
Design Patterns in Beeping Algorithms∗†

Arnaud Casteigts1, Yves Métivier2, John Michael Robson3, and
Akka Zemmari4

1 LaBRI, University of Bordeaux, Bordeaux, France
acasteig@labri.fr

2 LaBRI, University of Bordeaux, Bordeaux, France
metivier@labri.fr

3 LaBRI, University of Bordeaux, Bordeaux, France
robson@labri.fr

4 LaBRI, University of Bordeaux, Bordeaux, France
zemmari@labri.fr

Abstract
We consider networks of processes which interact with beeps. In the basic model defined by
Cornejo and Kuhn [5], which we refer to as the BL variant, processes can choose in each round
either to beep or to listen. Those who beep are unable to detect simultaneous beeps. Those
who listen can only distinguish between silence and the presence of at least one beep. Stronger
variants exist where the nodes can also detect collision while they are beeping (BcdL) or listening
(BLcd), or both (BcdLcd). Beeping models are weak in essence and even simple tasks are difficult
or unfeasible with them.

This paper starts with a discussion on generic building blocks (design patterns) which seem
to occur frequently in the design of beeping algorithms. They include multi-slot phases: the
fact of dividing the main loop into a number of specialised slots; exclusive beeps: having a
single node beep at a time in a neighbourhood (within one or two hops); adaptive probability:
increasing or decreasing the probability of beeping to produce more exclusive beeps; internal
(resp. peripheral) collision detection: for detecting collision while beeping (resp. listening); and
emulation of collision detection: for enabling this feature when it is not available as a primitive.

We then provide algorithms for a number of basic problems, including colouring, 2-hop col-
ouring, degree computation, 2-hop MIS, and collision detection (in BL). Using the patterns, we
formulate these algorithms in a rather concise and elegant way. Their analyses (in the full ver-
sion) are more technical, e.g. one of them relies on a Martingale technique with non-independent
variables; another improves that of the MIS algorithm in [8] by getting rid of a gigantic constant
(the asymptotic order was already optimal).

Finally, we study the relative power of several variants of beeping models. In particular,
we explain how every Las Vegas algorithm with collision detection can be converted, through
emulation, into a Monte Carlo algorithm without, at the cost of a logarithmic slowdown. We
prove that this slowdown is optimal up to a constant factor by giving a matching lower bound.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Beeping models, Design patterns, Collision detection, Colouring, 2-hop
colouring, Degree computation, Emulation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.15

∗ Full version available on arXiv (http://arxiv.org/abs/1607.02951).
† This research has been supported by ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE

(ANR-16-CE25-0009-03).

© Arnaud Casteigts, Yves Métivier, John Michael Robson, and Akka Zemmari;
licensed under Creative Commons License CC-BY

20th International Conference on Principles of Distributed Systems (OPODIS 2016).
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/80483714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.15
http://arxiv.org/abs/1607.02951
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Design Patterns in Beeping Algorithms

1 Introduction

Distributed computing is concerned with various assumptions, like the structure of the
network (trees, rings, planar graphs, etc.) or knowledge available to the nodes (network size,
identifiers, port numbering, etc.). Another important aspect is the size of messages, which
may range from unbounded, to logarithmic size, to constant size.

As a natural goal is to reduce assumptions as much as possible. Typically, when a problem
is solved in some strong model, the community strives to solve it in weaker models. In a
recent series of works [5, 10, 1, 7, 8, 6], new models were explored that are even weaker than
constant size messages. They are called beeping models.

In beeping models, the only communication capabilities offered to the nodes are to beep
or to listen. Several variants exist. In [5], a node that beeps is unable to detect whether
other nodes have beeped simultaneously. When listening, it can distinguish between silence
or the presence of at least one beep, but it cannot distinguish between one and several beeps.
In Section 6 of [1], beeping nodes can detect whether other nodes are beeping simultaneously.
In [10] and Section 4 of [1], yet another variant is considered where listening nodes can tell
the difference between silence, one beep, and several beeps.

In this paper, we denote the ability to detect collision while beeping (internal collision) by
Bcd and that of detecting collision while listening (peripheral collision) by Lcd. The absence
of such ability is denoted by B and L, respectively. The existing models can be reformulated
using the cartesian product of these capabilities. Hence, the basic model introduced by
Cornejo and Kuhn in [5] is BL; the model considered by Afek et al. in [1] (Section 6) and
Jeavons et al. in [8] is BcdL; and the model considered in [10] and in Section 4 of [1] is BLcd.
To the best of our knowledge, BcdLcd was only used in a previous work of the authors [3].

