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ABSTRACT 
Batoid fishes (e.g., manta rays) are extremely efficient swimmers, combining extreme 

strength and incredible maneuverability. Replicating these unique properties in synthetic 

autonomous under-water vehicles would have tremendous implications. Several research 

groups have been exploring these concepts for the past decade, and a small number of 

prototypes have been demonstrated. Importantly though, these prototypes match the batoid 

external motion (in terms of range of motion and actuation force) but do not employ a 

similar internal mechanics.  

The configuration of skeletons and muscle structures for a number of different batoid 

fishes have been recently unveiled, presenting a unique opportunity to analyze the internal 

mechanics of these complex structures, and ultimately use the acquired understanding to 

realize truly bio-mimetic underwater vehicles. 

As a whole wing has hundreds of moving elements, a full finite elements simulation of the 

entire wing is not feasible. To address this problem, we implemented a numerical model 

which will represent a part of the entire wing, and we investigated the effects of geometric 

and materials parameters on its stiffness. The length of each radial and the offset between 

them are going to be the most relevant variables and hence, the ones tested. 

Furthermore, to represent efficiently all the wing, we calculated its effective elastic 

properties using rigorous homogenization theory. These properties could then be used in 

shell FE models of the entire wing, and capture spatial variation in elastic constants in a 

numerically efficient way. Within the context of this work, the stiff and compliant 

direction will be found and that will give us an idea of the ability of the model to capture 

the experimentally observed deformation patterns. 

We observe that our 2D homogenized wing model fails to capture the substantial 

twisting/bending coupling that is observed experimentally. We speculate that the lack of 

torsional degree of freedom at the joints is responsible for this discrepancy.  

Once this deformation mechanism is built into a model, future investigations can use the 

homogenized stiffness approach to extract an effective continuum-based representation of 
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the response of the wing in a continuum shell finite element model. This element can then 

be used for efficient modeling of entire wings; this will allow efficient modeling of 

spatially non-uniform wing morphologies in a Finite Elements setting. Once the elastic 

response of the wing is completely characterized, efforts will need to focus on actuation. 
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INTRODUCTION 
For millions of years organisms in this planet have experienced an evolutionary process of 

natural selection and adaptation. This process has allowed the different species to solve 

problems for their survival by trial and error. As species have evolved through incredibly 

long times (much longer than any engineering system), several natural systems are 

believed to be near optimal. Therefore, nature can provide inspiration for the solution of 

engineering problems. Synthetic systems that mimic natural organisms are called 

biomimetic.  

Aquatic propulsion is one of the areas where animals display efficiencies that are vastly 

superior to those of any synthetic machines. For example, traditional propulsion 

techniques such as screw propellers cannot provide the sophisticated level of 

maneuverability necessary for the development of the next generation of Autonomous 

Underwater Vehicles (AUVs). Furthermore, engines based on conventional propulsion 

systems are expensive to repair and have an unacceptably low efficiency. To overcome 

these limitations, over the past decade, numerous programs have sought to conceptualize 

and Bioinspired Autonomous Underwater Vehicles (BAUVs). 

For decades, aquatic mammals, e.g., dolphins, have been the primary source of inspiration; 

unfortunately, synthetic biomimetic robots performed much worse than expected [11]. 

More recently, teams of biologists and engineers have started looking to batoid fishes to 

provide inspiration for the next generation of BAUVs [22].  

The proposed research effort aims at elucidating the bio-mechanical behavior of the 

locomotion system of batoid fish: understanding the mechanics and actuation mechanisms 

that give these animals incredible strength and agility will provide invaluable guidance to 

the development of synthetic bio-inspired underwater vehicles. 
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1 BACKGROUND 

1.1 Biological Features Of Batoid Fishes  
Batoidea is a superorder of fish that includes thirteen families of skates, rays, sawfish, and 

guitarfish. They are closely related to sharks, having a cartilaginous body in common [8]. 

However, their dorsoventrally flattered bodies clearly distinguish them from sharks. 

Although all batoid fishes generate waves through their fins by contracting their 

musculature, they can be classified into two big groups, based on their method of 

propulsion through water [21]. Sawfishes and guitarfishes are undulatory swimmers, 

displaying axial-based locomotion, undulating their body and/or shark-like tail (BCF); 

conversely, skates and rays are oscillatory swimmers, and use their greatly enlarged 

median paired fins (MPF) to achieve a pectoral-fin based locomotion by contracting 

specially the dorsal (upper) muscles [27]. 

 Looking at the second group, although rays can have a similar morphology, their 

swimming mode can be notably different, describing a continuum between undulation and 

oscillation. Undulatory motion was called “rajiform” by Breder (1926) and defined as 

having one or more waves present on the fin at a time (f>1) [Webb, 1994]. By contrast, 

oscillators were termed “mobuliform” by Webb (1994) [33] and their movement 

resembles a flying bird flapping their wings, with less than half a wave on the wing at any 

time (f<0.5). Rosemberger (2001) suggested that undulatory locomotion produces better 

maneuverability, allows moving backwards and is more efficient at low speeds. On the 

Figure 1 Left: Undulatory swimmer (Dasyatis Americana) with an average of 1.1 waves across the wing at 
any time [27]. Right: Oscillatory swimmer (Rhinoptera bonasus), with an average of 0.4 waves [27]. 
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other hand, oscillators can achieve greater speeds to cover long swimming distances. 

Remarkably, it has been documented that Dasyatidae can switch between undulatory and 

oscillatory swimming [26]. 

1.2 Advantageous features of batoid fishes 
Several nature propulsion systems are proved to have better efficiency and performance 

than engineered designs [10]. Engineered systems are large, they lose a great amount of 

energy into the wake, and many aquatic animals may be wounded even unto death by 

screw propellers [12]. In contrast, not only oscillatory propulsive movements intrinsic of 

fishes and marine mammals don’t have these weak points but also provide an inherent 

maneuvering capability. Consequently, the next generation of underwater vehicles should 

have bio-inspired constitution [22]. However, natural systems are usually much bigger 

than most of the marine animals and problems of scaling can arise. That is one reason why 

manta rays are particularly interesting: some species can weigh more than 1,300 kg and 

measure more than 7 m in width, reasonable proportions for an AUV. 

1.3 Limitations of a biomimetic product 
Nevertheless, biomimetics has some limitations due to the inherent differences between 

engineered and animals such as materials or structures. While engineered materials are 

made of stiff materials like metals, ceramics, and plastics; animal ones are much more 

compliant but have the particularity of being self-repairing [10]. That explains why there 

is a lot of work to be done in that field in order to have a truly biomimetic product. 

