52 research outputs found

    Design of a bioinspired ray robot with flexible fins

    Get PDF
    This paper presents the design and construction of a biomimetic swimming robot inspired by the locomotion of rays. These fishes move by flapping their pectoral fins and creating a wave that moves in the opposite direction to the direction of motion, pushing the water back and giving the fish a propulsive force due to momentum conservation. The robot's fins are molded from silicone rubber and moved by a servo motor that drives a mechanism inside the leading edge of each fin. The traveling wave, mimicking the movement of the fin, is passively generated by the flexibility of the rubber itself. The robot is also equipped with a tail that acts as a rudder, helpful in performing maneuvers. The rigid central body of the robot is the housing for motors, electronics, and batteries

    Design of a bioinspired cownose ray robot

    Get PDF

    Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles

    Get PDF
    Biomimetics, which draws inspiration from nature, has emerged as a key approach in the development of underwater vehicles. The integration of this approach with computational fluid dynamics (CFD) has further propelled research in this field. CFD, as an effective tool for dynamic analysis, contributes significantly to understanding and resolving complex fluid dynamic problems in underwater vehicles. Biomimetics seeks to harness innovative inspiration from the biological world. Through the imitation of the structure, behavior, and functions of organisms, biomimetics enables the creation of efficient and unique designs. These designs are aimed at enhancing the speed, reliability, and maneuverability of underwater vehicles, as well as reducing drag and noise. CFD technology, which is capable of precisely predicting and simulating fluid flow behaviors, plays a crucial role in optimizing the structural design of underwater vehicles, thereby significantly enhancing their hydrodynamic and kinematic performances. Combining biomimetics and CFD technology introduces a novel approach to underwater vehicle design and unveils broad prospects for research in natural science and engineering applications. Consequently, this paper aims to review the application of CFD technology in the biomimicry of underwater vehicles, with a primary focus on biomimetic propulsion, biomimetic drag reduction, and biomimetic noise reduction. Additionally, it explores the challenges faced in this field and anticipates future advancements

    Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations

    Get PDF
    [Abstract] The aim of the present paper is to provide the state of the works in the field of hydrodynamics and computational simulations to analyze biomimetic marine propulsors. Over the last years, many researchers postulated that some fish movements are more efficient and maneuverable than traditional rotary propellers, and the most relevant marine propulsors which mimic fishes are shown in the present work. Taking into account the complexity and cost of some experimental setups, numerical models offer an efficient, cheap, and fast alternative tool to analyze biomimetic marine propulsors. Besides, numerical models provide information that cannot be obtained using experimental techniques. Since the literature about trends in computational simulations is still scarce, this paper also recalls the hydrodynamics of the swimming modes occurring in fish and summarizes the more relevant lines of investigation of computational models

    Oceanic Challenges to Technological Solutions : A Review of Autonomous Underwater Vehicle Path Technologies in Biomimicry, Control, Navigation, and Sensing

    Get PDF
    Autonomous Underwater Vehicles (AUVs) epitomize a revolutionary stride in underwater exploration, seamlessly assuming tasks once exclusive to manned vehicles. Their collaborative prowess within joint missions has inaugurated a new epoch of intricate applications in underwater domains. This study’s primary aim is to scrutinize recent technological advancements in AUVs and their role in navigating the complexities of underwater environments. Through a meticulous review of literature and empirical studies, this review synthesizes recent technological strides, spotlighting developments in biomimicry models, cutting-edge control systems, adaptive navigation algorithms, and pivotal sensor arrays crucial for exploring and mapping the ocean floor. The article meticulously delineates the profound impact of AUVs on underwater robotics, offering a comprehensive panorama of advancements and illustrating their far-reaching implications for underwater exploration and mapping. This review furnishes a holistic comprehension of the current landscape of AUV technology. This condensed overview furnishes a swift comparative analysis, aiding in discerning the focal points of each study while spotlighting gaps and intersections within the existing body of knowledge. It efficiently steers researchers toward complementary sources, enabling a focused examination and judicious allocation of time to the most pertinent studies. Furthermore, it functions as a blueprint for comprehensive studies within the AUV domain, pinpointing areas where amalgamating multiple sources would yield a more comprehensive understanding. By elucidating the purpose, employing a robust methodology, and anticipating comprehensive results, this study endeavors to serve as a cornerstone resource that not only encapsulates recent technological strides but also provides actionable insights and directions for advancing the field of underwater robotics.© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    Biomechanics in batoid fishes