Although some variants are stronger than others, all beeping models remain extremely
weak in essence. Yet, they are relevant to account for real-world applications or phenomena.
For instance, they reflect the features of a network at the lowest levels (physical and MAC
layers), where a node can probe or emit signals, with or without collision detection. At
a higher level of abstraction, beeping models also reflect some communication patterns in
biology [4, 1, 9].

1.1 Contributions
The contributions of this paper are manifold. As a warm-up, we start by identifying generic
building blocks (design patterns) which seem to occur often in the design of beeping algorithms.
Then we present a number of algorithms for various graph problems which improve upon
previous solutions. Finally, we generalise existing emulation techniques for using collision
detection if it is not available, and we prove them optimal w.h.p. up to a constant factor.

Due to space limitations, this version of the paper omits (in its core) most complexity
analyses and some proofs. However, both are available in the arXiv version whose reference
is given in the first page.

1.1.1 Design patterns
We identify a number of common building blocks in beeping algorithms, including multi-slot
phases: the fact of dividing the main loop into a (typically constant) number of slots having
specific roles (e.g., contention among neighbours, collision detection, termination detection);
exclusive beeps: the fact of having a single node beep at a time in a neighbourhood (within
one or two hops, depending on the needs); adaptive probability: increasing or decreasing

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:3

Table 1 Randomised Las Vegas colouring algorithms on graphs with n vertices.

Model Time (# slots) Message size Knowledge # colours
BcdL O(log n + ∆)

expected and w.h.p.
' 1 bit

(BcdL beeps)
None O(log n + ∆)

BcdL O
(
K(log n + log2 K)

)
w.h.p.

' 1 bit
(BcdL beeps)

Upper bound K on
the max degree of G

K

the probability of beeping in order to maximise the number of exclusive beeps; internal
(resp. peripheral) collision detection: the fact of detecting collision while beeping (resp.
listening); and emulation of collision detection: the fact of detecting collisions even when it
is not available as a primitive. As we show in the paper, these patterns make it possible to
formulate the algorithms in a rather concise and elegant way.

1.1.2 Algorithms and analyses for basic graph problems
We present, or analyse algorithms for a number of basic graph problems, including colouring,
2-hop colouring, degree computation, Maximal Independent Set (MIS) and 2-hop MIS. Quite
often, the design of algorithms is easier and more natural if collision detection is assumed
as a primitive, e.g., in BcdLcd or BcdL. Furthermore, emulation techniques such as those
described later in this paper enable safe and automatic translations of algorithms into weaker
models like BL. For this reason, our algorithms are expressed using whichever model is the
most convenient.

First, we present a Las Vegas (i.e. guaranteed result, uncertain time) colouring algorithm
in the BcdL model, with time complexity of O(logn + ∆) slots w.h.p., where ∆ is the
maximum degree in G. Its analysis relies on a martingale technique with non-independent
random variables, which makes use of a result by Azuma [2] (details in the long version). In
fact, the phenomenon is quite ubiquitous in beeping models: the algorithm terminates in
the first moment when every node has produced an exclusive beep at least once within its
(1-hop) neighbourhood. This stopping time is made more complex by the use of the adaptive
probability pattern mentioned above. Another algorithm for 2-hop colouring is given, this
time in the BcdLcd model, with slot complexity O(logn+ ∆2) w.h.p. Both algorithms require
no knowledge on G. However, both can result in arbitrarily many colours (in fact, one per
slot). If the nodes know an upper bound K ≥ ∆, a different strategy is proposed that uses at
most K + 1 colours. However, the slot complexity becomes O(K(logn+ log2 K)) w.h.p. for
colouring (trade K for K2 in the 2-hop variant). Note that this complexity is not thought to
be tight. The results are summarised on Table 1.