Another added difficulty when mimicking any animal is the complex amount of muscles 

they have along all their body. When modeling it, engineers face a moving body with an 

unreasonably big number of degrees of freedom to be actuated with their respective 

control and energy supply. 
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2 BATOID FISH MIMICKING ROBOT 

DEVICES 
Many research groups have been exploring how to build a batoid fish swimming based 

robot during the last decade and some prototypes have been demonstrated. Without the 

aim of being exhaustive, this is the evolution of the more relevant advances. 

In 2001 the first experimental undulating-fin device was developed [30]. What these 

researchers found immensely interesting was the particularity of the batoids locomotion 

mode that allowed them to move forward and backward. By a mathematical analysis and a 

prototype they proved their ability to generate reversible thrust. 

Although some other fish robots had been assembled, it can be attributed to a University 

of British Columbia research group in 2002 to be the first who built a biomimetic robot 

based on a batoid fish, in this case a Gymnura micrura [2]. The robo-ray, albeit not 

succeeding in every goal as good as their creators would have wanted, it set the basis for 

further work. The group considered it a profiting project because in spite of not being able 

to propel itself in water, the robo-ray could emulate both undulaltory and oscillatory 

locomotion strategies. The actuation was given by the use of Shape Memory Alloys 

(SMA). 

The thrust production and the wake structure of an oscillating fin were investigated [6]. An 

exhaust aerodynamic study using an artificial fin revealed how batoid fish were propelled 

and hence what requirements the biomimetic robots need to fulfill for the purpose of 

maximizing the thrust. 

Figure 2 Robot actuated with 8 IPMCs tomimic rajiform swimming [31]. 
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Some robots were manufactured trying diverse technologies to actuate the wing. 

Conductive polymers [32], electroactive polymers (EAP) [25], or ionic polymer-metal 

composite (IPMC) [31] played the role of the muscles. Other groups chose an external 

actuation of the wing with a rotational motor, planetary gear mechanism and spherical 

joint to effectuate all pectoral fin movements [18]. 

However, the aim of all progress exposed was to generate trust in an efficient way but 

maneuverability and stability are a key factor in an unmanned underwater vehicle which 

often operates near the seabed. Wing control becomes decisive and a research group 

compared a bang-bang with a PID control [14] using simulations and a prototype. It was 

proved that the PID was better. 

On the one hand, Cownose Ray-I [34], which was inspired on the Rhinoptera bonasus, 

allowed the engineers to explore how the different parameters affect in the oscillatory 

motion (i.e. swimming while having less than half a wave at a time). They found the 

amplitude and the number of waves as the most determinant variables of the speed. They 

also tested how the asymmetric phase is more effective when swerving than increasing one 

side’s amplitude. Some years later and based on Cownose Ray-I, the BHRay-I and 

BHRay-II [13]; and the Robo Ray II [35][3], and Robo Ray III [23] were presented being 

the reference of the mobuliform swimming robots. 

On the other hand, NKF-II was built to explore the gymnotifrom swimming style, which is 

different from batoid fishes’ locomotion mode. Nevertheless, NKF-II’s wing was used to 

Figure 3 Mantabot on the left [36] and Cownose Ray-I on the right [34]. 
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produce rajiform swimming. By connecting sliders they were able to reproduce different 

sinusoidal waveforms [19]. 

In 2010, in Japan was designed a prototype characterized for its simplicity [1]. Hence, it 

was robust and inexpensive to manufacture. A soft body that only had one insert in each 

wing configured the essential components of the robot. A servomotor oscillated the insert 

generating a wave, which was propagated along the body. 

Advanced techniques were performed last year [35] and the latest robot release by a team 

lead by Hillary Bart-Smith form the University of Virginia was the Mantabot [36]. It uses 

tensegrity structures to propel himself with an oscillating swimming style. Although the 

power supply needs to be improved, probably it is the one that looks more like an actual 

animal and has more advanced swimming characteristics. 

Most of them consist of actuators arranged in a series and interconnected via a flexible 

material which allows them to mimic the movement. However, a lot of work needs to be 

done to build a truly BAUV capable of doing the exploration, rescue and all kind of 

missions that current AUV conduct.  

It is believed that by mimicking not only the locomotion, but also imitating the internal 

mechanics of batoid fishes; a turning point on the development of next generation of 

underwater vehicles will be reached. Biologists and engineers need to work together and 

the current paper wants to make step forward into this fruitful cooperation. 

 

Figure 4 Exploded view and assembly of a simple robot design mimicking a stingray [1] . 
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3 MUSCULOSKELETAL SYSTEM OF A 

BATOID FISH 

Batoid fishes have a dorsoventrally compressed body ranging in shape from circular to 

rhomboidal [7]. The pectoral skeleton is divided into two main parts: the fin rays and the 

pectoral girdle from where they emanate.  

The fin rays are long chains laterally oriented and they are constituted of serially-arranged 

small cylindrical cartilaginous elements, which are called radials. The distribution of the 

radials, its size, and shape determine de location of the joints between them, and hence, the 

biomechanical behavior of the wing [29]. Recent research has revealed that a cartilaginous 

skeleton is not as disadvantageous as previously thought compared to the ones made of 

bones [24]. 

Figure 5 The hierarchical structure of the batoid wing skeleton is composed of radials that are serially 

arranged into fin rays, which form a two dimensional array. Joint motion is constrained to act in a hinge-

like fashion [29]. 
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3.1 Radials 
The stiffness of each part of the wing is a crucial point to figure out the whole wing 

motion. The waves are propagated over an array composed by the radials which suffer a 

deflections and the joint which can be considered a mix of connective tissue and cartilage. 

Therefore, when the wing moves the joints act as hinges and the radials experience 

deflection. 

𝑌!"# =
𝐹𝐿!

3𝐸𝐼
 ( 1 ) 

Where F is the muscle force, L is the length of the radial, E is the material stiffness and I is 

the second moment of area. Hence, the geometry (L and I) and the composition (E and I) 

will determine the stiffness of the radial. 

