with the principal axes of inertia 
and they are defined as:

• XB— longitudinal axes (dkected to front side),
• ya—transversal axes (directed to starboard),
• ZB—normal axes (directed from top to bottom).

The FALCON has four horizontal thrusters, denoted 
as 'HT, i — IT? and one vertical' VT (not shown in Fig, 
la—bottom). The URIS has only four horizontal 
thrusters, denoted in the same way. Thruster configura­ 
tion of the FALCON enables direct control of 4 DOF: 
surge, sway, yaw and heave, as indicated in Fig. 2a. In a 
similar way, modified thruster configuration of the 
URIS allows direct control of only 3 DOF: surge, sway 
and yaw (Fig. 2b). ^jl^JP

Vector id (Fig. 3) can' be decomposed into two parts 
as id = [t$T tJT, where t%T represents desired surge 
force tx, sway force TY and yaw moment TAT for motion 
in the horizontal plane, and i vd T is equal to heave force 
TZ for motion in the vertical plane. The control 
allocation problem for motion of the FALCON in the 
vertical plane is straightforward, since the vector tj7 is a 
scalar, i.e. there is one-to-one correspondence between 
the controllable DOF (heave) and the vertical thruster. 
However, in the general case the vector T^ can have 
three components (heave force iz , roll moment rK and

em

Starboard

'""^vL^ <cx^7*HT

(a) X-shaped configuration (ht Cross-shaped configuration

Fig. 1. Two common configurations of the horizontal thrusters: (a) FALCON, (b) URIS.
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' DOF controllable by horizontal thrusters 
—— DOF controllable by vertical thruster

YAW
YAW

SURGE

SWAY >7

(a) SWAY

SURGE

HEAVE (b) 

Fig. 2. Relationship between thruster configuration and controllable DOF: (a) FALCON, (b) UR1S.

Hand T-' Pre- T>' Control
Control Unit filter allocator

(a)

Fault code 
table

r 4

Hand V_ Pre- *•', Fault 
_ ...... —^ ,,. ~ * accommodation 
Control Unit filter subsystem

t k 
f

u
—— >

u••>

> Actuators
T

——\jr-

Fault diagnosis and 
. b accommodation system

Fault 
diagnosis 

subsystem

T

Fig. 3. Open-loop ROV control structure: (a) Standard architecture, without PDAS, (b) Improved architecture, with PDAS.

pitch moment TM). Typical example is ODIN (Yang 
etal., 1999, 1998), with four horizontal and four vertical 
thrusters, where each of vectors tjp and tJP" have three 
components. >

3. Control architecture

A standard open-loop ROV control structure is 
shown in Fig. 3a, The ROV pilot uses the Hand Control 
Unit (HCU) to generate vector ij, which can be 
interpreted as a desired vector of propulsion forces 
and moments among axes in the body-fixed frame. Raw 
signals from the HCU, packed in vector tj, pass 
through the low-pass pre-filter to smooth out the 
commanded input and to protect the actuators from 
damage caused by abrupt changes of set points. The 
output of the pre-filter is the desired vector of 
propulsion forces and moments (virtual control input)

T<<. The control allocator maps the vector T<< into the 
vector (true control input) u, representing control 
settings for individual actuators. After actuation with 
u, the actuators generate a vector of propulsion forces 
and moments (total control effect) T, which is applied as 
the input to the ROV dynamics block, and determine 
the behaviour of the vehicle. The main objective of the 
control allocation is to ensure that the condition T = id 
is satisfied for all attainable trf .

The control allocator in the standard structure shown 
in Fig. 3a is replaced by the fault accommodation 
subsystem (FAS) in the improved control structure, 
shown in Fig. 3b. The FAS performs weighted pseudo- 
inverse method for control allocation. The primary task 
of control allocation is enhanced with the fault diagnosis 
subsystem (FDS), able to monitor state of the thrusters 
and inform the FAS about any malfunctions using the 
total fault indicator vector f, carrying the codes of faulty 
states for each thruster. The FAS uses information
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Table 1
position vectors for different thruster configurations

Horizontal thrusters
t -y -i ,
*HT 2 rHT W 4rnT

X-shaped configuration (FALCON)

Cross-shaped configuration (UR1S)

ft/2] 
-a/2

o 11~R\
J

/*. floj a/2
-A/21

r-/n
0

.0 J

Vertical thruster

i

PIP UJ

Table 2
Orientation vectors for different thruster configurations
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Fig. 4. Thrust and torque, exerted by a thruster, for two possible 
propellers spin directions: (a) Clockwise, (b) Counter clockwise. 89

wise rotation). An elegant way to describe this relation- 91 
ship is to introduce a spin direction coefficient s: the 
value s = +!(—!) means that the force vector'T and the 93 
torque vector 'Qe have the same (opposite) direction. 
Assume that propeller angular velocity is positive and 95 
the propellers spin direction is clockwise (looking from 
the back of the propellers, see Fig. 4a). The direction of 97 
the torque vector 'Qe is determined using the right-hand 
rule. In this case, the force vector 'T and the torque 99 
vector 'Qe have the same direction as the vector 'e and 
$=+1. If the propeller spin direction is counter 101 
clockwise (Fig. 4b), then vectors 'T and 'e have the 
same direction, while vectors 'Qe and 'e have the 103 
opposite direction and 5 = — 1.

Position vectors for different configurations are given 105 
in Table 1, while Table 2 shows orientation vectors. 
Parameters a, b, oc and R can be obtained from the 107 
technical specifications of the vehicles.

A simplified block diagram of full thruster model, 109 
including the dynamics of the thruster control loop, is 
shown in Fig. 5. A DC motor drives a thruster. The 111 
input to the thruster control loop is a control variable rid

Horizontal thrusters

fHT ear ear

Vertical thruster

en-

X-shaped configuration (FALCON)

Cross-shaped configuration (UR1S)

r cos«l
sinx

. 0 J'Jl
LoJ

cos a "I
—sin a

0 J

•1
. J

cos a"]
sin a

0 J

Or - n S!|

C053 1

—sin a
0; I

°HL'J

provided by the FDS to accommodate faults by 
performing an appropriate reconfiguration, i.e. to 
reallocate control energy among operable thrusters. 
The overall fault diagnosis and accommodation process 
is very fast, despite the fact that in some cases it is 
necessary to perform iterations, due to the computa­ 
tional efficiency of the PDAS algorithm, where the 
heaviest numerical calculations are performed off-line,,,, 
in advance.

4. Thruster model $'•

In the general case an ROV has p thrusters 
l Th, 2 Th,..., p Th. Each thruster lTh, i=\7p exerts 
thrust (force) 'T and torque (moment) 'Qe (Fig. 4). 1 
The position vector 'r = ['rx lry VZ]T determines the 
position of the point of attack of the force 'T, relative to 
the {B}. The force 'T also generates the moment 'Qr = 
'r x 'T, so that the total moment vector exerted by the 
thruster is given by fQ = 'Qe + 'Qr - The orientation of 
the thruster >Th relative to the {B} is denned by the unit

(hi

vector 'e= [!ex le 'ez]J . The vector 'e shows the
positive direction of the force 'T. This means that, if 
the propeller angular velocity is positive, it will exert the 
force 'T in the direction of 'e. Otherwise, the force ''T is 
opposite to 'e. Depending on propellers spin direction, 
vectors 'T and 'Qe have the same direction (for 
clockwise rotation looking from the back of the 
propellers) or the opposite direction (for counterclock-

1 Fig. 4 displays front side of propellers.



1CONPRA: 17611

E. Omerdic, G. Roberts I Control Engineering Practice I (MB)

e

Fig. 5. Simplified diagram showing full thruster model, including thruster control loop dynamics.