Based on the observation that degree computation is strongly related to 2-hop colouring,
we present an adaptation of the algorithm for this problem, with same slot complexity, that
is, O(logn+ ∆2) w.h.p. In fact, the random process induced by this algorithm is the same
as that of colouring, except that it occurs in the square of the graph (whence the ∆2 term).
Algorithmically, the main loop contains more specialised slots (e.g., one for peripheral collision
reporting), but still a constant number of them, which keeps the asymptotics unchanged. We
then turn our attention to the 2-hop MIS problem, which shares common traits and patterns
with 2-hop colouring and degree computation and, regarding the high-level purpose of each
phase, with the MIS algorithm from [8]. The running time is however shorter than that of
2-hop coulouring and degree computation (and the analysis quite different) due to the fact
that exclusive beeps cause whole neighbourhoods to terminate at once. In fact, we prove
that the slot complexity of this algorithm is O(logn) w.h.p. with a “reasonable” constant

OPODIS 2016

15:4 Design Patterns in Beeping Algorithms

factor of 76. Noteworthily, the number of phases (i.e. iterations of the main loop) for the
2-hop MIS is exactly the same as what the analogue for classical MIS would produce in the
square of the graph. As a consequence, our analysis also improves substantially that of the
MIS algorithm presented in [8], where a gigantic constant factor (i.e. one larger than e25) is
used. An earlier analysis in [11] yielded a better, yet huge constant of 2× 1011. Although
constant factors are less meaningful in general, the gap in this case is one between practical
and unpractical running times. Furthermore, the contribution it not as much in the constant
itself than in the analysis techniques that achieve it.

1.1.3 Collision detection and emulation techniques
Classical considerations on symmetry breaking in anonymous beeping networks, see for
example [1] (Lemma 4.1), imply that there is no Las Vegas internal collision detection
algorithm in the beeping models BL and BLcd. Likewise, there is no Las Vegas peripheral
collision detection algorithm in the beeping models BL and BcdL. Since collision detection is
required to detect exclusive beeps with certainty, and this pattern is central in most beeping
algorithms, this implies that a large range of algorithms cannot exist in a Las Vegas version
in these models.

We study the cost of detecting collision when it is not available, typically in BL, and
present generic techniques to emulate collision detection probabilistically in order to transform
Las Vegas algorithms with collision detection into Monte Carlo algorithms (uncertain result,
guaranteed time) in BL. These techniques generalise that of Algorithm 3 in [1], where a
similar strategy is encapsulated into the algorithm. We show how, given 0 < ε < 1, any
collision in the neighbourhood of a given node can be detected in O(log(1

ε)) slots with
error at most ε, and similarly it can be detected in O(logn) slots w.h.p. Ensuring that this
is true for any node requires more time. By union bound, it holds that O(log(nε)) slots
are sufficient with error ε and that O(logn) slots are sufficient w.h.p. We prove that this
technique is essentially optimal (asymptotically and up to a constant factor) by giving a
matching lower bound. Precisely, we prove that some topologies require Ω(logn) slots to
break symmetries w.h.p. Finally, we provide two generic procedures that can be used in
an algorithm to emulate collision detection when it is not available (e.g. in BL). These
procedures are EmulateBcdinBL(), to detect collision while beeping, and EmulateLcdinBL(),
to detect collision while listening. We illustrate their use in the case of the computation of a
MIS given in BcdL, thus obtaining a Monte Carlo algorithm in BL.

1.2 Organisation of the paper
In Section 2 we present the model and give further definitions. Section 3 introduces design
patterns in a tutorial manner. These patterns are then used in Section 4 to describe the
various algorithms. Finally, Section 5 presents our contribution on collision detection and
emulation techniques.

2 Network Model and Definitions

We consider a wireless network and we follow definitions given in [1] and [5]. The network
is anonymous: unique identifiers are not available to distinguish the processes. Possible
communications are encoded by a graph G = (V,E) where the nodes V represent processes
and the edges E represent pairs of processes that can hear each other. We denote by ∆ the
maximum degree of G. The neighbourhood of a vertex v, denoted N(v), is the set of vertices

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:5

adjacent to v (at distance 1 from v). We define N(v) by including v itself in N(v). We also
use the set of vertices at distance at most 2 from v called the 2-neighbourhood of v and
denoted N2(v) (or N2(v) if it includes v). Finally, we write logn for the binary logarithm
of n.

Time is divided into discrete synchronised time intervals (rounds) also called slots
(following the usual terminology in wireless networks). All processes wake up and start
computation in the same slot. In each slot, all processors act in parallel and either beep
or listen. In addition, processors can perform an unrestricted amount of local computation
in-between two slots (in effect, our algorithms require little computation).
I Remark. In general, nodes are active or passive. When they are active they beep or listen;
in the description of algorithms we say explicitly when a node beeps meaning that a non
beeping active node listens.

