113 research outputs found

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Design and Prototyping of an Underactuated Hand Exoskeleton With Fingers Coupled by a Gear-Based Differential

    Get PDF
    Exoskeletons and more in general wearable mechatronic devices represent a promising opportunity for rehabilitation and assistance to people presenting with temporary and/or permanent diseases. However, there are still some limits in the diffusion of robotic technologies for neuro-rehabilitation, notwithstanding their technological developments and evidence of clinical effectiveness. One of the main bottlenecks that constrain the complexity, weight, and costs of exoskeletons is represented by the actuators. This problem is particularly evident in devices designed for the upper limb, and in particular for the hand, in which dimension limits and kinematics complexity are particularly challenging. This study presents the design and prototyping of a hand finger exoskeleton. In particular, we focus on the design of a gear-based differential mechanism aimed at coupling the motion of two adjacent fingers and limiting the complexity and costs of the system. The exoskeleton is able to actuate the flexion/extension motion of the fingers and apply bidirectional forces, that is, it is able to both open and close the fingers. The kinematic structure of the finger actuation system has the peculiarity to present three DoFs when the exoskeleton is not worn and one DoF when it is worn, allowing better adaptability and higher wearability. The design of the gear-based differential is inspired by the mechanism widely used in the automotive field; it allows actuating two fingers with one actuator only, keeping their movements independent

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    A multi-DOF robotic exoskeleton interface for hand motion assistance

    Get PDF
    This paper outlines the design and development of a robotic exoskeleton based rehabilitation system. A portable direct-driven optimized hand exoskeleton system has been proposed. The optimization procedure primarily based on matching the exoskeleton and finger workspaces guided the system design. The selection of actuators for the proposed system has emerged as a result of experiments with users of different hand sizes. Using commercial sensors, various hand parameters, e.g. maximum and average force levels have been measured. The results of these experiments have been mapped directly to the mechanical design of the system. An under-actuated optimum mechanism has been analysed followed by the design and realization of the first prototype. The system provides both position and force feedback sensory information which can improve the outcomes of a professional rehabilitation exercise. © 2011 IEEE

    A Wearable Exoskeleton for Hand Kinesthetic Feedback in Virtual Reality

    Get PDF
    This paper presents a novel two-fingers exoskeleton kinesthetic in-teraction in Virtual Reality (VR): the proposed design of the exoskeleton priori-tizes the performance of the device in terms of low weight, good adaptability to different size of the human hand. This design made also the exoskeleton well wearable and allows strong force feedback which is an important parameter for a realistic kinesthesis of manipulated objects in VR

    Mathematical Modeling and Empirical Validation of a Conceptual Exoskeleton for Astronaut Glove Augmentation

    Get PDF
    Space presents numerous difficulties for astronauts conducting their work, not the least of which is the spacesuit that is worn to protect them from space. It has long been known that a spacesuit is difficult to work in, especially the rigid and pressurized gloves that put strain on the astronaut\u27s hands, frequently leading to injuries. Astronaut gloves inhibit more than 50% of their strength in some cases [1]. NASA and other space agencies have been working to alleviate these problems by attempting to mechanically augment the gloves to reduce the exertions of the astronaut. To date, no augmentation systems have been implemented into spacesuits and prototypes are actively undergoing design and development [2] [3]. Currently existing prototypes are impractical, unconformable, or not effectively augmenting the astronaut as evidenced by the non-implementation of such systems to date. This work presents a novel conceptual exoskeleton design for astronaut glove augmentation and a mathematical model that is used to predict its performance. In addition, experiments were conducted to validate the math model. The conceptual exoskeleton is designed to overcome the shortcomings of previous attempts to augment astronaut gloves by using rigid linkages actuated by a single tendon routed through them. This system operates exclusively on the dorsal surface of the hand, limiting the restrictions to the palmar surface of the hand. The mathematical model presents a method to equate the tendon tension to the contact force between the linkages and the object that is being grasped. Two representative models of the conceptual exoskeleton were built and tested. The experimental fixture, custom designed and fabricated, used a Pliance Pressure Pad to measure the total forces produced by the system. The measured force values were then compared to predictions made by the system to assess the accuracy of the mathematical model. The experimental configurations of the systems were measured using a machine vision system. The mathematical model was shown to accurately predict the contact forces produced by the representative test rigs. Relationships between the contact forces developed in a grasp and the readings from a Jamar Grip Dynamometer were then used to estimate the magnitude of grip strength that the full exoskeleton could develop [4]. These estimations indicate that the conceptual system would be able to recover up to 124% of the strength that astronauts lose to their gloves

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    Exploring the Design of a Simultaneous, Parallel, Discrete Joint Control Orthosis for Hand Rehabilitation

    Get PDF
    This project explores the design of a hand orthosis for rehabilitation which builds upon several pre-existing designs to create a novel mechanism which can provide targeted therapy to one or more discrete joints simultaneously across the lower forearm. This work expands upon and improves the capabilities of hand orthoses to move beyond common design limitations such as controlling only entire fingers or immobilizing crucial regions such as the wrist
    • …
    corecore