The degree of mineralization of the radial is the primary variable responsible for its 

mechanical properties, given that mineralized cartilages is far more stiffer and stronger 

than unmineralized one. In the skeleton of batoid fishes, there are two different basic 

classes of calcification: crustal and catenated. The classification is based on whether the 

unmineralized core is completely covered by a thin layer of small tesserae, or just 

alongsome chains, respectively [5]. It was found that the degree of mineralization 

Figure 6 Cross-section of calcification in Myliobatis californica skeletal elements from proximal, mid, and 
distal portions of the wing. Silhouettes show approximate area of wing from which sections were taken. 
Location of section in relation to joints is given by schematic in lower right corner of each panel [28]. 
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Figure 7 Uncalcified and calcified phases of tessellated elasmobranch cartilage, depicted as a schematic of 
a cross-sectional backscatter electron micrograph of the lower jaw of the round stingray, Urobatis	
  halleri	
  
(upper inset; white regions are calcified tissue). The lower inset provides an expanded view of the region 

bounded by the blue box, showing the arrangement of prismatic (PC) and globular (GC) calcification 
relative to the uncalcified cartilage matrix (ECM) and fibrous perichondrium [9]. 

decreases with the increasing distance of the body axis until the distal end of a fin ray, i.e. 

crustal calcification is found in the proximal areas and catenated calcification near the 

edge of the wing. In the terminal radial, there is often only a single chain in its middle or a 

scattering of tesserae over its surface. The cross-sectional shape also becomes more 

dorsoventrally compressed distally [28]. 

The areolar calcification, that is nearly completely mineralized, only can be found in the 

vertebral column, from where fin rays emanate. 

3.2 Muscles 
Muscles are responsible for the actuation of the wing and, therefore, the locomotion of the 

fish. They emanate from the pectoral girdle and expand laterally over the fin rays with 

every single radial [16]. To make things more complex, there are some muscles that do not 

follow that fashion and are oriented perpendicular to fin ray to allow a better control. The 

most powerful stroke is provided by the dorsal abductor muscles, which are considerably 

more massive than the ventral abductors. 

At this time, many details about the working of the muscular system are still largely 

unknown. 
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Figure 8 Schematic outline and joint position of the wing skeleton of an undulator (Urobatis halleri) on the 
left and an oscillator (Gymnura crebripunctata) on the right [28]. 

4 MORPHOLOGY OF THE WING 
The disposition of the radials, and therefore the interradial joints, is so relevant on the 

locomotion of the animal that the pattern varies depending of the swimming style. In both 

cases, the range of motion between two adjacent radials in a fin ray is small (~15°) [28], 

but there are enough radials to allow great amplitude of movement to the edge of the wing.   

Undulators, which have many waves moving along the wing, have smaller radials that 

decrease in size isometrically with the distance from the body axis and this results in the 

joints forming concentric lines [28]. On the other hand, oscillators, which appear to fly 

when swimming, have longer radials in the central areas of the wing. Additionally, a 

structure defined “cross-braces” was found in some species of oscillatory swimmers. 

These are connected radials that doesn’t belong to the same fin ray but pertain to adjacent 

fin rays [28]. For both swimmers, each fin ray bifurcates and radials become shorter and 

smaller at some point close to the edge, and since this point is consistent for each fin ray, it 

forms a division line. Moreover, near the leading edge of some oscillators, some radials 
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are laterally expanded so they fit closely together and form a nearly solid plate [28]. It can 

be also appreciated in Figure 8 that the global shape of the wing also varies. 

All these differences are attributed to the fact that, depending on the swimming strategy, 

different stiffened areas are needed. Oscillatory swimming requires large amplitude 

deformations of the wing so the bending is concentrated proximally. Conversely, 

travelling waves in undulators have shorter wavelength and decreased amplitude, thus 

concentrating bending stresses near the edges. More stiffness is expected in these bending 

areas [28]. 

Small changes on the morphology of the wing have serious repercussions on its 

mechanical properties. That is why analyzing and understanding its structure-properties 

relation is critical. 

4.1 Radial’s location effect: Spring model 
J. Schaefer et al. studied how the configuration of the radials and joints affect the local 

stiffness and the bending properties of the wing; they adopted a linear spring model. 

Patterning of joint arrangement was believed to be an alternative mechanism of stiffening 

the wing to changing the radial’s morphology [29]. Through high resolution radiographs 

of several species of batoids, the exact location of the joints was mapped. Key differences 

in joint’s location were evident depending on the swimming style, i.e. oscillators vs 

undulators. 

4.1.1 Effect of Joint Position on Stiffness 

Modeling the connective tissue between radials as springs, Schaefer et al. used the energy 

as a proxy for stiffness. In an array, the mechanical behavior of a joint or a radial cannot 

be modeled without its neighbors because when a radial is moved, the connective tissue 

forces the neighbors to move as well. However, this effect decreases with distance and it 

was suggested that two radials per side where sufficient to extract information on wing 

stiffness. However, when calculating the energy of a 5-radial group, both sides are 

considered separately for simplicity and then they are added up to get the final result. 
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 Given that radials are far stiffer than the connective tissue, i.e. joints, when a batoids wing 

is flexed, the bending occurs fundamentally at the joints. Thereby, in the model the radials 

are considered rigid bodies and the joints are represented by hinges. It is also assumed that 

the radials are attached to their neighbors along their entire length. By moving one joint 

closer or further away from the axis of bending of its neighbor joint, it can be bend 

“against” the neighboring radial instead of the joint, and is thus effectively stiffened [29]. 

Schaefer et al. found that the stiffness of a three-radial cell did not depend on the height of 

the tertiary radial (H2, Figure 10) as much as on the height of the secondary radial (H1). In 

his model, the maximum stiffness takes places when the secondary radial has negative 

height and the tertiary radial has a positive height, both compared to the primary radial 

[29]. Furthermore, the effect of the tertiary radial when the secondary radial has a positive 

height is negligible. This is represented in Figure 10 on the right side of the plot, where 

the variation of stiffness only increases by making H1 higher.. 

Figure 9 Five radial system used to calculate localized stiffness. The top diagram is the basal configuration. 

The bottom diagram shows the system following perturbation of the central (primary) radial. The lateral-

most (tertiary) radials on each side were constrained to remain unelevated. Lines joining radials symbolize 

elastic connective tissue [29]. 
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Figure 10 Bending energies required for variations in H. Discrete arrangements of joints with varying 
values of H1 and H2 (groups of blue bars) are shown at the top. Degree of perturbation was kept constant. 

Red dots represent primary radials (perturbed). Black dots represent tertiary radials (constrained). 
Continuous variation of H1 and H2 results in the lower plot. There are several configurations that result in 

the same energy (highlighted) [29]. 