The time complexity, also called slot complexity, is the maximum number of slots needed
until every node has terminated. Our algorithms are typically structured into phases, each
of which corresponds to a small (constant or logarithmic) number of slots. In the algorithm,
we specify which one is the current slot by means of a switch instruction with as many
case statements as there are slots in the phase. Phases repeat until some condition holds for
termination.
I Remark. An algorithm given in a beeping model induces an algorithm in the (synchronous)
message passing model. Thus, given a problem, any lower bound on the round complexity in
the message passing model also holds for slot complexity in the beeping model.

Distributed Randomised Algorithm

A randomised (or probabilistic) algorithm is an algorithm which makes choices based on
given probability distributions. A distributed randomised algorithm is a collection of local
randomised algorithms (in our case, all identical).

A Las Vegas algorithm is a randomised algorithm whose running time is not deterministic,
but still finite with probability 1, and that always produces a correct result. A Monte
Carlo algorithm is a randomised algorithm whose running time is deterministic, but whose
result may be incorrect with a certain probability. Put differently, Las Vegas algorithms
have uncertain execution time but certain result, and Monte Carlo algorithms have certain
execution time but uncertain result. Classical considerations on symmetry breaking in
anonymous beeping networks (see for instance Lemma 4.1 in [1]), imply that:
I Remark. There is no Las Vegas (and a fortiori no deterministic) algorithm in BL which
allows a node to distinguish between an execution where it is isolated and one where it has
exactly one neighbour.

From this remark we deduce that there is no Las Vegas counting algorithm in BL, which
advocates the use of stronger models. In what follows, we consider whichever model is
the most convenient and provide Las Vegas algorithms in these models. We then present
canonical emulation techniques to turn any such algorithm into a Monte Carlo one in BL.

3 Design patterns for beeping algorithms

As a warm-up, this section presents a number of design patterns which seem to occur
frequently in the design of beeping algorithms. The concept of pattern refers here to reusable
solutions to common problems. These patterns are then used to describe algorithms in the
other sections.

OPODIS 2016

15:6 Design Patterns in Beeping Algorithms

Algorithm 1: Exclusive beeps (using Bcd).
repeat

beep with some probability;
if I beeped alone then

do something exclusive;
...

until finished;

Algorithm 2: Two-hops exclusive beeps (using BcdLcd).
repeat

switch slot do
slot 1 // contending

beep with some probability;
slot 2 // detection of peripheral collision

if several neighbours beeped in slot 1 then
beep

after slot 2
if I beeped alone in slot 1 and no neighbour beeped in slot 2 then

do something 2-hop exclusive
...

until finished;

Exclusive beeps

Beeping algorithms operate in synchronous periods called slots, which are equivalent to
the concept of rounds in message passing models. Most problems in distributed computing
require some node v to take exclusive decisions at times (i.e., with respect to vertices of N(v)
or N2(v)), which requires some type of symmetry breaking. In beeping networks, this goal is
all the more difficult to achieve that the nodes cannot use identifiers nor even port numbers
in their basic exchanges. If we assume that a node that is beeping can detect whether another
node beeps simultaneously (Bcd), then this feature can be used to take exclusive decision if
indeed it beeps alone. We call this an exclusive beep. Algorithm 1 illustrates an empty shell
of algorithm that relies on repeated attempts to produce exclusive beeps. Most, if not all
algorithms rely implicitly on this pattern as a basis.

2-hop exclusive beeps

For some problems like 2-hop colouring, 2-hop MIS, or computation of the degree (all
discussed in this paper), the level of mutual exclusion offered by exclusive beeps is not
sufficient and the algorithm requires that a node be the only one to beep at distance 2.
Assuming collision can also be detected upon listening (Lcd), one can design a 2-slots pattern
whereby non-beeping neighbours report if they have heard more than one beep. Hence, if
a node produced an exclusive beep in the first slot, and none of its neighbours reported
a collision in the second, then it knows that it has produced a 2-hop exclusive beep (see
Algorithm 2).