(desired angular velocity). The motor is equipped with a 
tachometer, which measures actual angular velocity n. A 
gearbox with the gear ratio GR > 1 is used to reduce the 
output angular velocity n (n = (l/GR)n) and to enhance 
the output torque. This means that the input «rf must be 
multiplied by GR (nd = GRnd). A typical thruster 
control loop is implemented as an independent device 
called thruster control unit (TCU) with integrated power 
amplifiers and controlled by a microcontroller. The 
velocity controller is usually implemented as a digital 
PID controller, although the other designs are possible. 

In the general case, the thrust T and torque Q, exerted 
by a thruster, are complicated functions depending on 
the vehicle's velocity vector vi = [u v wf and control 
variable n. The bilinear thruster model, described in 
(Fossen, 1995; Fossen & Blanke, 2000), can be used to 
approximate these functions. In the general case, the 
thrust T and torque Qe can be calculated from

T(n,Va) = pD4KT(J0)n\n\, T-Te, 4
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59 

61 

63 

65 

67 

(5) 69
The relationship between ambient water velocity ua 
around the thruster with the orientation defined with the 
vector e and the vehicle's linear velocity YI is given by
ua — (1 - <o)\1 • e, (6)

where o» 0 (typically 0.1-0.4) is the wake fraction 
number. It can be seen from (6) that ua can be found as 
projection of the veetGjpVi on the vector e, scaled by 
factor (1 - (a). If

However, in practical applications, the bilinear 
thruster model (4) can be approximated by an qffine 
model (7), where it is assumed that ua = 0:
T(n, Va) = TflWwM, T=re,

Q, = sQee, (7)

33 where p is density of water, D is propeller diameter, KT 
and K(. are non-dimensional thrust and torque coeffi-

35 cients, n is propeller shaft speed, s is spin direction 
coefficient and Jo is advance ratio, defined as

/o = —, (2)
9

where ua is ambient water velocity. Relationships
41 between coefficients KT , KQ and Jo are given by

=0.2-

(3)

where a,- and & are four positive non-dimensional 
constants. Eqs. (3) are obtained by linear approximation 
of the experimental curves KT(J0) and KQ(J0), obtained 
in open water test in a cavitation tunnel or a towing tank 
(Fossen & Blanke, 2000) . Eqs. (1) and (3) imply that the 
mathematical expressions for the thrust T and torque Qe 
can be written as the bilinear thruster model:

T=Te,
(4)

where

Initially, the control allocation problem will be for­ 
mulated and solved under the folio whig assumptions:

1. the dynamics of thruster control loop is neglected2 
(Fig- 5),

2. the relationship between propeller thrust/torque and 
the control variable is given by modified version of 
affine thruster model (7), described below.

The first assumption is realistic, since the time 
constants of DC motors used to drive thrusters of the 
FALCON and the URIS are very small and sample 
time, dictated by control software, is about 40 ms, long 
enough to ensure that all transient responses between 
two samples in thruster control loop disappear.

The second assumption means that:

• shaft torque Qe is neglected, since it is small 
compared to Qr, Qr = r x T,

• the effect of the ambient water velocity ua on 
propeller thrust T is neglected,

2 One of the most important difficulties for successful control 
allocation is actuator dynamics. Fortunately, in many cases actuator 
dynamics is much faster than the dynamics of the other parts of the 
system. In these cases, the most common solution is that actuator 
dynamics are simply neglected. This will work as long as the closed- 
loop system is designed to be substantially slower than the actuator 
servo systems.
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39

43

(7

T(u)=Ku, ~um <u<um

Q = Q r =rxT = 7"(rxe)

T> 

*•„'

|V
/j "'

- r*

Q

Fig. 6. Thruster model used in control allocation for underwater 
vehicles.

• the symmetrical relationship between thrust T and 
the control variable u = n\n\ is used (see Fig. 6).

Under these assumptions, the control allocation 
problem for open-frame underwater vehicles (in parti­ 
cular, FALCON and URIS) is linear and can be solved 
using techniques described in the following. The 
influence of the neglected factors on the performance 
of the ROV control system can be investigated using an 
ROV simulator incorporating the bilinear thruster 
model (4) and the dynamics of the thruster control loop^

5. Control allocation

5.1. General problem formulation

In the following it is assumed that the fixed direction 
(non-rotable) thrusters are only available actuators for 
control allocation. Under the assumptions mentioned 
above, a general thruster 'Th, i=l,p is modelled by a 
modified affine model shown in Fig. 6. Vector of forces 

45 and moments, exerted by thruster 'Th, can be written as

'TC'r x 'e) ('r x >e)x
C'r x >e)y

L('rx'e)z .

T. (8)

T =

=

-ix-

Tz = ^'T-V[ /e IT
TV *—* ^-M ('r x 'cl TA! t=l i=l H. " x eJ J

'^v '^v P£ K
l ey ••• <et - "ey
l e: 'e, "e, 

('rx e) v ('rx'e^ ('rx'e).t
('rx'e), - f'rx'e), - ("rx'e).
( r x e)z ('r x 'e)z ('r x ^e)z

T

•I T -

>T =Tf, (9)

P T
t

where Te*R6x'' is the thruster configuration matrix and
f e*R'> is vector of control forces. For azimuth thrusters
'e = ( e(a) and 'r = 'r(a), which means that 'T = 't(a) and
T = T(«). However, for fixed direction thrusters a =
«o = const, and T = T(«o) = const.

Substituting 'T - 'K'u in (9) yields

T —

' l ex
ey ••• ey

l ez
('r x l e)x ('r x 'e), ("
('rx'ejy ••• ('rx'e), ••• ("

_Ctx le)t C'rx'e), ("
T

' 1 K 0 0 " 'V

x 0 'K 0 ''«

0 0 PK pu

"ex
"ey
"ez

r x "e),
/ V

r x pe)z

= TKu, (10)

K n'

Superposition of the individual contributions 'T, i=\,p 
i5 leads to total vector of propulsion forces and moments

where Ke9*/jxp is the force coefficient matrix and ueW 
is the control vector. Introducing substitution
B-TK, (11)
where Be*R6x') is the thruster control matrix, (10) can be
rewritten as
T = Bu. (12)
Zero-row in B means that the corresponding DOF is not 
directly controllable with the particular thruster config­ 
uration.

Assuming that thrusters are identical, the coefficients 
'K are the same for all thrusters,
1 K= - ="K = K (13) 
Eq. (11) can be simplified as
B = TK = T(£I,) = K(np) = KT. (14) 
Each component 'a of the control vector u is limited by
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1 constraint

-'« ^'u^'u /-Fo
3

- T

(15) um =Hm J ••• 1 •-• I .
p

57

59
Constraint (15) represents thruster velocity saturation,

5 i.e. the physical construction of the thruster ' Th imposes The constrained control subset Q is defined as a set of all 6 1
velocity limitations because the thruster cannot rotate control vectors u which satisfy (16).

7 faster than its maximum velocity. For the control vector Finally, the general constrained control allocation 63
uset of constraints (15) can be written in compact vector problem for open-frame underwater vehicles can be

9 form as formulated as
For given T, find ueO such that Bu = t.