    Get PDF
    Batoid fishes (e.g., manta rays) are extremely efficient swimmers, combining extreme strength and incredible maneuverability. Replicating these unique properties in synthetic autonomous under-water vehicles would have tremendous implications. Several research groups have been exploring these concepts for the past decade, and a small number of prototypes have been demonstrated. Importantly though, these prototypes match the batoid external motion (in terms of range of motion and actuation force) but do not employ a similar internal mechanics. The configuration of skeletons and muscle structures for a number of different batoid fishes have been recently unveiled, presenting a unique opportunity to analyze the internal mechanics of these complex structures, and ultimately use the acquired understanding to realize truly bio-mimetic underwater vehicles. As a whole wing has hundreds of moving elements, a full finite elements simulation of the entire wing is not feasible. To address this problem, we implemented a numerical model which will represent a part of the entire wing, and we investigated the effects of geometric and materials parameters on its stiffness. The length of each radial and the offset between them are going to be the most relevant variables and hence, the ones tested. Furthermore, to represent efficiently all the wing, we calculated its effective elastic properties using rigorous homogenization theory. These properties could then be used in shell FE models of the entire wing, and capture spatial variation in elastic constants in a numerically efficient way. Within the context of this work, the stiff and compliant direction will be found and that will give us an idea of the ability of the model to capture the experimentally observed deformation patterns. We observe that our 2D homogenized wing model fails to capture the substantial twisting/bending coupling that is observed experimentally. We speculate that the lack of torsional degree of freedom at the joints is responsible for this discrepancy. Once this deformation mechanism is built into a model, future investigations can use the homogenized stiffness approach to extract an effective continuum-based representation of the response of the wing in a continuum shell finite element model. This element can then be used for efficient modeling of entire wings; this will allow efficient modeling of spatially non-uniform wing morphologies in a Finite Elements setting. Once the elastic response of the wing is completely characterized, efforts will need to focus on actuation.Outgoin