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:7

Algorithm 3: Adaptive beeping probability (using BcdLcd).
Float p← 1/2 // say
repeat

beep with probability p;
if I beeped alone then

do something exclusive;

else
if no one beeped then

increase p;
else

decrease p;

until finished;

Multi-slot phases

The example in Algorithm 2 illustrates another common aspect of beeping algorithms, namely
multi-slot phases. The expressivity of a single beep is rather poor, but several combined slots
can achieve elaborate behavior. In Algorithm 2, one slot is devoted to contending and another
to peripheral collision detection. The whole compound is then called a phase. Another
common task is termination detection. In a termination slot, all nodes which have not yet
performed some action beep. If the slot remain silent, then a form of local termination is
detected: nodes are in a terminal state.

Adaptive probability

As far as feasibility and expressivity are concerned, the next design pattern is not crucial.
However, it plays a central role in terms of performance. Adaptive probability consists in
adapting the probability to beep in the next phase depending on the outcome of previous
phases. Typically, if a collision occurs, the probability is reduced, and if no one beeps, it is
increased. Since the nodes do not know how many neighbours are contending with them,
this technique proves useful in optimizing the odds of producing exclusive beeps.

The values given to the probabilities in Algorithm 3 are left unspecified. There are several
options. In this paper, we use a doubling/halving pattern, that is, p is increased to 2p (up to
1/2), and it is decreased to p/2 (without limit). A similar doubling/halving pattern was used
in [11]. One could also increment or decrement the denominator of p as done in [3]. The
consequences of choosing one over the other are not discussed here.

Collision detection

Most algorithms in this paper use collision detection as a built-in primitive, referred to as
Bcd for detection on beeping and Lcd for detection on listening. However, this feature is not
always available as a primitive. An important question is the transformation of a (high-level)
algorithm using Bcd or Lcd (or both) into one that works in the weakest BL model. This
question is the topic of Section 5, in which we study generic mechanisms to achieve this goal.
Essentially, each slot that requires collision detection can be replaced with a logarithmic
number of slots (in the size of various quantities depending on the desired guarantees) where
the ties are broken w.h.p. We provide dedicated procedures that generalise the technique
used internally to one of the algorithms in [1]. Besides complexity, the price to pay is that

OPODIS 2016

15:8 Design Patterns in Beeping Algorithms

the algorithm becomes Monte Carlo instead of Las Vegas, that is, the result is correct only
probabilistically (though possibly w.h.p.). We present a matching lower bound showing that
these procedures are essentially optimal.

4 Algorithms for basic graph problems

We now present algorithms for a number of problems, including colouring (with or without
knowledge on the degree), 2-hop colouring, computation of the degree and 2-hop MIS. These
algorithms are based on various combinations of the patterns presented in Section 3. All
algorithms are Las Vegas, and they rely on medium to strong primitives (BcdL to BcdLcd
models) depending on the needs. The adaptation of these algorithms in the weakest model
(BL) is discussed in Section 5. We also recall Jeavons et al.’s Las Vegas algorithm for the
MIS [8] problem and discuss its relations with our 2-hop MIS algorithm.

Whenever using the adaptive probability pattern in algorithms, for generality, we stick
to the terms increase and decrease (as opposed to our analyses, in which these actions are
instantiated to doubling and halving the probability).

4.1 Colouring
The colouring problem consists of assigning a colour to every node in the network, such that
no two neighbours have the same colour. We first consider the case that no extra information
is available to the nodes. Then we consider that (an upper bound on) the maximum degree
is known.

Colouring without knowledge

Informally, the algorithm proceeds as follows (see Algorithm 4 for details). Initially, every
node is uncoloured (nil). In every phase, each node increments a counter. Uncoloured nodes
contend with each other to produce an exclusive beep, and when one succeeds, it takes the
current value of the counter as its colour and retires. An adaptive probability is used to
regulate the probability of beeping among uncoloured nodes. Local termination (a node and
its neighbours are coloured) detection is not explicitly handled here, though we could add a
termination slot where uncoloured nodes are the only ones to beep.

The running time of this algorithm is of O(logn+ ∆) phases w.h.p as well as on average
(none of both imply the other trivially). Note that this is also the number of slots, since each
phase consists of a constant number of slots. As for the number of colours, it is incremented
with time, thus it is at most the same (at most, because some phases may not produce
exclusive beeps).