65

U -Um^u^Um, (16) |f condition ue(2 is removed, the problem becomes 67
tvnprf*

|H W lit It13
n -r1 !/ ••• 'u ••• P IJ 1T«m ~~ L um um «mj •

15
For identical thrusters, l um = ••• = pum =

17

unconstrained.
Thruster configuration matrices for the FALCON 69

(17) and the URIS, shown in Table 3, are obtained from (14),
assuming that all thrusters are identical. Parameter A is 71

Um anc^ given as A — (6/2)sin a + (a/2)cos a.
It can be seen that the uncontrollable DOF for the 73

FALCON are roll and pitch, since the fourth and the fifth
" !? e . . . • t j-tr . .u . o *• row of B are zero-rows. In a similar way, uncontrollable 75 Tbruster control matrix for different thruster configurations ^^^ „ , „ , , ,

nOP fr>r tViA TTPTS ar» fc*/™* sW/ anH ni>/-/,

21 FALCON URIS
B or vr • r

cos a cos a cos a cos a 0 1
sin a -sin a sin a —sin a 0 0 

25 £ 0 0 0 0 10
0 0 0 0 00

„ 00000 0
Ll A -A -A A 0 R

29 '

31
Table 4

" Decomposition of the FALCON motion

35
Horizontal thrusters (motion in horizontal plane)

37

!9 >i?

41 '"
Vertical thruster (motion in vertical plane)

43

45 ":^"

Table 5
'' Decomposition of the URIS motion

ti _ __________________ ________
Horizontal thrusters (motion in horizontal plane)

SI

S3

S5 
Vertical thruster (motion in vertical plane)

HI 1 5.2. Decomposition of motion100'

77

79

0 0 0 In the following, the general control allocation g.
ooo problem will be separated into two subproblems and
000 each will be treated individually. The first subproblem is g..

-R R -R related with the motion in the horizontal plane, and the
-,r second with the motion in the vertical plane. Decom­

position of the motion is given in Table 4 for the
*• FALCON and in Table 5 for the URIS.

^fe>-
m &

FALCON

Controllable DOF: Surge, Sway, Yaw
HT\ HTi /TTj H TA • | ^^ -

\ TX \ cosa cosa cosa cosa lyHT
T = ty =JST sula -sin a sin a —sin a s^r

L T»J A -A -A A 4uUT

Controllable DOF: Heave
t VT = ITz] = ̂ s = jt^

a"' a"

URIS

Controllable DOF: Surge, Sway, Yaw
• HT, flT2 HT, HT, • , ur -

] = K 0 1 1 l"ffT

R -R R -R 4uHT

Controllable DOF: no motion in the vertical plane
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It can be seen that the motion of the FALCON in the 
vertical plane is determined by vertical thruster and 
heave force is directly proportional to the value of 
control signal. In the case of a partial fault in a vertical 
thruster, the only available solution is to limit angular 
velocity of the thruster. In the case of total fault 
(failure), the thruster must be switched off and the 
vehicle must be recovered for repair.

The situation is different for motion in the horizontal 
plane, where the number of horizontal thrusters is four 
and the number of controllable DOF is three. In this 
case inherent redundancy in thruster configuration 
enables successful control allocation in the case of 
partial or even total fault in a horizontal thruster.

The control allocation of horizontal thrusters is the 
topic of the discussion in the following sections. Before 
the full problem is formulated, relevant vectors and 
matrices will be normalised, in order to make problem 
more understandable and easier to visualise and solve.

component is dimensionless number that lies between 57 
-1 and +1. Normalised vectors and matrices are 
underlined, in order to distinguish them from the 59 
standard nomenclature. Normalisation procedure will 
be explained on the example of the X-shaped thruster 61 
configuration (the FALCON). Recall from Fig. 6 that 
maximum thruster force is given by 63

Tm = Kun, (18) 65

21

The first step is to find maximum values (modules) of the 
surge and sway forces and the yaw moment. Three 
characteristic cases are indicated in Fig. 7. It can be seen 
that

= 4Tm cosa = 4Kum cosoi =* A cos a = ^, (19)
4um

5.5. Normalisation

= 4Tm sin a = 4Kum sin a

= 4TmA =
M ~wm

Normalisation means that vector components are The second step is to substitute expressions (19X21) in
25 divided by their maximum values, such that each the standard relation IHT = BHTuHT as follows:

*. ';*"
=

A" cos a A" cos a AT cos a A" cos a " 
A" sin a -A~sina A" sin a -AT sin a 

KA -KA -KA KA

9 HT2UHT

.V1 .

4um 4um
tYm lYm

4um 4um

.4um 4um

4«m

4um

4um

4«m

4um

*um . .£.
(22)

HT 'HT

'HT "H

67

69

71

73

« = 3?. (W) 75

(21)
77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109
(a) (hi < c >

Fig- 7. Three cases for finding the maximum modules of force and moment vectors (X-shaped thruster configuration): (a) Max. surge force rxm . (b) 1 1 1 

Max. sway force tYm- (c) Max. yaw moment tjvm-
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1 I inally, the last step is to rewrite (22) in the normalised • The true control input is 57
form as follows:

3

5

7

9
V

11

•*x_- 'll l i '
tjc» 4444
IT_ _ 1 11 1

17m 4 4 4 ~4~
^L 1111
.twin., .4 4 44.

s-
X

r-^i
«m

HTu\
2 u«r ^r _ #' _

3 uffT

«m
4wffr

—— ̂  — '
.HT

t^T"4

r A59

61
"m IK43 u#r em-. ^

um
WT 65

L « J 67
13 " f^ • The virtual control input is ^o

\.U)

15 The normalised form (23) has a number of advantages
compared to the standard form tffr -BOTuOT as ,

-
"tr"

«r _ T _
17 follows:

B . Components of the vectors •f7 and UHT are

»^-^

Tjfm 71

—— 6 5R3 (fc — 3)rrm • 73

^- ...j% 75
dimensionless number, restricted to the standard

21 interval [-1, +1]. This enables better understanding • Control effectiveness matrix BHT is given by 77
and easier visualisation of the problem.

23 2. All physical parameters are removed from the matrix 
EHT during the normalisation process. The compact

25

"1 1 1 1 '
4444 79 

_ 111 i
form of BHT simplifies calculations and, as will be FALCON : -ff" = - -- - -i . (25) 81
shown later, leads to the very simple representation of

27

29

the weighted pseudo-inverse solution and a clear
geometric interpretation
problem.

of the control allocation 4|
** "%

j&^mm^ /•$$•

"%. I -I i I
:% 4444
1§

!1 URIS: BOT = 
Normalisation for the cross-shaped thruster config-

# uration (URIS) can be performed in a similar way. The
final expression is given by

35

17

1011

41
s

«

'£• 5500"
Tr 1 1- — = o o - -
^L 1111
•*»«., ..4 44 4.,

~~ - _ - . S.

2

'•t- ,:%•

**'**'

' :• : ' • ,/

"»' ^, ^»^ — g//TuHT> .

«»r •>

11" 85
2 2
0 0 i 1 . (26) 87
1111 89
4 "4 4 ~4.

91
Actuator pc

, ffT
_ J W

-1 ^ "3^

.~^. .**4 .

