1,530 research outputs found

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Towards tactile sensing active capsule endoscopy

    Get PDF
    Examination of the gastrointestinal(GI) tract has traditionally been performed using tethered endoscopy tools with limited reach and more recently with passive untethered capsule endoscopy with limited capability. Inspection of small intestines is only possible using the latter capsule endoscopy with on board camera system. Limited to visual means it cannot detect features beneath the lumen wall if they have not affected the lumen structure or colour. This work presents an improved capsule endoscopy system with locomotion for active exploration of the small intestines and tactile sensing to detect deformation of the capsule outer surface when it follows the intestinal wall. In laboratory conditions this system is capable of identifying sub-lumen features such as submucosal tumours.Through an extensive literary review the current state of GI tract inspection in particular using remote operated miniature robotics, was investigated, concluding no solution currently exists that utilises tactile sensing with a capsule endoscopy. In order to achieve such a platform, further investigation was made in to tactile sensing technologies, methods of locomotion through the gut, and methods to support an increased power requirement for additional electronics and actuation. A set of detailed criteria were compiled for a soft formed sensor and flexible bodied locomotion system. The sensing system is built on the biomimetic tactile sensing device, Tactip, \cite{Chorley2008, Chorley2010, Winstone2012, Winstone2013} which has been redesigned to fit the form of a capsule endoscopy. These modifications have required a 360o360^{o} cylindrical sensing surface with 360o360^{o} panoramic optical system. Multi-material 3D printing has been used to build an almost complete sensor assembly with a combination of hard and soft materials, presenting a soft compliant tactile sensing system that mimics the tactile sensing methods of the human finger. The cylindrical Tactip has been validated using artificial submucosal tumours in laboratory conditions. The first experiment has explored the new form factor and measured the device's ability to detect surface deformation when travelling through a pipe like structure with varying lump obstructions. Sensor data was analysed and used to reconstruct the test environment as a 3D rendered structure. A second tactile sensing experiment has explored the use of classifier algorithms to successfully discriminate between three tumour characteristics; shape, size and material hardness. Locomotion of the capsule endoscopy has explored further bio-inspiration from earthworm's peristaltic locomotion, which share operating environment similarities. A soft bodied peristaltic worm robot has been developed that uses a tuned planetary gearbox mechanism to displace tendons that contract each worm segment. Methods have been identified to optimise the gearbox parameter to a pipe like structure of a given diameter. The locomotion system has been tested within a laboratory constructed pipe environment, showing that using only one actuator, three independent worm segments can be controlled. This configuration achieves comparable locomotion capabilities to that of an identical robot with an actuator dedicated to each individual worm segment. This system can be miniaturised more easily due to reduced parts and number of actuators, and so is more suitable for capsule endoscopy. Finally, these two developments have been integrated to demonstrate successful simultaneous locomotion and sensing to detect an artificial submucosal tumour embedded within the test environment. The addition of both tactile sensing and locomotion have created a need for additional power beyond what is available from current battery technology. Early stage work has reviewed wireless power transfer (WPT) as a potential solution to this problem. Methods for optimisation and miniaturisation to implement WPT on a capsule endoscopy have been identified with a laboratory built system that validates the methods found. Future work would see this combined with a miniaturised development of the robot presented. This thesis has developed a novel method for sub-lumen examination. With further efforts to miniaturise the robot it could provide a comfortable and non-invasive procedure to GI tract inspection reducing the need for surgical procedures and accessibility for earlier stage of examination. Furthermore, these developments have applicability in other domains such as veterinary medicine, industrial pipe inspection and exploration of hazardous environments

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation

    Automated NDT inspection for large and complex geometries of composite materials

    Get PDF
    Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3m³. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6m². The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection.Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3m³. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6m². The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Система визначення глибини зображення

    Get PDF
    Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету" . Керівник роботи: к. т. н., ст. викл. кафедри авіаційних комп’ютерно-інтегрованих комплексів, Василенко Микола ПавловичIn today's world, there is often a question about creating a model to solve a certain problem in such a way that it performs its intended task properly and does not have a large cost. This is what almost every developer of the project wants at the production stage. Thus, the work consists in improving and acquiring better accuracy of the image depth detection system. For this, was modified and improved, namely, the main design of the model was changed and the quality of the image was improved, thanks to various methods of image filtering. Unlike the previous model, this project investigates the effect and quality of the 3D scene construction in the image, not the streaming video, under different weather conditions and at different observation points, which makes it possible to feel in more detail the impact of various phenomena on the model itself during operation and improve accuracy due to considering a single pair of images rather than a stream of large numbers at a specific frequency. The design consists of two cameras, which were selected from the principle of price-quality, and a box to fix and protect the model itself, thus forming protection from the environment in various conditions of use. The design is connected to a computer that performs the software part, which consists in creating a stereo pair – artificial adjustment of cameras, image analysis at the initial stage and after filtering, which as a result gives an opportunity to see the difference in the accuracy of constructing a 3D image, which can be used for various goals, for example to find out the size or distance to the target object.У сучасному світі часто постає питання про створення моделі вирішення певної задачі таким чином, щоб вона якісно виконувала поставлене завдання і не мала великих витрат. Це те, чого хоче практично кожен розробник проекту на етапі виробництва. Таким чином, робота полягає в удосконаленні та підвищенні точності системи визначення глибини зображення. Для цього виготовлена модель була модифікована та вдосконалена, а саме змінено основну конструкцію моделі та покращено якість зображення, завдяки різним методам фільтрації зображення. На відміну від попередньої моделі, цей проект досліджує ефект і якість побудови 3D-сцени в зображенні, а не в потоковому відео, за різних погодних умов і в різних точках спостереження, що дає можливість більш детально відчути вплив різних явищ. на самій моделі під час роботи та підвищити точність за рахунок розгляду однієї пари зображень, а не потоку великих чисел із певною частотою. Конструкція складається з двох камер, підібраних за принципом ціна-якість, і коробки для кріплення і захисту самої моделі, формуючи таким чином захист від зовнішнього середовища в різних умовах використання. Конструкція підключена до комп’ютера, який виконує програмну частину, яка полягає у створенні стереопари – штучне налаштування камер, аналіз зображення на початковому етапі та після фільтрації, що в результаті дає можливість побачити різницю в точності. побудови тривимірного зображення, яке можна використовувати для різних цілей, наприклад, щоб дізнатися розмір або відстань до цільового об'єкта

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore