3,977 research outputs found

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine

    Foundations of Infrastructure CPS

    Get PDF
    Infrastructures have been around as long as urban centers, supporting a society’s needs for its planning, operation, and safety. As we move deeper into the 21st century, these infrastructures are becoming smart – they monitor themselves, communicate, and most importantly self-govern, which we denote as Infrastructure CPS. Cyber-physical systems are now becoming increasingly prevalent and possibly even mainstream. With the basics of CPS in place, such as stability, robustness, and reliability properties at a systems level, and hybrid, switched, and eventtriggered properties at a network level, we believe that the time is right to go to the next step, Infrastructure CPS, which forms the focus of the proposed tutorial. We discuss three different foundations, (i) Human Empowerment, (ii) Transactive Control, and (iii) Resilience. This will be followed by two examples, one on the nexus between power and communication infrastructure, and the other between natural gas and electricity, both of which have been investigated extensively of late, and are emerging to be apt illustrations of Infrastructure CPS

    Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    Get PDF
    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks

    Viiveiden vaikutus sähkömekaanisten heilahtelujen laajan alueen vaimennussäätöön

    Get PDF
    In this thesis the effects of delays on the wide-area damping control of electromechanical oscillations were studied. The research goals were two fold: to identify and define the delay sources in phasor measurement based (PMU) wide-area measurement systems for power systems, and to study the effects of delays on wide-area damping control using power system simulations as a research tool. The implementation the delays into a pre-existing power system simulation program as also a part of this work. The thesis shows and identifies the delays components and their properties in the wide-area measurement systems. It gives a survey on the reports of real delays observed in wide-area measurement systems worldwide. The simulation results show that delay has an impact on the damping control. Power system have a delay margin they are able to tolerate before turning unstable. Additionally, latency changes the properties of the electromechanical oscillations.Tässä diplomityössä tutkittiin viiveiden vaikutusta sähkömekaanisten heilahtelujen vaimennussäätöön. Työ oli karkeasti jaettavissa kahteen erilliseen osaan. Ensimmäinen osa oli voimajärjestelmien PMU-pohjaisten laajan alueen mittaus- ja ohjausjärjestelmien viivelähteiden löytäminen, tunnistaminen ja luokittelu. Toinen osa oli viiveiden vaikutusten tutkiminen laajan alueen heilahtelusäätöön käyttäen voimajärjestelmäsimulointia tutkimuksen työkaluna. Työn toteutus sisälsi viiveellistenmittauksien ja ohjauksien toteuttamisen valmiina olevaan simulaatio-ohjelmaan. Työ näyttää laajan alueen mittaus- ja ohjausjärjestelmien viivekomponentittien ominaisuudet ja vaikutuksen viiveketjuun sekä millaisia lukemia on raportoitu käytössä olevista järjestelmistä ympäri maailman. Työn viivesimulaatiot osoittavat, että viiveillä on merkitys sähkömekaanisten heilahtelujen vaimennussäätöön. Viiveellinen säätö muuttaa sähkömekaanisten heilahtelujen ominaisuuksia ja osoittaa, että voimajärjestelmillä on niille ominainen viiveen sietokyky

    Enabling and Understanding Failure of Engineering Structures Using the Technique of Cohesive Elements

    Get PDF
    In this paper, we describe a cohesive zone model for the prediction of failure of engineering solids and/or structures. A damage evolution law is incorporated into a three-dimensional, exponential cohesive law to account for material degradation under the influence of cyclic loading. This cohesive zone model is implemented in the finite element software ABAQUS through a user defined subroutine. The irreversibility of the cohesive zone model is first verified and subsequently applied for studying cyclic crack growth in specimens experiencing different modes of fracture and/or failure. The crack growth behavior to include both crack initiation and crack propagation becomes a natural outcome of the numerical simulation. Numerical examples suggest that the irreversible cohesive zone model can serve as an efficient tool to predict fatigue crack growth. Key issues such as crack path deviation, convergence and mesh dependency are also discussed

    Improved algorithms for TCP congestion control

    Get PDF
    Reliable and efficient data transfer on the Internet is an important issue. Since late 70’s the protocol responsible for that has been the de facto standard TCP, which has proven to be successful through out the years, its self-managed congestion control algorithms have retained the stability of the Internet for decades. However, the variety of existing new technologies such as high-speed networks (e.g. fibre optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless technologies have posed lots of challenges to TCP congestion control algorithms. The congestion control research community proposed solutions to most of these challenges. This dissertation adds to the existing work by: firstly tackling the highspeed long-delay problem of TCP, we propose enhancements to one of the existing TCP variants (part of Linux kernel stack). We then propose our own variant: TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss from congestive loss in a passive way and we propose a novel loss differentiation algorithm which quantifies the noise in packet inter arrival times and use this information together with the span (ratio of maximum to minimum packet inter arrival times) to adapt the multiplicative decrease factor according to a predefined logical formula. Finally, extending the well-known drift model of TCP to account for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease), we have undertaken stability analysis for the new version of the model

    Avionics test bed development plan

    Get PDF
    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included

    Grid-Connected Renewable Energy Sources

    Get PDF
    The use of renewable energy sources (RESs) is a need of global society. This editorial, and its associated Special Issue “Grid-Connected Renewable Energy Sources”, offers a compilation of some of the recent advances in the analysis of current power systems that are composed after the high penetration of distributed generation (DG) with different RESs. The focus is on both new control configurations and on novel methodologies for the optimal placement and sizing of DG. The eleven accepted papers certainly provide a good contribution to control deployments and methodologies for the allocation and sizing of DG

    Modeling and Analysis of Power Processing Systems (MAPPS), initial phase 2

    Get PDF
    The overall objective of the program is to provide the engineering tools to reduce the analysis, design, and development effort, and thus the cost, in achieving the required performances for switching regulators and dc-dc converter systems. The program was both tutorial and application oriented. Various analytical methods were described in detail and supplemented with examples, and those with standardization appeals were reduced into computer-based subprograms. Major program efforts included those concerning small and large signal control-dependent performance analysis and simulation, control circuit design, power circuit design and optimization, system configuration study, and system performance simulation. Techniques including discrete time domain, conventional frequency domain, Lagrange multiplier, nonlinear programming, and control design synthesis were employed in these efforts. To enhance interactive conversation between the modeling and analysis subprograms and the user, a working prototype of the Data Management Program was also developed to facilitate expansion as future subprogram capabilities increase
    corecore