>sition constraints are

+1 ^
+1 ' 95

L + lJ 97
4waT Equation B^^u1'7 = XHT represents the system of

- "»• -, equations 99
;•""• 1 ,™ 1 .„ 1 „„ 1

45

47

.,;.: '"^."-':'''^ (24) 4«i +4^2 +4«f +4^4 =W. 101

, ;;>. : FALCON: - wf T - - yfT + - yfT - - «f T = •&, (27) }03
5.4. Probi&tojormulationfor horizontal thrusters

17

The control allocation problem for the motion in the
" horizontal plane can be formulated using normalised

variables as follows:
S3

ii

l yfr_l yr _l <+ l afr = Tjv> 1Q5

1 i^j. 1 jyj, JQy

2 2

For given IHT, find vHT <=QHT such that BHTuHT - URJS : -^ + -«fr = tr, (28) 109

In tVio fnllnwino the nrf>h lem is analvsed in more 1 j?r_l ffr , I j/r_i /rr_ 111, 
details from the general control allocation perspective.
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Each equation in (27) and (28) represents a hyperplane 
in 5R4 . Consequently, (27) and (28) can be rewritten as

= !», (29) 

where normal vectors Ny, N K and Njv, defined as

1 1

FALCON:

4444

NT =J1 -H -i 
r 4 4 4 4 (30)

_! '4 !_ '4

21

23

25

21

8

URIS: .-,..11 (31)

jT _ 1^ I

4 4

are orthogonal on the hyperplanes KX> ray and JT#, 
respectively. The intersection of these hyperplanes is a 
convex set, denoted by #HT , which represent the set of 
aD points a1"" that satisfy BHTQHT = IHT.

The thruster velocity saturation constraints determine 
the constrained control subset QHT, that is, the unit 
four-dimensional hypercube in SR4 : ^

1 HsHr < 1 } c *R4 . (32)

Intersection of KHT and QHT is a solution set, denoted 
by 3^r. Geometric interpretation of the control alloca­ 
tion problem for the motion in the horizontal plane 
using normalised variables is given by 

For a given rHT, find intersection 3HT = KHT U QHT- 
The control effectiveness matrix BHr performs a 

linear transformation from the true control space 9l3 to 
the virtual control space H4 . The image of Offr c9l4 is 
called the attainable command set and denoted by $HT. 
The boundary of $"T is denoted by 6(fHT). The 
character of the solution is closely related with the 
position of the vector -tHT relative to $ffr. Three cases 
are possible:
• If •fr $ ®HT, then 3*"" is empty (i.e. no exact solution 

exists),
• If ifir e6(<£ffr), then 3ffr has exactly one element 

(i.e. there is one, unique solution3),

3 The matrix BHT satisfies the linear independency condition (non- 
complanar controls), since every 3x3 partition of BaT is non- 
singular. This leads to a unique solution of the control allocation 
problem for the case when virtual control input lies on the boundary

• 5r has more than one element (i.e. there are many
solutions).

In order to extract a unique, "best" solution from a

57

59

61
solution set, it is necessary to introduce criteria, which is
minimised by the chosen solution. The most suitable 63
criteria for underwater applications is a control energy
cost function. 65

The optimal control input uffr is given as a solution to
a two-step optimisation problem:
UOT = arg min \\\V%TuaT\\2 ,

ifr . ffT ffT tlT

u"^ ' &QfiT ~

(33)

Ib- (34)

Problem (33H34) can be interpreted as follows:
Given >FHT, the set of feasible control inputs that

minimise \\BHTuHT - t^7")^, find the control input yHT
that minimises ||Wf ruOTIJ2-

The design parameter \VH T is a positive definite

67

69

71

73

75

77
weighting matrix, weighting the control energy, and can
be used for thruster prioritisation, i.e. to decide which 79
thruster should be used primarily. The weighting matrix
W^r is usually chosen to be a diagonal matrix

"wfr 0 0 0 "
jfe% 0 nfr 0 0aUat m
^O<V "^ rt l\ HT n^%, JfS 0 0 Wj 0

? .0 0 0 wfr .

(35)

where wf T > 0 is the weight associated with the thruster
'HT, i = 174. Using Wf T, a faulty thruster is penalised
by increasing its weight, as explained in the following.

81

83

85

87

89

91
5.5. Weighting matrix W^r for fault-free case

In the fault-free case, all horizontal thrusters have the
same priority and W^r is chosen to be equal to identity
matrix •looo-

HT 0100

WM ~ o o i o '
.0001.

(36)

5.6. Weighting matrix W^r for faulty situations

Two faulty situations are possible: a partial fault and
a total fault (failure).

In the case of a partial fault in 'HT, the thruster is
typically allowed to continue operation with the
restricted usage, i.e. the new constraint (saturation)
bounds are
-s?T ^u?T ^s?T, (37)

93

95

97

99

101

103

105

107

109

111
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fl

1 where 0 < afT < 1. The numerical value of sfT depends
on the type of the fault and is selected in advance for 

3 each particular fault type. For example, restricted
constraint bound sfT = 0.75 can be selected for a faulty 

5 state "Jammed propeller" of 'HT, which means that the
thruster's operating range is restricted to 75% of its 

1 nominal range. In addition to the change of the
constraint bounds, the weight w^T of the faulty thruster 

9 is increased using
U tf?r =l + A<r, (38) 

where

(39)
15

The weight update (39) is introduced to penalise the 
17 faulty thruster, prioritise healthy thrusters and to

compensate restricted usage of the faulty thruster in an 
19 optimal way.

In the case of a total fault in 'HT, the thruster is 
11 switched off and removed from the allocation process.

The same effect can be achieved using formulation (33) 
21 by allowing wfr -> oo. In this way, the redundancy is

eliminated from the system of equation BHTuHT = IHT , 
25 which can now be solved in a standard way.

W 5. 7. Remarks on vertical thrusters

8 For the motion of the FALCON in the vertical plane 
normalisation yields

v- .\ =

8 

!5

17
The weighting matrix for vertical thruster 

9 a scalar, denned as

M- m M»feJ-^UJ -
<=> T =

-»r. (41)

where w,Kr > 0 is the weight associated with the thruster 
« 'KT.

In the fault-free case, wf7" = 1. 
fi In the case of a partial fault, the new restricted

constraint (saturation) bounds are 
(I

* where 0<*fT <l. Since B/r = 1, weighted pseudo- 
inverse solution B^T does not depends on w\T . Hence,

" restriction of constraint bounds (42) is the only action 
that is undertaken in the case of a partial fault in the

8 vertical thruster.
In the case of a total fault, the thruster 1 VT must be

ft switched off and removed from the allocation process. 
In this case, heave becomes uncontrollable DOF.

6. Fault diagnosis and accommodation system

6.1. Architecture

57

59

The overall functional architecture of the proposed 61 
PDAS, shown in Fig. 8, represents the expanded version 
of the improved architecture shown in Fig. 2b. The 63 
description of the architecture will be given in an 
hierarchical way, such that the general description and 65 
the main idea of the method are presented in this 
section, while more details about individual components 67 
can be found in the following subsections.

The input to the PDAS is the vector 14, obtained by 69 
filtering (smoothing) the desired vector of propulsion 
forces and moments T*, generated by the HCU. The 71 
output of the PDAS is the vector of desired thruster 
velocities n, transformed into the form that is compa- 73 
tible (acceptable) by the TCUs. A short description of 
the individual components is given in the following. 75

6.1.1. FDS , 3^^&ar 77
FDU: The FDS uses FDUs to monitor the state of the 

thrusters. The FDU is a software module associated 79 
with the thruster, able to detect internal faults (for 
example, temperature of the windings exceeds limits) 81 
and external faults (for example, jammed propeller). The 
output of the FDU is a fault indicator//, the code of the 83 
fault.