    生物模倣ソフト魚ロボットの研究開発

    Get PDF
    In nature, the environment varies from day to day. Through natural selection and competition law of survival of the fittest, the winning creatures survive and their species are able to retain and persist in nature. Based on this fact, creatures existent in nature have their unique features and advantages adapt to the surrounding environment. In recent years, many researches focused on the features of the creatures in nature have been done actively to clarify their morphology and functions and apply the morphology and functions to various fields. Among these researches, the development of the biomimetic robots based on mimicking the creature’s structures and functions has become an active field in robotics recently. In the research, the development of biomimetic robotic fish is focused. So far, there are many researches on biomimetic robotic fish, but improvement on motion performances and efficiency is still an important issue for robot development. Specially, on the biomimetic soft robotic fish utilizing the flexibility of fishes, the developments have been done by the trial and error approach. That is, the design and control method of soft robotic fish has not been established currently. Therefore, it motives us to investigate the design and control of soft robotic fish by numerical simulation that takes into account the interaction between flexible structure and surrounding fluid to develop the biomimetic soft robotic fish with high performance. In order to develop the biomimetic soft robotic fish with high performance, the basic design method and corresponding numerical simulation system are firstly proposed and constructed in this dissertation. Then, based on finite element method (FEM), modelling of soft robotic fish by mimicking the soft structure and driving mechanism of fishes is carried out. The propulsion motion and propulsive force of the soft robotic fish are investigated through two kinds of numerical analyses. One is the modal and transient analysis considering the surrounding fluid as acoustic fluid. The propulsion mode and amplitude of the propulsion motion of soft robotic fish corresponding directly to the propulsion mechanism and motion performance of the robotic fish can be investigated. The other is the fluid-structure interaction (FSI) analysis. The interaction between soft robot structure and surrounding fluid including the dissipation due to fluid viscosity and influence of wake performance around the soft robotic fish are taken into account. From FSI analysis, the hydrodynamic performances of the soft robotic fish can be obtained for investigating its propulsion motion. It is possible to further improve the performance of the soft robotic fish through its design and control based on FSI analysis. Besides, based on coupling analysis by using acoustic fluid, the turning motion control of the soft robotic fish is investigated by its propulsion modes in the fluid. In order to investigate the feasibility of modelling method and numerical simulation analysis on design and control of the biomimetic soft robotic fish, the performance evaluation is carried out by comparison between the simulation and experiment on an actual prototype. Finally, the optimization and improvement are performed for developing the biomimetic soft robotic fish with higher performance based on verified coupling analysis considering the fluid as acoustic fluid, and corresponding performance evaluation on new robot prototype is presented. The performance improvement of the soft robotic fish is confirmed through the new robot prototype. The dissertation consists of six chapters and the main contents are shown as follows. Chapter 1 is an introduction. The background and relative previous work about biomimetic soft robotic fish are briefly reviewed. It summarizes the current research status and problems of biomimetic soft robotic fish, and describes the purposes of this research. Chapter 2 presents the design method, procedures and numerical simulation system in the present research for developing the biomimetic soft robotic fish with high performance. Different from previous development method, our purpose is how to design and control the soft robotic fish by utilizing interaction between the flexible structure and surrounding fluid effectively based on numerical simulations. Therefore, it is necessary to model a fish-like soft robot structure including soft actuators and an enclosed fluid. Besides, by the numerical analysis considering the interaction between flexible structure and fluid, the fish-like propulsion motion should be realized and established, and then the robot structure and control inputs are needed to be optimized for performance improvement. In order to meet these requirements of designing and developing the optimal soft robotic fish, the design method based on modelling, simulation analysis and improvement is presented and the numerical simulation system for soft robotic fish is built. In the simulation system, modelling of soft robotic fish, modal and transient analysis considering the enclosed fluid as acoustic fluid are firstly described based on FEM to realize the fish-like propulsion motion with large amplitude for the soft robotic fish. Then, the FSI analysis is performed to describe and establish the hydrodynamic performances of the soft robotic fish. Based on this numerical simulation system, it is possible to develop the biomimetic soft robotic fish with high performance effectively by optimization of design and control of the soft robotic fish. Chapter 3 describes the modelling and numerical analysis of biomimetic soft robotic fish by using the method presented in Chapter 2. The soft robotic fish uses the piezoelectric fiber composite (PFC) as soft actuator. Firstly, the relationships between the input voltage and generated stress of the PFC are derived. The generated stress can be applied on soft structure to investigate the motion performance of the soft robotic fish. To support the driving model of the PFC, the corresponding experiments on simple beam model are carried out. By comparing the simulation results with experimental results, the effectiveness of the driving model is verified. Then, the modal analysis in which the fluid is considered as acoustic fluid is performed. The structural mode frequencies and mode shapes of the soft robotic fish in the fluid are calculated. By comparing these modes’ motion with those of the real fishes, the fish-like propulsion mode is identified to realize the corresponding propulsion motion of the soft robotic fish. Furthermore, based on the verified driving model of soft actuator, the amplitude of the main propulsion motion of soft robotic fish is calculated. Through FSI analysis, the relationships of driving frequencies of input signal with propulsive force and displacement of propulsion motion, and vortex distribution in the wake around the soft robotic fish are investigated for the case of fixing robot head. Besides, the motion control of soft robot is investigated to realize turning motion in the fluid. Through controlling the input voltage amplitude on soft actuators of the robot, turning right and turning left motion are identified in the swimming when the input voltage amplitudes on two actuators are in asymmetric distribution. Chapter 4 is experiment evaluation. In order to validate the results of numerical simulation analysis described in Chapter 3, the mode shapes, amplitude of propulsion motion, propulsive force and vortex distribution around soft robotic fish for the case of fixing robot head, and turning motion are measured by using actual robot prototype. The present simulation results are congruent with experiments. By the results, the effectiveness of the modelling method and numerical analysis used in the research is verified and they are useful to predict the propulsion characteristics of the soft robotic fish in the fluid for performance improvement. Chapter 5 develops a new soft robotic fish with high performance based on above modelling method and numerical analysis by optimization. Firstly, the structural parameters of the robot are allowed to vary within a range and the amplitude of the propulsion motion for the soft robot is calculated for different parameters by the numerical analysis. Then the structural parameters of the robot capable of propulsion motion with largeramplitude are chosen for improvement. Based on this result, new soft robot is designed and evaluated by experiments. From the experimental results of the new soft robot, it is confirmed that the higher swimming speed, better fish-like swimming performance and larger turning velocity are realized. It can be said that the new soft robotic fish has been developed successfully for improvement. Chapter 6 summarizes the conclusions and future works of this research.電気通信大学201
    corecore