664 research outputs found

    Integration techniques of pHEMTs and planar Gunn diodes on GaAs substrates

    Get PDF
    This work presents two different approaches for the implementation of pseudomorphic high electron mobility transistors (pHEMTs) and planar Gunn diodes on the same gallium arsenide substrate. In the first approach, a combined wafer is used where a buffer layer separates the active layers of the two devices. A second approach was also examined using a single wafer where the AlGaAs/InGaAs/GaAs heterostructures were designed for the realisation of pHEMTs. The comparison between the two techniques showed that the devices fabricated on the single pHEMT wafer presented superior performance over the combined wafer technique. The DC and small-signal characteristics of the pHEMTs on the single wafer were enhanced after the use of T-gates with 70 nm length. The maximum transconductance of the transistors was equal to 780 mS/mm with 200 GHz maximum frequency of oscillation (fmax). Planar Gunn diodes fabricated in the pHEMT wafer, with 1.3 ÎŒm anode-to-cathode separation (LAC) presented oscillations at 87.6 GHz with maximum power of oscillation equal to -40 dBm

    Experimentally estimated dead space for GaAs and InP based planar Gunn diodes

    Get PDF
    The authors would like to thank the staff of the James Watt Nanofabrication Centre at the University of Glasgow for help in fabricating the devices which is reported in this paper. ‘Part of this work was supported by ESPRC through EP/H011862/ 1, and EP/H012966/1.Peer reviewedPublisher PD

    Terahertz oscillations in an In<sub>0.53</sub>Ga<sub>0.47</sub>As submicron planar gunn diode

    Get PDF
    The length of the transit region of a Gunn diode determines the natural frequency at which it operates in fundamental mode – the shorter the device, the higher the frequency of operation. The long-held view on Gunn diode design is that for a functioning device the minimum length of the transit region is about 1.5ÎŒm, limiting the devices to fundamental mode operation at frequencies of roughly 60 GHz. Study of these devices by more advanced Monte Carlo techniques that simulate the ballistic transport and electron-phonon interactions that govern device behaviour, offers a new lower bound of 0.5ÎŒm, which is already being approached by the experimental evidence that has shown planar and vertical devices exhibiting Gunn operation at 600nm and 700nm, respectively. The paper presents results of the first ever THz submicron planar Gunn diode fabricated in In&lt;sub&gt;0.53&lt;/sub&gt;Ga&lt;sub&gt;0.47&lt;/sub&gt;A on an InP substrate, operating at a fundamental frequency above 300 GHz. Experimentally measured rf power of 28 ”W was obtained from a 600 nm long ×120 ”m wide device. At this new length, operation in fundamental mode at much higher frequencies becomes possible – the Monte Carlo model used predicts power output at frequencies over 300 GHz

    Co-fabrication of planar Gunn diode and HEMT on InP substrate

    Get PDF
    We present the co-fabrication of planar Gunn diodes and high electron mobility transistors (HEMTs) on an Indium Phosphide (InP) substrate for the first time. Electron beam lithography (EBL) has been used extensively for the complete fabrication procedure and a 70 nm T-gate technology was incorporated for the enhancement of the small-signal characteristics of the HEMT. Diodes with anode-to-cathode separation (Lac) down to 1 ÎŒm and 120 ÎŒm width where shown to oscillate up to 204 GHz. The transistor presents a cut-off frequency (fT) of 220 GHz, with power gain up to 330 GHz (f&lt;sub&gt;max&lt;/sub&gt;). The integration of the two devices creates the potential for the realisation of high-power, high-frequency MMIC Gunn oscillators, circuits and systems

    Fabrication of integrated planar gunn diode and micro-cooler on GaAs substrate

    Get PDF
    We demonstrate fabrication of an integrated micro cooler with the planar Gunn diode and characterise its performance. First experimental results have shown a small cooling at the surface of the micro cooler. This is first demonstration of an integrated micro-cooler with a planar Gunn diode

    A planar Gunn diode operating above 100 GHz

    Get PDF
    We show the experimental realization of a 108-GHz planar Gunn diode structure fabricated in GaAs/AlGaAs. There is a considerable interest in such devices since they lend themselves to integration into millimeter-wave and terahertz integrated circuits. The material used was grown by molecular beam epitaxy, and devices were made using electron beam lithography. Since the frequency of oscillation is defined by the lithographically controlled anode-cathode distance, the technology shows great promise in fabricating single chip terahertz sources

    Sixty-GHz integrated RF head Final report

    Get PDF
    Integrated 60.8 GHz RF receiver and low noise IF preamplifier developmen

    Impact ionisation electroluminescence in planar GaAs-based heterostructure Gunn diodes:Spatial distribution and impact of doping nonuniformities

    Get PDF
    When biased in the negative differential resistance regime, electroluminescence (EL) is emitted from planar GaAs heterostructure Gunn diodes. This EL is due to the recombination of electrons in the device channel with holes that are generated by impact ionisation when the Gunn domains reach the anode edge. The EL forms non-uniform patterns whose intensity shows short-range intensity variations in the direction parallel to the contacts and decreases along the device channel towards the cathode. This paper employs Monte Carlo models, in conjunction with the experimental data, to analyse these non-uniform EL patterns and to study the carrier dynamics responsible for them. It is found that the short-range lateral (i.e., parallel to the device contacts) EL patterns are probably due to non-uniformities in the doping of the anode contact, illustrating the usefulness of EL analysis on the detection of such inhomogeneities. The overall decreasing EL intensity towards the anode is also discussed in terms of the interaction of holes with the time-dependent electric field due to the transit of the Gunn domains. Due to their lower relative mobility and the low electric field outside of the Gunn domain, freshly generated holes remain close to the anode until the arrival of a new domain accelerates them towards the cathode. When the average over the transit of several Gunn domains is considered, this results in a higher hole density, and hence a higher EL intensity, next to the anode

    Planar gunn diode characterisation and resonators elements to realise oscillator circuits

    Get PDF
    The paper describes the planar Gunn diode, which is well suited to providing milli-metric and tera hertz sources using microwave monolithic integrated circuit (MMIC) technologies. Different planar Gunn electrode geometries are described along with DC, RF and thermal characterisation. To realize the planar high frequency sources there is requirement for high frequency planar resonators, the paper will describe both the radial and new diamond shaped geometries

    Array concepts for solid-state and vacuum microelectronics millimeter-wave generation

    Get PDF
    The authors have proposed that the increasing demand for contact watt-level coherent sources in the millimeter- and submillimeter-wave region can be satisfied by fabricating two-dimensional grids loaded with oscillators and multipliers for quasi-optical coherent spatial combining of the outputs of large numbers of low-power devices. This was first demonstrated through the successful fabrication of monolithic arrays with 2000 Schottky diodes. Watt-level power outputs were obtained in doubling to 66 GHz. In addition, a simple transmission-line model was verified with a quasi-optical reflectometer that measured the array impedance. This multiplier array work is being extended to novel tripler configurations using blocking barrier devices. The technique has also been extended to oscillator configurations where the grid structure is loaded with negative-resistance devices. This was first demonstrated using Gunn devices. More recently, a 25-element MESFET grid oscillating at 10 GHz exhibited power combining and self-locking. Currently, this approach is being extended to a 100-element monolithic array of Gunn diodes. This same approach should be applicable to planar vacuum electron devices such as the submillimeter-wave BWO (backward wave oscillator) and vacuum FET
    • 

    corecore