Integration: The fault indicators // are integrated into 85 
the total fault indicator vector f inside this block. The 
vector f is a carrier of thrusters' states. 87

6.1.2. FAS 89
Demux: In accordance with the decomposition of the 

motion, shown in Tables 4 and 5,, this block symboli- 91 
cally indicates separation of the vector T</ into two parts: 
l"r , representing the DOF (surge, sway and yaw) 93 
controllable by horizontal thrusters, and ijr , represent­ 
ing the DOF (heave) controllable by vertical thruster. 95

Pseudo-inverse: This block finds weighted pseudo- 
inverse solution of the control allocation problem, 97 
separately for horizontal and vertical thrusters. For 
horizontal thrusters, the solution UHT is given by (49). 99 
For vertical thruster, the solution u^ is given by (51).

Approximation: The weighted pseudo-inverse solution 101 
uHT can be feasible (satisfies all constraints) or 
unfeasible (violates some constraint(s)). The output 103 
u*HT of this block must be feasible solution all the 
time. Hence, if n"T is feasible, then u* ffr = uffr . 105 
Otherwise, /"-approximation (truncation) or S-approx- 
imation (scaling) is perform to find feasible approxima- 107 
tion u* HT .

Co-ordinator: The role of this block is to undertake 109 
remedial actions in accordance to the context of the 
total fault indicator vector f and the instructions, stored 111 
in the fault code table. For each possible fault type the
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Fault Accommodation 
Subsystem (FAS) Control Allocator

Fautt cede taole

Control Unit HT 1

Control Unit HT2

Control Unit HT 3

Control Unit HT4 I 

Control Unit VT 1 j

Fault Diagnosis Subsystem (FDSi

rig. 8. Overall functional architecture of the proposed PDAS.

fault code table has stored corresponding actions A and 
B. The action A is related with the weight updates of 
weighting matrices, used to find the weighted pseudo- 
inverse solution. The action B is related with change of 
constraint bounds, in accordance to fault type.

Mux: This block performs opposite role of Demux 
block, i.e. it merges feasible solutions n*HT and n* VT 
into composite solution vector n*.

Transformation: The vector u* cannot be directly 
applied to drive thrusters. It must be transformed into 
the vector of desired thruster velocities n. This block 
performs this function, using transformation tji = 
*&*Vi\/\ui\ for each component.

Adaptation: Different TCUs accept data in different 
format. For example, the desired angular velocity for 
the TCU of the FALCON must be represented as an 
integer number between -100 and +100. In contrast, 
the same variable must be converted into the voltage in 
order to be applied to drive the thruster of the URIS. 
This block transforms the vector n into the vector n, 
which has the form adapted for the particular TCU.

Vector n is used to drive the thrusters, which generate 
a vector of propulsion forces and moments t. The 
proposed PDAS guarantees that the condition t = rd K 
satisfied for all i"T that lies inside the convex 
polyhedron <^T (feasible region for pseudo-inverse),
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which is a subset of the attainable command set 
That is, if -$T e$%T , the PDAS will find the exact 
solution of the control allocation problem, optimal in 12 
sense. Otherwise, the solution obtained by the PDAS is 
a very good approximation that lies on the boundary 
d(QHT), which depends on design parameters (weighting 
matrices) and type of approximation.

6,2. Fault diagnosis subsystem

6.2.1. Fault classification
Thrusters are liable to different fault types during the 

underwater mission. Some of these faults (partial faults) 
are not critical and the thruster is able to continue 
operation in the presence of a fault with the restricted 
usage, i.e. reduced maximum velocity. In other cases 
(total faults—failures) the thruster must be switched off 
and the mission has to be continued with the remaining 
operable thrusters. Thruster faults are classified into two 
main classes (Omerdic et at, 2003):

25 • Internal faults (e.g. temperature of the windings is out 
of range, lost communication between the TCU and 

2? main processor, drop in bus voltage, etc.)
• External faults (e.g. jammed or broken propeller).

i! Table 6
The fault code table

6.2.2. Fault code table
Relationships between thruster states, fault types and 

remedial actions are stored in the fault code table (Table 
6). It must be emphasized, at this point, that this fault 
code table is just a suggestion, intended to reveal the 
main ideas of the proposed PDAS. New states (rows) 
can be added, and the existing relationships can be 
changed, in order to cover intermediate cases and meet 
specific requirements.

6.2.3. Fault detection unit
The FDU is used for monitoring the thruster states 

and reporting any faulty situation. The FDU is a 
software module, able to detect internal and external 
faults. Connections between the FDU and the TCU for 
arbitrary thruster 'Th are indicated in Fig. 9.

Signals Inti,Int2 ,... for detection of internal faults are 
akeady available in existing TCUs for both vehicles. In 
particular, the TCU for the URIS, based on Maxon 
Servoamplifier ADS 50/5, has status-reading signal 
Inti = "Ready", which can be used to report internal 
faults (excess temperature or excess current). Similarly, 
communication protocol for FALCON provides mon­ 
itoring of the winding temperature (Int\) and bus 
voltage (Int2) of each thruster. In order to build a 
universal FDU, capable of detecting both internal and 
external faults, it is necessary to augment the existing

B
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Fig. 9. Block diagram showing connections between the FDU and the TCU for thruster 'Th.
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Normal Jammed Heavy j. Broken 
(/,=!)

Fig. 10. Time diagrams of raw training data.

internal protection with a software module for fast and 
reliable detection of external faults.

For detection of external faults available signals are 
actual velocity of the motor shaft n and current 
consumption / of the thruster. For the URIS, these 
signals are called "Monitor n" and "Monitor I", 
respectively; for the FALCON, the communication 
protocol enables output speed and winding current to 
be read. By monitoring n and 7, together with desired 
speed nj obtained as output of the PDAS, the FDU 
must be able to detect external thruster fault.

Finally, the universal FDU integrates both parts 
(internal and external) into one unit, which is able to 
detect internal and external faults (Fig. 9). Integration is 
performed using a priority scheme, where total faults 
have h gher priority than partial faults. Indicator/, the 
output of the FDU, is the code of the fault.

Implementation of the FDU involves two phases: off­ 
line training and on-line fault detection.

Off-line training phase: The first stage in the training 
phase is acquisition of training data. Test trials were 
performed with the URIS at University of Girona in 
July 2002, and training data were saved in files. Normal 
state and three different fault cases were considered 
(jammed, heavy jammed and broken propeller).4 A 
jammed prope'Ier was simulated by attaching an object 
to it. When the thruster is actuated, the propeller and 
the object rotate together, representing additional load 
for the motor. Heavy-jammed propeller was simulated 
with two objects attached. In order to simulate broken 
propeller, blades were removed from the shaft. Each 
record in file consists of acquired data from the TCU 
(nd, n and /) and associated fault code/. Sampling time 
was 0.1 s, long enough to ensure that all transient

4However, in real applications the number of faulty cases can be 
higher. In addition, partially broken or damaged propeller blades can 
be used to cover intermediate cases.

Normal (Fault-free) 
Jammed proppeler 
Heavy j propeller 
Broken propeller

-6 -4

Fig. 11. Pre-processed training data in the 3D space.

responses in thruster control loop disappear. The 
motion of the URIS was controlled by a joystick, such 
that all range of possible thruster velocities was covered 
with enough data points. The real-time experiments 
were undertaken during the development stage of the 
URIS, what meant that the inadequate signal condition­ 
ing, wiring and shielding resulted in noisy data.

The time diagrams of the raw training data are shown 
in Fig. 10. Signals from different fault types are 
connected next to each other in order to make easier 
their comparison. Noise and outliers (data items that lie 
very far from the main body of the data) are particularly 
noticeable in current response.