 

 

 

 

 

 

 

 

 

 

 

Comparing oscillators and undulators, they were stiff medially and laterally, respectively. 

Major stiffness is needed in the areas were muscle force actuates because that prevents the 

wing from folding upon itself when acting against the water. The wing would curl with a 

radius of curvature too small when pulled by muscles if it was too flexible. Conversely, if 

it was too stiff it would buckle and it would be exceedingly energetically costly to bend 

[29]. 

4.1.2 Effect of Joint Position on Bending Direction 

The bending direction was calculated as the normal line to the line formed by the offset of 

neighboring joints from the middle joint’s plane of rotation [29]. Then these vectors were 

averaged, resulting in one direction for every five-radial group. Averaging all them, the 

result was a vector based on the geometry of the whole wing. Defining the 0° as the 

normal to the longitudinal axis of the animal and oriented to the animal, undulators 

showed a minimal offset and oscillators had a divergence around 20° pointing toward the 

front of the animal. 
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5 FINITE ELEMENT ANALYSIS OF A PART 

OF THE WING 
Given that the literature cited so far confirms that the batoid’s pectoral wing is a unique 

source of inspiration for next generation of AUVs, in this work we suggest a new 

modeling approach based on Finite Elements Analysis. The commercial software 

ABAQUS was used for all simulations. As a whole wing has hundreds of moving 

elements and a full finite element simulation of the entire wing is not feasible, the final 

objective of this work is the development of a methodology to extract the effective 

properties of the wing to model it as an anisotropic shell. 

First of all, it is important to understand how some geometric parameters of the wing 

affect its local stiffness. 

5.1 Geometry 
 The geometry used to model our problem is 2-dimensional shell with a rectangular shape 

(94mm by 144mm), encompassing more than 50 radials. This size was chosen as a 

compromise between computational efficiency and negligible edge effects.  

Figure 11 Dorsal view of the wing and zoom showing the pattern. Calcified material (i.e. radials) is stained 
red [28]. 
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The location of the radials and joint were decided based on existing high resolution 

radiographs [29]. Although some parameters will be changed to see how they effect on the 

properties of the wing, the model shown in Figure 12 can be considered a representative 

model. It consists of 12 fin rays, with radials aligned with an offset of 26.57°.	
  Each joint 

layer has 2 mm of width and each radial has a dimension of 26 mm by 6 mm. In all our 

models the thickness will be kept constant and equal to 6 mm. Hence, the radials have a 

square cross-section of 36 mm2. Although the dimensions of the radials and the joints vary 

depending on the location in the wing, our present model is periodic and ignores those 

variations. 

5.2 Materials 
Modeling the material properties can be a challenging task, due the difficulty in finding 

material models capable of representing the particularities of living materials. 

Batoid fishes have a cartilaginous skeleton, but we can distinguish between two different 

materials: the radials, which have an uncalcified core covered by tesserae and play the 

structural role of a bone, and the mixture of connective tissue and unclacified cartilage 

surrounding the radials, which is termed “joint”. 

Figure 12 Geometry of the model being yellow the radials, and green the joints. Each small rectangle is 
considered a single unit. On the right the model is meshed. 
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Radials are modeled as an isotopic material with a linear elastic behavior. Hence, the 

Young’s modulus, E, and the Poisson’s ratio, ν, are enough to characterize it for a static 

analysis.  From the biology, mechanics, and material science literature [17][20], values of 

Eradial=2600 MPa and νradial=0.5 were chosen. 

Joints are uncalcified cartilage and as such have an intrinsic viscoelastic behavior. Not 

many experiments have been found on the literature on this material, so we consider valid 

the hypothesis of Porter et al. [24] who said that the composition of elasmobranchs and 

mammalian cartilage has similar composition. That is why we decided to take cartilage 

material properties from human knee joint cartilage, a far better studied problem. 

Many materials models have been used but, of course, the election between one and the 

other will be based on what is the purpose of the research.  Models such as biphasic or 

viscoelastic, among others, may be needed [29]. However, considering that when a batoids 

Figure 13 Cartilage structural features, continuum level mechanical behavior, and constitutive models. Left 
panel—The structure and orientation of collagen and proteoglycan aggregates drive continuum mechanical 

behavior. Middle panel—Key features of continuum mechanical behavior include tension-compression 
nonlinearity, anisotropy, viscoelastic material behavior, and swelling. Right panel—Constitutive models 

capture certain features of cartilage behavior. As a general rule, the simplest constitutive model that 
captures the behavior of interest should be chosen [15]. 
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swims it involves frequencies greater than 1 Hz and we want to study the macromechanics 

of that system, the linear elastic model is accurate enough for our analysis. 

Again, a single value for the Young’s modulus and Poisson’s ratio of the joint material 

does not exist, as it varies significantly from one species to the other. Furthermore, it has 

been difficult to perform accurate stiffness measurements, due to the small dimension and 

the time-dependence of the material. However, given that joint’s stiffness is two orders of 

magnitude lower than radial’s one, the exact value for a qualitative analysis is not that 

important. Ejoint=25 MPa and νjoint=0.5 were used in all simulations. 

5.3 Mesh, elements, and steps 
We used a 2D shell to represent our wing considering that the thickness (6 mm) is much 

smaller than the width (94 mm) and depth (144 mm). The mesh used is a 4-node shell 

element with linear interpolation. The mesh refined on the joints where strain is larger 

having each joint element half the area of a radial element. 

Since there are going to be large deformations, nonlinear geometry must be allowed. 

5.4 Boundary conditions 
In all our simulations, the bottom edge is constrained, i.e., no displacement (Ux=Uy=Uz=0) 

and no rotation (URx=URy=URz=0). Fin rays emanate from the pectoral girdle, which is 

more calcified than the radials, and thus stiffer. Hence, it seems realistic that while the top 

edge bends, the bottom edge remains fixed. 

On the opposite edge, we are going to apply a force always normal to the plane of the 

shell. Either a single node or the entire edge will be loaded, depending on the focus of 

each simulation.  