Colouring with a bound K on the maximum degree ∆

If a bound K ≥ ∆ is known, then one can obtain a better colouring using at most K + 1
colours. The algorithm follows the same lines as Algorithm 4, i.e. a colour counter is
incremented in each phase, and its current value is chosen by those nodes who produced
an exclusive beep. The main difference (see Algorithm 5 for details) is that only those
colours within {0, . . . ,K} are considered and thus the counter is incremented modulo K + 1.
Conflicts of colours are avoided by keeping a phase idle if the corresponding value was already
taken in the past (locally). To do so, when a node takes a colour, it re-beeps in a new slot
called confirmation slot to inform its neighbours that they must remove the current colour
from their list of authorized colours. Accordingly, the uncoloured will contend in a phase

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:9

Algorithm 4: A Las Vegas colouring algorithm in BcdL (without knowledge).
Float p← 1/2;
Integer colour ← nil;
Integer counter ← 0;
repeat

beep with probability p;
if I beeped alone then

colour ← counter

else
if no one beeped then

increase p;
else

decrease p;
counter ← counter + 1;

until colour 6= nil;

only if the current colour is still available (otherwise, they wait). An adaptive probability
is used similarly to Algorithm 4, except that idle phases are not considered as silent (the
probability is not updated in these phases).

Regarding performance, the only difference between this algorithm and Algorithm 4 is
that a growing number of phases are idle in each neighbourhood, inflicting a slow down to the
algorithm. Managing the dependencies here proved more difficult and we “only” managed to
prove that the number of phases is O

(
K(logn+ log2 K)

)
w.h.p. However, the algorithm is

believed to be faster.

4.2 2-hop colouring
A 2-hop colouring of a graph G is a colouring such that any two nodes at distance ≤ 2 have
different colours. In other words, it is a colouring of the square of G, the graph where an
edge exists between nodes which are neighbours in G or share a common neighbour in G.

2-hop colouring without knowledge

A similar strategy is used as in Algorithm 4 (colouring), except that exclusive beeps are
replaced with 2-hop exclusive beeps. Whenever a node produces such a beep, it takes the
current value of the counter as colour. Since no other node has beeped within distance 2,
the colouring is legal. Contrary to the 1-hop colouring, the collaboration of a node remains
crucial even after it becomes coloured. Indeed, this node must keep on reporting peripheral
collisions to its neighbours. As a result, instead of retiring from computation, coloured nodes
keep on listening until all of their neighbours are coloured, which is detected using an extra
termination slot. Details are given in Algorithm 6. Four slots are used in total, the first two
being devoted to the management of 2-hop exclusive beeps (see Section 3 for details). The
third slot manages a (2-hop) adaptive probability based on beeps heard at distance one (slot
1) or at distance two (slot 3 itself). Finally, slot 4 is the termination slot.

Once we realize that the execution produced here is the same as what Algorithm 4
would produce in the square of G, analysis of this algorithm is straightforward. The only
difference is that the maximal number of contenders of a node becomes ∆2 instead of ∆.
Thus Algorithm 6 takes O(logn+ ∆2) phases (and slots) w.h.p., and the number of colours
cannot exceed the same value.

OPODIS 2016

15:10 Design Patterns in Beeping Algorithms

Algorithm 5: A Las Vegas colouring algorithm in BcdL (knowing K ≥ ∆).
Colours = {0, · · · ,K};
Float p← 1/2;
Integer colour ← nil;
Integer counter ← 0;
repeat

if counter ∈ Colours then
switch slot do

slot 1 // contending
beep with probability p

slot 2 // confirmation

if I beeped alone in slot 1 then
colour ← counter;
beep;

else
if no one beeped then

increase p;
else

decrease p;

if someone beeped in slot 2 then
Colours← Colours \ {counter}

counter ← (counter + 1) mod (K + 1);
until colour 6= nil;

With a bound K on the maximum degree ∆

The same idea can be applied as in the 1-hop variant, i.e., taking colours between 0 and
K2 + 1 (instead of K + 1) and incrementing the counter accordingly (mod K2 + 1). As a
result, at most K2 + 1 colours are used, with time complexity O(K2(logn+ log2 K)) w.h.p.