Data pre-processing filters the raw training data in 
order to remove outliers and reject noise. Pre-processed
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57

59

61

63

65

67

69

71

Fig. 12. Time diagrams of pre-processed training data. One of the zero-velocity segments is highlighted. These segments are excluded from the 
training process. 73

training data in 3D space are shown in Fig. II. 5 Fig. 12
21 displays time diagrams of pre-processed data. Normal­ 

isation step in pre-processing is optional, since all
13 variables have the same range and no one is dominant. 

Analysing the distribution of the training data in Fig.
2S 11, the first feature that can be noticed is that each fault- 

type creates certain pattern. In the ideal case, these
27 patterns should be well denned curves. However, the 

presence of the noise and outliers in training data results
M that patterns shown in Fig. 11 are "cloudy". The second 

feature is that the zone around nj % 0 (called the critical
31 zone) is filled with data from different fault types in such 

a way that it is very hard to distinguish individual fault
13 types. Geometrically, the critical zone represents inter­ 

section of different fault-type patterns. This makes
35 successful fault detection in the critical zone difficult to 

achieve. In particular, for zero-velocity case nj = 0
!I thruster does not rotate. Successful and reliable fault 

detection in this case is impossible, since external faults
!' cannot be detected without shaft rotation. The solution 

for this problem is an exclusion of the zero-velocity
II segments from the training process, i.e. the training is 

performed considering data records with nj^O, as
* shown in Fig. 12. However, the same exclusion is 

performed during the on-line fault detection phase.
'5 The problem of thruster fault detection for under­ 

water vehicles has special features, due to environmental
" conditions in which the vehicle operates. The most 

important requirements that the FDU should fulfil are:
«
,| • reliable and fast fault detection, without false alarms,

• easy integration with the existing control system, 
,. • on-line learning and adaptation to the new types of 

faults,

5 Matlab function medf iltl was used to filter data and remove 
outliers at the same time.

• SOM 1
• SOW 2
• SOW 3
« SOW 4

-5 -4

Fig. 13. The second stage in off-line training phase: different fault 
types (patterns) are replaced by SOM representatives.

• cost efficient i.e. the FDU should use resources 
already available, without introducing new hardware,

• easy transfer to and implementation in other vehicles.

By carefully examination of the available resources in 
the existing TCUs, the model-free approach, based on 
integration of an SOM and fuzzy clustering techniques, 
is chosen as the best candidate for FDU to fulfil all these 
requirements (Omerdic et al., 2003). The main idea of 
the second stage in the training phase is to replace each 
fault type (pattern) in Fig. 11 with an SOM as shown in 
Fig. 13, which serves as a representative of the particular 
fault type. A fault type with code/ = k is replaced with
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SOM k. Each SOM k is an one-dimensional array of 100 
neurons. Each of these neurons has an associated 
prototype vector with three coordinates. The distribu­ 
tion of prototype vectors (Fig. 13) in the input space was 
found using fuzzy c-means clustering and approximately 
80% data from each fault type. Each prototype vector is 
cluster centre and representative of all data from its 
cluster.

Finally, in the third and the last stage in the training 
phase the structure of the SOM representatives is saved 
on hard disk for future use. In this way, heavy 
demanding calculations are performed off-line, during 
the training phase, which enables fast and efficient fault 
detection during the on-line phase.

On-line fault detection phase: During the initialisation 
stage of the on-line fault detection phase, the main 
processor reads the structure of the SOM representa­ 
tives, saved on hard disk during the training phase, and 
stores it in the working memory for fast access.

(Normal) (Jammed)

SOM1 BMlTl BMl, ; BM( , SOM 2

(Heavy jammed) (Broken)

Fig. 14. Jn-line fault detection phase: position of •' 
determined relative to SOM representatives b- 
BMUs in each SOM.

or is 
closest

After the initialisation is finished, the fault detection is 
performed by repeating the following steps at each 
program cycle:

Three closest codebook vectors (Best Matching 
Units—BMUs) from each map to feature vector x 
(which consists of pre-processed, actual measurements 
of rid, n and /) are computed, together with correspond­ 
ing distances (Fig. 14), where *BMU7 means jfth BMU in 
SOM k, while ^j^ans Euclidian distance between x 
and fcBMUy, k = 1,4, j = 171. In the next step matrix 
M = [*4'ltx3 is created. Minimum values of each column 
of M are found and the indices of the minimum values 
are stored in row vector b. For example, b = [1 3 2] 
means that the closest first BMU is in SOM 1, second in 
SOM 3 and third in SOM 2. In order to avoid false 
detection, the final decision 
accomplished using present 
are stored in the buffer 
elements have the san><- 
output of the FDU 
of each FDU ? 
indicator

about faulty state is 
last vectors b, which 

5X3. If all buffer 
.a the fault indicator/, 

as value. Finally, outputs 
.;d to form the total fault

= l/i /2 (43)
a f?

ace 
?

^ all four indicators/ are equal to 1 , in 
iu|* i u .ne fault code table. It is assumed that at 
ie instance at most one horizontal thruster can be 

at most one of the indicators/ can be different 
Simultaneous faults in multiple thrusters are 

1 rare in practical operations and in these cases 
.avoidable loss in controllability of some DOF will 

occur. Only faults in a single thruster are considered in 
this paper.

6.2.4. Evaluation
As stated before, a large data set was acquired during 

test trials and only a part of this data was used for
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Fig. 15. Evaluation of the FDU.
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training. The capability of the proposed FDU to detect 
external faults is evaluated using the entire data set. 
Only signals nj, n and / are presented as inputs to the 
FDU, which must estimate the state of the thruster 
using only these inputs. Fig. 15 displays actual fault 
code and FDU output, together with training data. It 
can be seen that the FDU identifies the new thruster 
state correctly in a short time after the change hi state, as 
highlighted in Fig. 15. This delay is unavoidable, 
because the thruster must spend some time in a faulty 
state before the fault can be identified. Delay is 
proportional to the buffer size s. A conservative value 
s = 25 was used in Fig. 15, in order to prevent a wrong 
detection. It is expected that the buffer size and delay 
will be reduced in future similar experiments with the 
FALCON, due to advanced signal conditioning and 
better quality of measured signals.

6.3. Fault accommodation subsystem

6.3.1. Introduction
An ROV pilot uses the HCU (Fig. 8) to generate the 

input command vector &/. The FDS finds the total fault 
indicator vector f with information about healthy state 
of each thruster. The FAS uses these two vectors and 
relationships in the fault code table to solve the control 
allocation problem separately for motion in horizontal 
and vertical plane.

The solution method adopted hi the FAS relies on the 
fact that explicit solution to the unconstrained control 
allocation problem:

flW)

(45)

(46)

where B^ is weighted pseudo-inverse of B. Solution (46) 
is obtained using Lagrange multipliers.

Horizo- ~' il plane: For motion in the horizontal plane 
the weigSM pseudo-inverse matrix B^?" is given by

min ||Wu||2

subject to

is given by (Fossen, 1995)

FALCON: 1

EtX
2(nf

URIS:
Z-ii—l wi

(48)

These expressions are obtained by combining (25), (26) 
and (46).