5.5 Preliminary results 
First of all we want to see how the different 3-radials configurations make the stiffness of 

the wing change. We applied force on the top edge and extracted the z-displacement, i.e., 

the out-of-plane displacement, of the top right and top left nodes.  
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Figure 14 shows the different patterns, ordered by increasing stiffness. This order is given 

by the slope of the first plot in the same figure. This graphic must be interpreted as stress-

increasing stiffness 

v1 v2 v3 v4 v5 v6 v7 

Figure 14 On the first plot is represented the average of the two top corner z displacement by a given force 
applied on the upper edge of the model. The following diagram illustrates the three radial pattern ordered 
by increasing stiffness. Below, the plot display which geometry twists more with a given force showing the 

difference of the z displacement from the two upper corner over the depth of the model (L=144 mm). 
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strain curve in the sense that we are using the gradient as a proxy of the stiffness in 

bending. It can be inferred that the closer and more aligned the joints are, the more 

compliant the structure is. A twisting of the top edge upon actuation would indicate that 

the wing is effectively anisotropic. The Δz between the corners is used as a measure of the 

twisting. v2 and v6 are the geometries where the twisting is relevant, where Δz is 

approximately 13% and 6%, respectively, related to average z displacement of the top 

edge.  In the other cases, Δz is <2% of the average z displacement. 

5.6 Stiffness parameters 
The batoid’s wing components can be arranged in different geometries, but looking at 

Figure 8 and Figure 11, it seems that by taking the geometry defined as “v2” in the Figure 

14 and changing some parameters, we should be capable to model the radial and joint 

patterns of almost every part of the wing.  

Material properties along the wing may vary depending on the amount of calcified 

cartilage of the radial. Material variables that can change in our model are the Young’s 

modulus and Poisson’s Ratio of both materials: Eradial, Ejoint, νradial, and νjoint. Nevertheless, 

we are going to keep them constant and focus on the geometric variables. 

The geometric parameters which are believed to be responsible for the stiffness variation 

are the length, width, and thickness of the radial, represented by l, w, and t, respectively; 

the gap between two fin rays, i.e. the width of the joint, symbolized with g; and the offset 

between radials from neighboring fin rays, described as α.  

α l 

g 

w 

Figure 15 Diagram representing the geometric parameters that may explain stiffness change. 

x 

y

7 
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In  our  research  we  are  considering  α  and  l  changes  while  keeping  constant  the  rest  of  

parameters. 

5.7 Results 

5.7.1 Stiffness parameter: angle, α  

 Given the geometry defined on Figure 12, 8 angles were defined by changing the gap 

from 0.5 units to 4 between two joints of contiguous fin rays. 

Figure 16 Plot of the stiffness given by changing the angle. 
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In this case an edge pulling force is applied, with magnitude between 0.1 N/mm to 0.5 

N/mm. The average displacement between the two top corners and its difference over the 

length are represented in Figure 16. Again, they must be interpreted as a proxy of stiffness 

in bending and twisting, respectively. 

As we would expect, the model becomes stiffer in bending when increasing the angle. On 

the other hand, there is not any clear trend in the twisting. Some other simulations (see 

[29]) were run to figure out what was happening, as significant twisting was expected 

from experimental evidence [4].  

Given that the displacement increases linearly with the load, a single point (Z0, F0) gives 

us enough data compare one case to another. So, from now on, we will only be applying a 

load of 0.5 N/mm (Z0, 0.5). 

Although we attempted to make our model periodic, the choice of loadings and boundary 

conditions break the periodicity, as the model slightly changes depending on where the 

first joint is located. As this issue affects the results somewhat, we made 6 replicas of the 

same model, by sliding down one geometric element at a time (see Figure 12). Then, we 

plot the average displacement of each replica and its average for every angle presented 

before for an edge pulling force of 0.5 N/mm. We did the same for Δz/L (Figure 17).  

The bending plot shows clearly a visible linear trend from 14° to 45°. Again, the bending 

stiffness increases with the angle. It is important to remember that the stiffness is the slope 

of the straight line from each point to the origin. The particularities on the 0° and 7.1° are 

believed to be due to the connecting straight lines of joint existing on the model. We 

confirm that the non-periodicity of the model distorts the results but by taking the average 

of the replicas we can redress the effect of this systematic error. 

Looking at twisting, the plot (Figure 17) does not show any clear trend. Having been 

proved experimentally an important twisting effect and the unsubstantial results from our 

model, we decided that Δz/L was given us irrelevant information so we are not going to 

look at it anymore. That is probably because our model cannot capture twisting due to the 

lack of rotation degrees of freedom at the joints. 
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Figure 17 Plot of the average displacement (indication of stiffness) and plot of the difference of the 
displacement of the corners (indication of twisting). 6 replicas and the average. 
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5.7.2 Stiffness parameter: radial’s length, l  

 Apart from the angle, Figure 8 and Figure 11 show that central radials are much longer 

than the ones near the edge. This is why we also simulated how the length affects the 

stiffness by a given angle. In this case, by taking the average of only two replicas, the 

trend seemed enough manifest.  

Being the coefficient of determination >0.95 in all cases, it seems reasonable to confirm a 

linear trend between the radial length and the stiffness: when the radials decrease its 

length, the model becomes more compliant.  

 

  

Figure 18 Plot of the displacement for a 0.5 N/mm force at the top edge for different angles and radial lengths. 



Biomechanics in batoid fishes   29 
 

 
 

5.8 Conclusions from the FEM analyses  
Radial’s length and offset, i.e. angle, have been demonstrated to be key factors on the 

stiffness of the model. Hence, given that the offset of the radials when the fin rays emanate 

from pectoral girdle is minute (Figure 11), the radials need to be long to provide the 

stiffness needed in this area, especially in oscillators. 

In addition, some other simulations have been run with concentrated force on the top 

corners to find a trend on Δz but nothing has clearly emerged. Therefore, we conclude that 

our FE model is not sufficiently realistic to capture twisting of the wing upon edge 

loading. 

Additionally, the results were excessively affected by the boundary conditions. To address 

this deficiency, we will attempt to build a new homogenized model to correct this effect, 

where no replicas will be necessary.  
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6 HOMOGENIZED MODEL 
We are going to apply classic homogenization theory to calculate the effective in-plane 

elastic properties of the wing as a function of the geometry and materials properties of the 

radials and joints. A unit cell is defined and modeled with periodic boundary conditions. A 

MATLAB code written by E. Andreassen and C. S. Andreasen of Denmark Technical 

University was adopted for all calculations. 

6.1 Methods 
The stiffness matrix (or its inverse, the compliance matrix) fully characterizes the elastic 

response of a material. We are going to use numerical homogenization to determine the 

constants needed. 