4.3 Degree computation

Let us recall that 2-hop exclusive beeps allow a node v to perform an exclusive action within
a radius of distance 2. This feature was used in Section 4.2 to assign unique colours. At it
turns out, the pattern is very versatile and it can be used to count the degree of a node as
well. The strategy consists in replacing the colour-related action in slot 2 (second if-then
block) by an action aiming at having v counted in the degree of its neighbours (then v stops
contending and keeps on reporting collisions, as before). Precisely, a new confirmation slot is
inserted wherein v re-beeps if indeed it produced a 2-hop exclusive beep. Upon hearing the
confirmation beep, all of v’s neighbours increment a local counter that eventually amounts
to their degree. Termination proceeds in the same way as for the 2-hop-colouring algorithm
(i.e. uncounted nodes beep in a termination slot).

Up to a constant factor which accounts for the additional confirmation slot in each phase,
the running time of this algorithm is again O(logn+ ∆2) w.h.p.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:11

Algorithm 6: A Las Vegas 2-hop-colouring algorithm in BcdLcd (without knowledge).
Float p← 1/2;
Integer colour ← nil;
Integer counter ← 0;
repeat

switch slot do
slot 1 // contending slot

if colour = nil then
beep with probability p;

slot 2 // peripheral collision detection (and consequences)

if several neighbours beeped in slot 1 then
beep

if I beeped alone in slot 1 and heard no beep in slot 2 then
colour ← counter

slot 3 // adaptive probability

if someone beeped in slot 1 then
beep

if colour = nil then
if no beep heard in slot 1 nor 3 then

increase p
else

decrease p

slot 4 // termination slot

if colour = nil then
beep

counter ← counter + 1
until no beep heard in slot 4;

4.4 Jeavons et al.’s Las Vegas Algorithm for the MIS in BcdL

We recall here Jeavons et al.’s Las Vegas Algorithm for the MIS [8]. This algorithm uses an
adaptive probability to maximize the frequency of exclusive beeps (with a doubling/halving
pattern for p, starting at 1/2). If a node v produces an exclusive beep, it enters the MIS
(by the end of the first slot), then it uses a confirmation slot to inform its neighbours, all of
which terminate together with v. Since the whole neighbourhood shuts down at once, the
algorithm progresses faster than, for instance, the basic colouring algorithm discussed above.
This algorithm was already proven by Jeavons et al. to terminate within O(logn) slots with
a huge constant factor (larger than e25).

4.5 Computing a 2-hop MIS
In this problem, we must select a set of nodes (the MIS) such that no pair of selected nodes
are within distance 2 and no node can be added further to the set. This algorithm is a
combination of those of other 2-hop algorithms seen above, and Jeavons et al’s MIS algorithm.
That is, the same structure of algorithm is used as for 2-hop colouring or degree computation,
except that whenever a node produces a 2-hop exclusive beep, it enters the MIS and informs
its neighbours (using the confirmation slot) that they will not be in the MIS. This algorithm

OPODIS 2016

15:12 Design Patterns in Beeping Algorithms

takes the same number of phases than what the (1-hop) MIS algorithm would produce in
the square of the graph, that is, O(logn) w.h.p.. The number of slots is higher due to using
additional slots for managing 2-hop exclusive beeps, but it remains within a (small) constant
factor. Interestingly, our analysis of this algorithm improves much over that of [8], taking
the huge constant down to 76 (i.e., making the algorithm practical).

5 Collision detection and emulation techniques

In Section 4, we have considered collision detection as a built-in primitive. Depending on the
algorithms, we assumed that collision detection was possible while beeping (Bcd) or while
listening (Lcd). This assumption is convenient because it allows one to design Las Vegas
algorithms for all the considered problems. Unfortunately, we know since [1] that no Las
Vegas algorithms can be designed for most problems without collision detection, that is,
in the BL model. One has to turn to Monte Carlo instead, which means that the result
is correct only with some probability (possibly w.h.p.). In this section, we investigate the
cost of building a probabilistic collision detection primitive in the BL model, inspired by a
technique from [1]. Then we adapt it into two generic emulation procedures, one for detecting
collision while beeping, the other while listening. These procedures can then be used to
translate any Las Vegas algorithml in BcdL, BLcd, or BcdLcd, into a Monte Carlo algorithm
in BL. The cost is a logarithmic slowdown of the execution, which we prove is essentially
optimal (for sufficiently large n).