The weighted pseudo-inverse solution of the uncon­ 
strained control problem for motion hi the horizontal 
plane is given by
u"r = R$h"T. (49)

Vertical plane: Combining (40), (41) and (46), the 
weighted pseudo-inverse matrix B^,^ for motion in the 
vertical plane becomes scalar j;%

I *' (50)FALCON: B+^=

The weighted pseudo-inverse solution of the uncon­ 
strained control problem for motion in the vertical plane 
is given by

(51)VT _ 
H - VT _ -lVT

(47)
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$%T is found from condition UHT = Bŵ if7'eQ/7r . It "
should be emphasised that, for the general constrained ^ 
control allocation problem, there is an infinite number 
of exact solutions for ZJ T e $HT, while no exact solution JQ^ 
exists for i5fr e$fr\^fr . The weighted pseudo-inverse 
is able to find the exact feasible solution of the control 105 
allocation problem, optimal in the k sense, only if 
t^r efHr. Otherwise, for rJj T e$^T\$"T the solution 107 
obtained by pseudo-inverse is unfeasible and cannot be 
directly applied to the thrusters. An unfeasible solution 109 
means that some components (controls) of the control 
vector u violate constraints. In this case the unfeasible 111 
pseudo-inverse solution is approximated in order to get

.-V^Mf.

6.3:2: Feasibility of the weighted pseudo-inverse solution 
The input command vector i%T = [tx IY ^v]T for 

the motion hi the horizontal plane, generated by the 
HCU, belongs to the virtual control space <P^T, the unit 
cube in 9?3 :

For the constrained control allocation problem, where 
the constraint uHT eQHT is required to be satisfied, 
solution (49) may become unfeasible, depending on the 
position of i%T inside <P^T. The virtual control space 
$fT can be partitioned into characteristic regions, as 
indicated in Fig. 16. The two characteristic regions 
inside #fT are <£fiT (feasible region for pseudo-inverse) 
and <j>HT ^> $HT (attainable command set). The shape of
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0.5-

(a)

-0.5-

1 -1

Fig. 16. Partitions of the virtual contf 
horizontal plane: (a) FALCON, (b) VJ.?

-0.5
0.5

for .otion in the

a feasible approximate «. v, some other meth­ 
ods, such as direct co- TO* allocation or fixed-point 
method, are able c .; -& exact, unique, feasible 
solution for all tk. ~«di/i<i t^r e $ffr .

6.3.3. A?b, :v; ton of unfeasible solution
In the t uire, two common approximations are 

used to the approximate unfeasible pseudo-inverse 
solution nar : T-approximation (truncation) and S- 
approximation (scaling). In case of T-approximation, 
the approximation ufHT ed(QHT) is obtained from UHT 
by truncating (clipping) all controls which exceed their 
control constraints. In contrast, the ^-approximation 
u**71 is obtained by scaling unfeasible solution UHT to 
the boundary u?Hr ed(Q"r) by factor/:

(a) £, =fi n (b)

Fig. 17. Approximation error.

- /-..^r

where

/ = min
, max/ «f 

>

,1

(53)

(54)

l*d"T
l^HT\}

The approximation error : s a*1 ied as eHT = •$? _ 
t^r, where iJOT = BK ' * A '-^ Fig. 17). In order to 
be able to compare ^' yproximations, two scalar 
errors are intro action error 0 

*a T!u -PJ ma&«/ft«fe error
T .rection error represents the angle 

betweer ,,'r » " i*HT , while the magnitude error 
repre' ;J -"jdule of the approximation error vector 
etf:r (Fife i , in the case when 0 = 0, the approximation 
i- *'m .:; ^>reseives the direction of the original vector t^r .

! /. Example (Approximation of unfeasible pseudo- 
ir jerse solution)

Let tf T = [0.70 0.20 0.25]T for X-shaped thruster 
configuration in fault-free case (Fig. 18). It can be seen 
that ^T e$HT\^T . The weighted pseudo-inverse solu­
tion UHT = [1.15 0.25 0.65 0.75]T is obtained combin­ 
ing (36) and (49). This solution is unfeasible, since«r>i.

The T-approximation is given by ufHr = 
[1.00 0.25 0.65 0.75] and this is feasible solution 
that lies on the boundary u?HT ed(QHT). This 
solution leads to approximate -t*lHT = EHTu* HT = 
[0.6625 0.1625 0.2125]7 that lies outside ^T (see 
Fig. 18). The magnitude error is ||e,||2 = 0.0650 and 
direction error is 6 — 2.6362°.

The first step for the 5-approximation is to use (54) to 
find the scaling factor/ = 0.8696. Then the approxima­ 
tion u*aT = [1.0000 0.2174 0.5652 0.6522] 6 d(QHT) is 
found using (53). This solution leads to an approxima­ 
tion T*f r = BHrufOT = [0.6087 0.1739 0.21 74]T that 
lies on boundary d($"T) and represents intersection of

and d($"T) (see Fig. 18). The magnitude error is 
||es || 2 = 0.1004 and direction error is 6 = 0, i.e. the 5- 
approximation ÎT preserves the direction of the 
original vector T$T . Comparing errors it can be seen 
that /"-approximation leads to feasible approximation
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T,,',' (S — appi uximalion

-approximation)

-0.5-

-05
0.5

0.5
1 -1

-0.5

Fig. 18. Approximation of unfeasible pseudo-inverse solution.

with lower magnitude error, while S-approximation 
finds a feasible approximation that has the same 
direction as t^r, i.e. with direction error equal to zero.

6.3.5. FAS algorithm
The fault accommodation 

steps:
process involves these

1. FDS detects thrusters' states and generates total faul 
indicator vector

the horizontal plane, and (51)—for vertical plane. If 
the pseudo-inverse solution is unfeasible, "Approx­ 
imation" block makes it feasible utilising T- or S- 
approximation.

5. Feasible control vectors for motion in the horizontal 
and vertical plane are merged, transformed into the 

<! form determined by the TCUs and used to actuate 
ihrusters.

f *tfHT fHT fHT fHT 
1/1 h /3 J4—— v——————'f

2. Using Table 6, "Co-ordinator" (Fig. 8) transforms 
vector f into the association vector s =

[s?T *fr s«T f, which relates thrus-

ter states and saturation bounds of each thruster. 
This transformation is called action B. For example, 
f = [2 1 1 1 1]T means "Jammed propeller" state in 
1 HT and fault-free states in others. This vector is 
mapped to the association vector s = [0.75 1 1 1 1]T 
i.e. 1 HT should operate at 75%, while the others 
should work at full power (see Table 6).

3. If a faulty thruster is horizontal, then "Co-ordinator" 
updates its weight in the weighting matrix WfT using 
(38) anc! (39), and set the other weights to unity. If a 
faulty thraster is vertical, then there is no need for 
weight update. The procedure of weighting update is 
called action A. New weights for the given example

ITT1 r, , ffT tfT tIT VT tare wfr = 5/3, wfr = nfT = nf ' = w, = 1.
4. "Pseudo-inverse" and "Approximation" find the 

new, feasible control vector for the given input and 
actual state of thrusters. "Pseudo-inverse" uses (47)- 
(49) to find the pseudo-inverse solution for motion in

In the case of a fault in a single thruster, the feasible 
region for pseudo-inverse <J^r and attainable command 
set $HT shrink, as shown in Fig. 19. In particular, Fig. 
19a and c display the partitions of the virtual control 
space <1>HT (regions $HT an(j $HTJ for ^ case Qf a
partial fault ("Heavy-jammed propeller") in 2HT. In 
this case, 2HT is penalised by increasing its weight 
(w^T = 3, Eqs. (38) and (39)) and corresponding satura­ 
tion bound s%T is changed to s-?T = 0.5. This guarantees 
equality between desired and actual vectors (tj7 and 
rHT) inside f^T shown in Fig. 19a and c and, at the 
same time, the value of \u^T\ will never be greater than 
0.5. Similarly, Fig. 19b and d show the feasible region 
for the case of a total breakdown in 2HT. In this case, 
2HT is switched off and w^T -* oo. In this way, the 
redundancy is eliminated from the system of equation 
BHTuHT = /CHT, which can now be solved in a standard 
way. From this reason $^T an(j QHT coincide jn pjg_ 
19b and d. Only three remaining thrusters are capable to 
track the desired vector -t"T without any error inside 
$HT shown in Fig. 19b and d. This means that, in the 
case of a total failure in a single thruster, mission can be 
continued and the control allocation will be successful if 
the desired vector t^T stays inside ^rfor particular 
fault case.
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35
•05

(b)

Fig. 19. Partitions of the virtual control space for different faulty situations: (a) FALCON: "Heavy j. propeller" fsf7" = 0.5). (b) FALCON: "Broken 
propeller" (sf7 = 0). (c) UR1S: "Heavy j. propeller" (sf = 0.5). (d) UR1S: "Broken propeller" (sf = 0).