We are going to model the wing as a 6 mm thick laminate with a single ply. Hence, it will 

be under conditions of plane stress with all stress components in the out-of-plane direction 

being zero (σ3=τ23=τ13=0). A representative volume element (RVE) will define the 

periodic unit cell. 

The main function in the MATLAB code is called homogenize: its inputs are the width and 

height of the unit cell (lx and ly), two vectors with the first and second Lame’s parameters 

for each material ([λ1 λ2] and [µ1 µ2]), the angle Φ between the horizontal axis and the left 

wall in the unit cell, and a matrix x. The number of rows and columns equals the number 

of elements in the vertical and horizontal direction, respectively; and it determines the 

discretization. Each element of the matrix contains numbers 1 o 2 depending on the 

material of each mesh element [Andreassen E. and Andreassen C. S.].  

Figure 19 Illustration of a mesh used to discretize a unit cell and its geometric parameters lx, ly and Φ 
[Andreassen E. and Andreassen C. S.]. 
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In our case, the RVE will always have ly=28 mm but lx will vary depending on how many 

fin rays are necessary to make the unit cell periodic. 

The output of that function will be the [Q]xy matrix, being xy the same reference used on 

the FEA. 

𝑄 xy =
𝑄xx 𝑄xy 𝑄xs
𝑄yx 𝑄yy 𝑄ys
𝑄sx 𝑄sy 𝑄ss

 ( 2 ) 

 

By rotating the reference system using the [T] matrix, we will be able to determine which 

the stiff and compliant directions are. 

𝑇 =
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛
−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

 ( 3 ) 

where 𝑚 = cos𝜃 and  𝑛 = sin𝜃, and θ is the rotation angle. The new stiffness matrix [Q]12 

can be written in an arbitrary reference system (x1,x2) as:  

𝑄 12 = 𝑇 𝑄 xy 𝑇 −1 ( 4 ) 

By maximizing and minimizing the first element of the matrix (Q11) in function of the 

angle θ, we are going to find the reference system such that the 1 axis is the stiff and 

compliant direction, respectively. 

𝑄11 = 𝑚!𝑄xx + 𝑛!𝑄yy +𝑚!𝑛! 2𝑄xy + 4𝑄ss + 4𝑚!𝑛𝑄xs + 4𝑚𝑛!𝑄ys ( 5 ) 

This will provide an indication of the anisotropy of the wing.   

6.2 Results 
The calculations have been repeated for 4 different angles with the same mesh used in de 

FEA. Within them, we have analyzed the stiffer efficacy of the cross braces (Figure 21) 

and we have distinguished between two cases. The first one has only horizontal 

connections between radials from contiguous fin rays, whereas the second also features 

vertical connections between radials from the same fin ray. In both cases, the connections 

are considered with the same material properties as the radials. Indeed, the connections are 

uncalcified cartilage surrounded by tesserae, just like radials.  
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However, the lower angle case (α=14.04°) doesn’t have the possibility of stiffening the 

wing using cross braces because of geometric incompatibility: i.e., it doesn’t have enough 

space because the offset is too small. cartilage surrounded by tesserae, just like radials.  

 

  

 

Figure 20 Plot of the stiff and compliant direction. Angle α is the offset between radials of contiguous fin 
rays  and θ is the angle between x direction (Figure 15) and the stiff and compliant direction, respectively; 

defined positive CCW.  
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Figure 21 Schematic of cross-bracing. Fin ray “A” is joined to fin ray “B” by a cartilaginous extension 
(CB). This inhibits the bending of normal radial joints j1 and j2. When the joint between radials B1 and B2 

tries to bend, radial A1 will be forced to bend along with them, effectively eliminating the ability of j2 to 
bend. These cross-braces are arranged in diagonal patterns such that the entire area is reinforced and 

stiffened [28]. 
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Where α is the offset angle between radials of adjacent fin rays (Figure 15) and θ orients 

stiff and compliant direction, respectively; CCW from the x axis (Figure 15). That is, the 

directions on which the pulling force need to be higher and lower to achieve deformation 

given. 

 Looking and comparing the reduced stiffness [Q]xy of the base model, only horitzontal 

connection model and both horizontal and vertical connection model; we can get a sense 

on how cross braces stiffen our model (Figure 22). Moreover, we can guess if the 

stiffening is higher on the x or y-direction depending if the term which increases more is 

Qxx or Qyy. 

 
base model horizontal	
  connection	
   horizontal and vertical 

connection 

α=14.04° 
106.21 14.85 0
14.85 313.37 3.08
0 3.08 33.25

 - - 

α=26.57° 
106.22 15.40 −0.02
15.40 331.30 1.69
−0.02 1.69 34.27

 
139.39 57.82 26.08
57.82 630.65 117.48
26.08 117.48 82.68

 
219.8 77.1 8.6
77.1 1697.8 54.2
8.6 54.2 9.02

 

α=36.87° 
106.22 15.71 −0.02
15.71 346.01 0.82
−0.02 0.82 34.71

 
149.09 57.33 26.71
57.33 622.44 117.36
26.71 117.36 86.32

 
217.3 79.0 −1.7
79.0 1676 46.6
79.4 46.6 102.1

 

α=45.00° 
106.23 15.93 −0.02
15.93 357.50 0.27
−0.02 0.27 34.91

 
161.00 55.43 27.00
55.43 609.96 116.64
27.00 116.64 90.31

 
226.2 86.9 −13.9
86.9 1682.2 32.9
−13.9 32.9 119.9

 

 

 

6.3 Conclusions from the homogenized model 
Looking at the reduced stiffness matrices, the diagonal terms doesn’t change much when 

increasing the angle α; this result is not consistent with our FEA predictions. However, in 

that case we were defining out of plane loads which caused deformation out of plane.   

Figure 22 Table with the reduced stiffness matrix [Q]xy using a homogenized model. 
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The cross braces certainly play a key role on the stiffening of the wing. Looking at the Q 

matrices, the diagonal terms, especially Q22, change dramatically. When pulling in the x 

direction, while in the base model there are complete layer of compliant material (i.e. 

joint) and this is essentially what stretches, in both cross braces model there are radial 

‘inserts’ which decreases this stretching. 

