711 research outputs found

    Design Patterns in Beeping Algorithms

    Get PDF
    We consider networks of processes which interact with beeps. In the basic model defined by Cornejo and Kuhn, which we refer to as the BL variant, processes can choose in each round either to beep or to listen. Those who beep are unable to detect simultaneous beeps. Those who listen can only distinguish between silence and the presence of at least one beep. Stronger variants exist where the nodes can also detect collision while they are beeping (B_{cd}L) or listening (BL_{cd}), or both (B_{cd}L_{cd}). Beeping models are weak in essence and even simple tasks are difficult or unfeasible with them. This paper starts with a discussion on generic building blocks (design patterns) which seem to occur frequently in the design of beeping algorithms. They include multi-slot phases: the fact of dividing the main loop into a number of specialised slots; exclusive beeps: having a single node beep at a time in a neighbourhood (within one or two hops); adaptive probability: increasing or decreasing the probability of beeping to produce more exclusive beeps; internal (resp. peripheral) collision detection: for detecting collision while beeping (resp. listening); and emulation of collision detection: for enabling this feature when it is not available as a primitive. We then provide algorithms for a number of basic problems, including colouring, 2-hop colouring, degree computation, 2-hop MIS, and collision detection (in BL). Using the patterns, we formulate these algorithms in a rather concise and elegant way. Their analyses (in the full version) are more technical, e.g. one of them relies on a Martingale technique with non-independent variables; another improves that of the MIS algorithm (P. Jeavons et al.) by getting rid of a gigantic constant (the asymptotic order was already optimal). Finally, we study the relative power of several variants of beeping models. In particular, we explain how every Las Vegas algorithm with collision detection can be converted, through emulation, into a Monte Carlo algorithm without, at the cost of a logarithmic slowdown. We prove that this slowdown is optimal up to a constant factor by giving a matching lower bound

    Beeping a Deterministic Time-Optimal Leader Election

    Get PDF
    The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. In this model, we solve the leader election problem with an asymptotically optimal round complexity of O(D + log n), for a network of unknown size n and unknown diameter D (but with unique identifiers). Contrary to the best previously known algorithms in the same setting, the proposed one is deterministic. The techniques we introduce give a new insight as to how local constraints on the exchangeable messages can result in efficient algorithms, when dealing with the beeping model. Using this deterministic leader election algorithm, we obtain a randomized leader election algorithm for anonymous networks with an asymptotically optimal round complexity of O(D + log n) w.h.p. In previous works this complexity was obtained in expectation only. Moreover, using deterministic leader election, we obtain efficient algorithms for symmetry-breaking and communication procedures: O(log n) time MIS and 5-coloring for tree networks (which is time-optimal), as well as k-source multi-broadcast for general graphs in O(min(k,log n) * D + k log{(n M)/k}) rounds (for messages in {1,..., M}). This latter result improves on previous solutions when the number of sources k is sublogarithmic (k = o(log n))

    Noisy Beeping Networks

    Full text link
    We introduce noisy beeping networks, where nodes have limited communication capabilities, namely, they can only emit energy or sense the channel for energy. Furthermore, imperfections may cause devices to malfunction with some fixed probability when sensing the channel, which amounts to deducing a noisy received transmission. Such noisy networks have implications for ultra-lightweight sensor networks and biological systems. We show how to compute tasks in a noise-resilient manner over noisy beeping networks of arbitrary structure. In particular, we transform any algorithm that assumes a noiseless beeping network (of size nn) into a noise-resilient version while incurring a multiplicative overhead of only O(logn)O(\log n) in its round complexity, with high probability. We show that our coding is optimal for some tasks, such as node-coloring of a clique. We further show how to simulate a large family of algorithms designed for distributed networks in the CONGEST(BB) model over a noisy beeping network. The simulation succeeds with high probability and incurs an asymptotic multiplicative overhead of O(BΔmin(n,Δ2))O(B\cdot \Delta \cdot \min(n,\Delta^2)) in the round complexity, where Δ\Delta is the maximal degree of the network. The overhead is tight for certain graphs, e.g., a clique. Further, this simulation implies a constant overhead coding for constant-degree networks

    Beeping Shortest Paths via Hypergraph Bipartite Decomposition

    Get PDF
    corecore