Control law
(Heading controller,

Depth controller, etc.)
Iter, 
etc.)

*

* Pre- 
fitter

4- Control 
allocator

u
Actuators

•J
AUV

Sensors

Fig. 20. Typical closed-loop AUV control structure.

7. Potential applications

In standard open-loop ROV control structure (Fig. 
3a), vector id is generated by an ROV pilot using HCU. 
In contrast, Fig. 20 displays a typical, closed-loop AUV 
control structure. In order to achieve mission objectives, 
the control law uses actual knowledge about the

environment and sensor measurements to find a 
reference inputs for a set of controllers (heading 
controller, depth controller, etc.). The outputs of the 
controllers are integrated into a vector that is similar to 
the output of the HCU in Fig. 3a. The control allocator 
performs in exactly the same way as in the previous case. 
Hence, from the control allocator point of view, it does
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Fault
accommodation 

subsystem

Fault diagnosis and 
accommodation system

Fig. 21. Relationship between the PDAS and a typical control 
structure for open-frame underwater vehicles (ROVs or AUVs).

not matter how the virtual control input t^ is generated 
(by the ROV pilot or the control law). The control 
allocation algorithm is the same for both structures. The 
task of the control allocator in both cases is to determine 
appropriate control settings for individual actuators, 
which produce the desired set of forces and moments.

It is useful at this point to consider the role (potential 
application) of the PDAS in the control structures 
shown in Figs. 3a and 20. As indicated in Fig. 21, the 
PDAS performs the control allocation task, but this 
primary task is enhanced with the ability to monitor the 
state of the thrusters and, if necessary, perform 
automatic reconfiguration, i.e. redistribution of propul­ 
sion forces among the operable thrusters, as explained in 
previous sections. In this way, using control allocation 
the actuator selection task is separated from the 
regulation task in the control design. That is, the 
control law, which maps the desired response to a set 
of con mands (objectives), is not dependent on the 
design of the control allocation system, which relates 
these commands with settings and positions of indivi­ 
dual actuators.

Treating control allocation independently of the 
control law is convenient because of the following:

1 Actuator constraints can be taken into account: In real 
applications actuator saturation always exists. If one 
actuator saturates, some of methods for control 
allocation are able to redistribute control energy 
among other available actuators to compensate for 
the inability of a saturated thruster to produce its 
nominal control effect. In this way, available control 
resources are fully exploited before the closed-loop 
performance is degraded.
Reconfiguration can be performed: If the effectiveness 
of the actuators change over time, or in the case of an 
actuator total or partial fault, reconfiguration i.e. 
redistribution of control energy among a set of 
available actuators can be performed, without having 
to redesign the control law.

8. Concluding remarks 57

A novel thruster fault detection and accommodation 59 
system for overactuated open-frame underwater vehicles 
has been presented. The PDAS includes two subsystems: 61 
FDS and FAS. The FDS is a hybrid, on-line, model-free 
approach, based on integration of SOM and fuzzy 63 
clustering methods. In the training phase, the FDS uses 
data obtained during test trial to find SOM representa- 65 
tives for each fault type. In the detection phase, the FDS 
makes decision about fault type by comparing the 67 
position of feature vector relative to these maps. The 
results demonstrate efficiency and robustness of the 69 
FDS. The FAS uses the output of the FDS to 
accommodate faults and perform reconfiguration by 71 
updating weights used in the optimisation criteria and 
thruster velocity saturation bounds. This paper demon- 73 
strates that, for open-frame underwater vehicles with 
four horizontal thrusters, in the case of a partial or total 75 
fault in a horizontal thruster, it is possible to reconfigure 
the control system in an optimal manner, in order to 77 
maintain a high level of manoeuvrability and mission 
completion. 79

Important contributions of the paper are:
81

• normalisation of the control allocation problem, 
which leads to easier understanding and visualisation 33 
of the problem,

• design of enhanced control allocator, able to reallo- 35 
cate control energy among operable thrusters in an 
optimal way and continue the mission in the presence gy 
of thruster velocity saturation and a fault in a single 
thruster. 39

• visualisation of the feasible region for pseudo-inverse, 
which provides a framework to visualise thruster 91 
velocity saturation bounds and to incorporate knowl­ 
edge about saturation margins into control law. This 93 
is a very important enhancement, which improves 
existing controllers and provides better performance 95 
of the control system in real-world applications.

97

The most important issue is that every control law 99 
should generate input vectors that lie inside the feasible 
region for pseudo-inverse. Knowledge about position of 101 
the input vector inside the feasible region and its 
distance from the saturation bounds can be used to 103 
improve existing control laws and to avoid discrepancy 
between predicted and real behaviour of the vehicle 105 
caused by thruster velocity saturation. Currently, most 
ROVs' energy is provided, via the umbilical cable, from 107 
power supplies located on the mother ship. AUVs and 
some ROVs utilise batteries for the energy supply and 109 
excessive power consumption adversely affects available 
time on mission. The proposed PDAS provides an 111 
optimal solution for the distribution of propulsion
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| forces for fault-free case and fault in a single thruster,
that minimises a control energy cost function. The 

] importance of an optimal solution can be summarised as
minimum control energy means maximum operational 

5 time from battery, and minimum usage of thruster
means maximisation of thruster life. 

1 However, the PDAS is able to find the exact solution
of the control allocation problem only on a subset of 

9 attainable command set, i.e. in small zones around the
feasible region, where the pseudo-inverse solution is 

j[ unfeasible, still it is possible to find the exact solution by
applying other techniques, such as direct control 

13 allocation or fixed-point methods. An extension of the
PDAS to cover these zones is described in (Omerdic, 

15 Roberts, & Toal, 2004).
Underwater vehicle, which use other types of 

17 actuators (like control surfaces) beside thrusters, are
not covered in this paper, but the same fault diagnosis 

I? and accommodation concept can be extended to cover
this class of underwater vehicles by including new 

21 actuators into control architecture and reformulating
the control allocation problem. 

23 The proposed PDAS is a part of the low-level control
layer and its modular design enables ectsy integration 

15 into existing control laws. Future work will include
implementation of the proposed approach and its 

37 integration into existing control architecture for both
vehicles. Special attention will be devoted to the design 

9 of a universal controller, robust to a partial/total fault in
a single thruster. An important part of this work will tw 

Jl th. integration of feasible region with real-time videc
presented to the ROV pilot from the on-board c? 'ia.
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