The stiff and complaint direction barely change when varying angle α. Having the 

conviction that in an actual wing by changing the principal directions of a small part of the 

wing the animal can swim more efficiently, we conclude that the connections between 

radials are not rigorous enough in our model. Thus, a 3D model should be used to explain 

the twisting.  
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7 CONCLUSIONS AND FUTURE WORK 
Batoid fishes are surely a unique inspiration source for the development of what will be 

the next generation of AUVs. Mimicking their advantageous morphological features will 

results in new designs that outperform traditional propeller systems. Many prototypes have 

been demonstrated during the last decade but, although most of them success in 

mimicking the undulatory or oscillatory swimming style, lot of works need to be done to 

build a truly bio-inspired AUV. To this end, the first step that we decided to pursue in this 

work is to understand the relationship between the morphology of the wing and its elastic 

properties.  

After defining a computational model with the geometry and material properties of a 

batoid wing, a Finite Element Analysis using ABAQUS has been carried out. Different 

parameters believed responsible of the batoid wing stiffness have been explored. The 

batoid wing becomes locally stiffer by making the radials shorter or increasing the offset 

between radials of contiguous fin rays, i.e. increasing l or α. By keeping every variable 

constant but changing where the joints were located we found more discrepancy than 

expected. That is why some replicas were run and the average was taken as a final result 

for the FEA. 

Another numeric approach to extract the effective material properties of the wing as 

function of its geometric parameters was investigated, using numerical homogenization. 

Using a MATLAB code written by by E. Andreassen and C. S. Andreasen of Denmark 

Technical University, we were able to find the stiff and compliant direction of wings as 

well as their reduced stiffness matrix [Q]. These directions remained almost constant when 

changing α. That suggests that the wing behavior is not properly captured by our 2D 

model. 

Consequently, further research needs to be done using a 3D model which should capture 

better the connections between radials. Most likely, a torsional degree of freedom at the 

joints (not modeled in this work) is responsible for the observed behavior. Maybe the 

joints should be considered stiffer when the radials belong to the same fin ray and adding a 

third material representing the mix of connective tissue and muscles could be a good 

starting point. Also the joints can be studied and thus modeled more realistically. During 
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all this process, it would be a good idea to have a real prototype to predict the results 

expected from each simulation. This prototype could be easily assembled using rapid 

prototyping techniques available at UCI, such as 3D printing and stereolithography.  
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ANNEX A: ABAQUS SCREENSHOTS 
A.1 Geometries from the preliminary results 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.2 Boundary Conditions 
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A.3 Mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.4 α=26.6°, l=26mm replicas 
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A.5. Von Misses stress plot α=45.0°, l=26mm, edge pulling force 0.5 N/mm. 
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ANNEX B: MATLAB CODE 
B.1 Homogenization 

function [CH,Y,alphas,alphaw] = homogenize(lx, ly, lambda, mu, phi, x) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% lx = Unit cell length in x-direction. 
% ly = Unit cell length in y-direction. 
% lambda = Lame's first parameter for both materials. Two entries. 
% mu = Lame's second parameter for both materials. Two entries. 
% phi = Angle between horizontal and vertical cell wall. Degrees 
% x = Material indicator matrix. Size used to determine nelx/nely 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% INITIALIZE 
% Deduce discretization 
[nely, nelx] = size(x); 
% Stiffness matrix consists of two parts, one belonging to lambda and 
% one belonging to mu. Same goes for load vector 
dx = lx/nelx; dy = ly/nely; 
nel = nelx*nely; 
[keLambda, keMu, feLambda, feMu] = elementMatVec(dx/2, dy/2, phi); 
% Node numbers and element degrees of freedom for full (not periodic) mesh 
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx); 
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nel,1); 
edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nel,1); 
%% IMPOSE PERIODIC BOUNDARY CONDITIONS 
% Use original edofMat to index into list with the periodic dofs 
nn = (nelx+1)*(nely+1); % Total number of nodes 
nnP = (nelx)*(nely); % Total number of unique nodes 
nnPArray = reshape(1:nnP, nely, nelx); 
% Extend with a mirror of the top border 
nnPArray(end+1,:) = nnPArray(1,:); 
% Extend with a mirror of the left border 
nnPArray(:,end+1) = nnPArray(:,1); 
% Make a vector into which we can index using edofMat: 
dofVector = zeros(2*nn, 1); 
dofVector(1:2:end) = 2*nnPArray(:)-1; 
dofVector(2:2:end) = 2*nnPArray(:); 
edofMat = dofVector(edofMat); 
ndof = 2*nnP; % Number of dofs 
%% ASSEMBLE STIFFNESS MATRIX 
% Indexing vectors 
iK = kron(edofMat,ones(8,1))'; 
jK = kron(edofMat,ones(1,8))'; 
% Material properties in the different elements 
lambda = lambda(1)*(x==1) + lambda(2)*(x==2); 
mu = mu(1)*(x==1) + mu(2)*(x==2); 
% The corresponding stiffness matrix entries 
sK = keLambda(:)*lambda(:).' + keMu(:)*mu(:).'; 
K = sparse(iK(:), jK(:), sK(:), ndof, ndof); 
%% LOAD VECTORS AND SOLUTION 
% Assembly three load cases corresponding to the three strain cases 
sF = feLambda(:)*lambda(:).'+feMu(:)*mu(:).'; 
iF = repmat(edofMat',3,1); 
jF = [ones(8,nel); 2*ones(8,nel); 3*ones(8,nel)]; 
F = sparse(iF(:), jF(:), sF(:), ndof, 3); 
% Solve (remember to constrain one node) 
chi(3:ndof,:) = K(3:ndof,3:ndof)\F(3:ndof,:); 
%% HOMOGENIZATION 
% The displacement vectors corresponding to the unit strain cases 
chi0 = zeros(nel, 8, 3); 
% The element displacements for the three unit strains 
chi0_e = zeros(8, 3); 
ke = keMu + keLambda; % Here the exact ratio does not matter, because 
fe = feMu + feLambda; % it is reflected in the load vector 
chi0_e([3 5:end],:) = ke([3 5:end],[3 5:end])\fe([3 5:end],:); 
% epsilon0_11 = (1, 0, 0) 
chi0(:,:,1) = kron(chi0_e(:,1)', ones(nel,1)); 
% epsilon0_22 = (0, 1, 0) 
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chi0(:,:,2) = kron(chi0_e(:,2)', ones(nel,1)); 
% epsilon0_12 = (0, 0, 1) 
chi0(:,:,3) = kron(chi0_e(:,3)', ones(nel,1)); 
CH = zeros(3); 
cellVolume = lx*ly; 
for i = 1:3 
for j = 1:3 
sumLambda = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keLambda).*... 
(chi0(:,:,j) - chi(edofMat+(j-1)*ndof)); 
sumMu = ((chi0(:,:,i) - chi(edofMat+(i-1)*ndof))*keMu).*... 
(chi0(:,:,j) - chi(edofMat+(j-1)*ndof)); 
sumLambda = reshape(sum(sumLambda,2), nely, nelx); 
sumMu = reshape(sum(sumMu,2), nely, nelx); 
% Homogenized elasticity tensor 
CH(i,j) = 1/cellVolume*sum(sum(lambda.*sumLambda + mu.*sumMu)); 
end 
end 
disp('--- Homogenized elasticity tensor ---'); disp(CH) 
% STIFF AND COMPLIANT DIRECTION 
Qxx=CH(1,1); 
Qyy=CH(2,2); 
Qss=CH(3,3); 
Qxy=CH(1,2); 
Qxs=CH(1,3); 
Qys=CH(2,3); 
alphas=fminbnd(@(alphas) Q11s(alphas,Qxx,Qyy,Qss,Qxy,Qxs,Qys),0,pi); 
alphaw=fminbnd(@(alphaw) Q11w(alphaw,Qxx,Qyy,Qss,Qxy,Qxs,Qys),0,pi); 
disp('--- Stiffest direction ---'); disp(radtodeg(alphas)) 
disp('--- Weakest direction ---'); disp(radtodeg(alphaw)) 
% COMPLIANCE MATRIX 
Y=inv(CH); 
disp('--- S matrix ---'); disp(Y) 
 
