27,762 research outputs found

    Design Space Re-Engineering for Power Minimization in Modern Embedded Systems

    Get PDF
    Power minimization is a critical challenge for modern embedded system design. Recently, due to the rapid increase of system's complexity and the power density, there is a growing need for power control techniques at various design levels. Meanwhile, due to technology scaling, leakage power has become a significant part of power dissipation in the CMOS circuits and new techniques are needed to reduce leakage power. As a result, many new power minimization techniques have been proposed such as voltage island, gate sizing, multiple supply and threshold voltage, power gating and input vector control, etc. These design options further enlarge the design space and make it prohibitively expensive to explore for the most energy efficient design solution. Consequently, heuristic algorithms and randomized algorithms are frequently used to explore the design space, seeking sub-optimal solutions to meet the time-to-market requirements. These algorithms are based on the idea of truncating the design space and restricting the search in a subset of the original design space. While this approach can effectively reduce the runtime of searching, it may also exclude high-quality design solutions and cause design quality degradation. When the solution to one problem is used as the base for another problem, such solution quality degradation will accumulate. In modern electronics system design, when several such algorithms are used in series to solve problems in different design levels, the final solution can be far off the optimal one. In my Ph.D. work, I develop a {\em re-engineering} methodology to facilitate exploring the design space of power efficient embedded systems design. The direct goal is to enhance the performance of existing low power techniques. The methodology is based on the idea that design quality can be improved via iterative ``re-shaping'' the design space based on the ``bad'' structure in the obtained design solutions; the searching run-time can be reduced by the guidance from previous exploration. This approach can be described in three phases: (1) apply the existing techniques to obtain a sub-optimal solution; (2) analyze the solution and expand the design space accordingly; and (3) re-apply the technique to re-explore the enlarged design space. We apply this methodology at different levels of embedded system design to minimize power: (i) switching power reduction in sequential logic synthesis; (ii) gate-level static leakage current reduction; (iii) dual threshold voltage CMOS circuits design; and (iv) system-level energy-efficient detection scheme for wireless sensor networks. An extensive amount of experiments have been conducted and the results have shown that this methodology can effectively enhance the power efficiency of the existing embedded system design flows with very little overhead

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM

    On Idle Energy Consumption Minimization in Production: Industrial Example and Mathematical Model

    Full text link
    This paper, inspired by a real production process of steel hardening, investigates a scheduling problem to minimize the idle energy consumption of machines. The energy minimization is achieved by switching a machine to some power-saving mode when it is idle. For the steel hardening process, the mode of the machine (i.e., furnace) can be associated with its inner temperature. Contrary to the recent methods, which consider only a small number of machine modes, the temperature in the furnace can be changed continuously, and so an infinite number of the power-saving modes must be considered to achieve the highest possible savings. To model the machine modes efficiently, we use the concept of the energy function, which was originally introduced in the domain of embedded systems but has yet to take roots in the domain of production research. The energy function is illustrated with several application examples from the literature. Afterward, it is integrated into a mathematical model of a scheduling problem with parallel identical machines and jobs characterized by release times, deadlines, and processing times. Numerical experiments show that the proposed model outperforms a reference model adapted from the literature.Comment: Accepted to 9th International Conference on Operations Research and Enterprise Systems (ICORES 2020

    Sensitivity-based multistep MPC for embedded systems

    Get PDF
    In model predictive control (MPC), an optimization problem is solved every sampling instant to determine an optimal control for a physical system. We aim to accelerate this procedure for fast systems applications and address the challenge of implementing the resulting MPC scheme on an embedded system with limited computing power. We present the sensitivity-based multistep MPC, a strategy which considerably reduces the computing requirements in terms of floating point operations (FLOPs), compared to a standard MPC formulation, while fulfilling closed- loop performance expectations. We illustrate by applying the method to a DC-DC converter model and show how a designer can optimally trade off closed-loop performance considerations with computing requirements in order to fit the controller into a resource-constrained embedded system

    Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Get PDF
    In this work, we propose a novel approach called as “Normalized Gain Function (NGF) method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN) of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique) based design example supported by simulations in MWO (MicroWave Office from AWR Corporation) is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor

    System-on-chip Computing and Interconnection Architectures for Telecommunications and Signal Processing

    Get PDF
    This dissertation proposes novel architectures and design techniques targeting SoC building blocks for telecommunications and signal processing applications. Hardware implementation of Low-Density Parity-Check decoders is approached at both the algorithmic and the architecture level. Low-Density Parity-Check codes are a promising coding scheme for future communication standards due to their outstanding error correction performance. This work proposes a methodology for analyzing effects of finite precision arithmetic on error correction performance and hardware complexity. The methodology is throughout employed for co-designing the decoder. First, a low-complexity check node based on the P-output decoding principle is designed and characterized on a CMOS standard-cells library. Results demonstrate implementation loss below 0.2 dB down to BER of 10^{-8} and a saving in complexity up to 59% with respect to other works in recent literature. High-throughput and low-latency issues are addressed with modified single-phase decoding schedules. A new "memory-aware" schedule is proposed requiring down to 20% of memory with respect to the traditional two-phase flooding decoding. Additionally, throughput is doubled and logic complexity reduced of 12%. These advantages are traded-off with error correction performance, thus making the solution attractive only for long codes, as those adopted in the DVB-S2 standard. The "layered decoding" principle is extended to those codes not specifically conceived for this technique. Proposed architectures exhibit complexity savings in the order of 40% for both area and power consumption figures, while implementation loss is smaller than 0.05 dB. Most modern communication standards employ Orthogonal Frequency Division Multiplexing as part of their physical layer. The core of OFDM is the Fast Fourier Transform and its inverse in charge of symbols (de)modulation. Requirements on throughput and energy efficiency call for FFT hardware implementation, while ubiquity of FFT suggests the design of parametric, re-configurable and re-usable IP hardware macrocells. In this context, this thesis describes an FFT/IFFT core compiler particularly suited for implementation of OFDM communication systems. The tool employs an accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. Compared with other FFT core compilers, the proposed environment produces macrocells with lower circuit complexity and same system level performance (throughput, transform size and numerical accuracy). The final part of this dissertation focuses on the Network-on-Chip design paradigm whose goal is building scalable communication infrastructures connecting hundreds of core. A low-complexity link architecture for mesochronous on-chip communication is discussed. The link enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. The proposed architecture reaches a maximum clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In a complex test case with a full-blown NoC infrastructure, the link overhead is only 3% of chip area and 0.5% of leakage power consumption. Finally, a new methodology, named metacoding, is proposed. Metacoding generates correct-by-construction technology independent RTL codebases for NoC building blocks. The RTL coding phase is abstracted and modeled with an Object Oriented framework, integrated within a commercial tool for IP packaging (Synopsys CoreTools suite). Compared with traditional coding styles based on pre-processor directives, metacoding produces 65% smaller codebases and reduces the configurations to verify up to three orders of magnitude
    • …
    corecore