%% COMPUTE ELEMENT STIFFNESS MATRIX AND FORCE VECTOR (NUMERICALLY) 
function [keLambda, keMu, feLambda, feMu] = elementMatVec(a, b, phi) 
% Constitutive matrix contributions 
CMu = diag([2 2 1]); CLambda = zeros(3); CLambda(1:2,1:2) = 1; 
% Two Gauss points in both directions 
xx=[-1/sqrt(3), 1/sqrt(3)]; yy = xx; 
ww=[1,1]; 
% Initialize 
keLambda = zeros(8,8); keMu = zeros(8,8); 
feLambda = zeros(8,3); feMu = zeros(8,3); 
L = zeros(3,4); L(1,1) = 1; L(2,4) = 1; L(3,2:3) = 1; 
for ii=1:length(xx) 
for jj=1:length(yy) 
% Integration point 
x = xx(ii); y = yy(jj); 
% Differentiated shape functions 
dNx = 1/4*[-(1-y) (1-y) (1+y) -(1+y)]; 
dNy = 1/4*[-(1-x) -(1+x) (1+x) (1-x)]; 
% Jacobian 
J = [dNx; dNy]*[-a a a+2*b/tan(phi*pi/180) 2*b/tan(phi*pi/180)-a; ... 
-b -b b b]'; 
detJ = J(1,1)*J(2,2) - J(1,2)*J(2,1); 
invJ = 1/detJ*[J(2,2) -J(1,2); -J(2,1) J(1,1)]; 
% Weight factor at this point 
weight = ww(ii)*ww(jj)*detJ; 
% Strain-displacement matrix 
G = [invJ zeros(2); zeros(2) invJ]; 
dN = zeros(4,8); 
dN(1,1:2:8) = dNx; 
dN(2,1:2:8) = dNy; 
dN(3,2:2:8) = dNx; 
dN(4,2:2:8) = dNy; 
B = L*G*dN; 
% Element matrices 
keLambda = keLambda + weight*(B' * CLambda * B); 
keMu = keMu + weight*(B' * CMu * B); 
% Element loads 
feLambda = feLambda + weight*(B' * CLambda * diag([1 1 1])); 
feMu = feMu + weight*(B' * CMu * diag([1 1 1])); 
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end 
end 
 
% STIFF DIRECTION 
function f=Q11s(alphas,Qxx,Qyy,Qss,Qxy,Qxs,Qys) 
f=(-1)*((cos(alphas))^4*Qxx+(sin(alphas))^4*Qyy+(cos(alphas))^2*(sin(alphas))^2* 
(2*Qxy+4*Qss)+4*(cos(alphas))^3*sin(alphas)*Qxs+4*cos(alphas)*(sin(alphas))^3*Qys); 
 
% COMPLIANT DIRECTION 
function f=Q11w(alphaw,Qxx,Qyy,Qss,Qxy,Qxs,Qys) 
f=(cos(alphaw))^4*Qxx+(sin(alphaw))^4*Qyy+(cos(alphaw))^2*(sin(alphaw))^2* 
(2*Qxy+4*Qss)+4*(cos(alphaw))^3*sin(alphaw)*Qxs+4*cos(alphaw)*(sin(alphaw))^3*Qys; 
 

B.2 Assign material properties 

B.2.1 Lamé’s first parameter (λ): 

function [ lambda ] = assignlambda( E1, E2, nu1, nu2 ) 
%assignlambda Calculates lambda vector for 2 materials 
lambda1=lame_lambda( E1, nu1 ); 
lambda2=lame_lambda( E2, nu2 ); 
mu1=lame_mu( E1, nu1 ); 
mu2=lame_mu( E2, nu2 ); 
lambda1= lambda_mod( lambda1, mu1 ); 
lambda2= lambda_mod( lambda2, mu2 ); 
lambda=[lambda1 lambda2]; 
end 
  
function [ lambda ] = lame_lambda( E, nu ) 
% lame_lambda Calculates first Lame's parameter lambda 
lambda=(nu*E)/((1.+nu)*(1.-2.*nu)); 
end 
  
function [ mu ] = lame_mu( E, nu ) 
% lame_mu Calculates second Lame's parameter mu 
mu=E/(2*(1+nu)); 
end 
  
function [ lambdam ] = lambda_mod( lambda, mu ) 
% lambda_mod Calclates modified Lamé’s first parameter to get plane 
stress properties 
lambdam=2*mu*lambda/(lambda+2.*mu); 
end 
 

B.2.2 Lame’s second parameter (µ): 

function [ mu ] = assignmu( E1,E2,nu1,nu2 ) 
%assignmu Calculates mu vector for 2 materials  
mu1=lame_mu( E1, nu1 ); 
mu2=lame_mu( E2, nu2 ); 
mu=[mu1 mu2]; 
end 
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function [ mu ] = lame_mu( E, nu ) 
% lame_mu Calculates second Lame's parameter mu 
end 
 

B.3 Example of and x matrix (base model α=26.57°): 
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