5.1 Collision detection
The impossibility for a node in BL to distinguish between begin alone or having neighbours
has strong implications. For instance, in the colouring problem, it means that two neighbours
could possibly end up with the same colour. In the MIS problem, two neighbours could enter
the MIS. In fact, there is no guarantee on the correctness of basic patterns like exclusive beeps
or 2-hop exclusive beeps, which are at the basis of most (if not all) Las Vegas algorithms.

We present a (Monte Carlo) algorithm for detecting collisions in BL. This procedure
generalises the technique used in Algorithm 3 of [1], which consists of replacing each slot that
requires collision detection in the original model, with several BL slots in which symmetries
are probabilistically broken. Of course, the more slots, the more reliable the detection.

The algorithm

Each slot that requires collision detection (Bcd or Lcd) is replaced with a number of sub-
phases, each consisting of two BL slots. For instance, if a node wishes to beep with collision
detection in the original algorithm, it will choose one of the two slots (u.a.r.) in each of the
sub-phases and will beep in that slot (listen in the other). If it hears a beep while listening
in the other slot, then an internal collision is detected. Similarly, if a node wishes to listen
with collision detection in the original algorithm, it will listen in both slots of each sub-phase.
A peripheral collision is detected if a beep is heard in both slots of a same sub-phase. The
procedure is detailed by Algorithm 7, where k is the number of sub-phases used.

False positives never happen, but real collisions might still go unnoticed, with probability
inversely related to k. We are interested in determining how large k should be to guarantee
that a given node detects a collision in its neighbourhood with a given probability. The
stronger question asks how many sub-phases are required to guarantee that none of the
nodes fails to detect a collision.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:13

Algorithm 7: Collision detection algorithm in BL (with parameter k)
Boolean collision← false;
Integer i← 0;
while i < k do

if v wishes to beep then
Flip a coin;
if heads then

beep in slot 1;
listen in slot 2;

else
listen in slot 1;
beep in slot 2;

if another beep was heard then
collision← true

else
listen in both slots;
if beeps are heard in both slots then

collision← true;
i← i+ 1;

return collision;

I Lemma 1. Let v be a node. If a collision occurs in the neighbourhood of v, then v detects
it in O

(
log(1

ε)
)
sub-phases (slots) with probability at least 1− ε, and in O (logn) sub-phases

(slots) with probability 1− o
(1
n2

)
.

Proof. Assume a collision occurs between some nodes u1 and u2 in the neighbourhood of v
(one of them being possibly v itself). It is detected if u1 and u2 choose a different slot in
at least one of the k sub-phases. The probability that this does not happen is

(1
2
)k. This

probability is less than ε (resp. o
(1
n2

)
) for any k ≥ log(1

ε) (resp. 2 log(n)). Observe that if
collisions occur between more than two nodes in the neighbourhood of v, this cannot decrease
the odds of a successful detection (to the contrary, the odds can only increase). J

I Corollary 2. Let G be a graph. If collisions occur in the neighbourhood of an arbitrary
number of nodes, then all of them detect collision after at most O

(
log(nε)

)
sub-phases (slots)

with probability at least 1− ε, and after at most O (logn) sub-phases (slots) w.h.p.

Proof. Assume collisions occur in G and let T denote the number of sub-phases before all
concerned nodes detect collision. Clearly T = max{Tv | v ∈ V }, where Tv is the time it
takes to any node v to decide collision. By the same argument as in the proof of Lemma 1,
together with union bound, it holds that

Pr
(
T > log

(n
ε

))
≤ n× Pr

(
Tv > log

(n
ε

))
(1)

= n× 1
2log(nε) = ε (2)

which proves the first claim. The same argument, combined with the second claim of Lemma
1 proves the second claim. J

OPODIS 2016

15:14 Design Patterns in Beeping Algorithms

Algorithm 8: A Procedure to emulate a Bcd in the BL model.
Procedure EmulateLcdinBL(in : Integer k,Array s; out : Boolean collision)
Boolean collision← false;
Integeri← 0;
repeat

if s[i] then beep in slot 1; listen in slot 2;
else listen in slot 1; beep in slot 2;
if another beep was heard then collision← true;
i← i+ 1

until i = k;
End Procedure

Algorithm 9: A Procedure to emulate a Lcd in the BL model.
Procedure EmulateLcdinBL(in : Integer k; out : Boolean beep,Boolean collision)
Boolean beep← false;
Boolean collision← false;
Integer i← 0;
repeat

switch slot do
slots 1 and 2

listen
end of phase:

if a beep was heard in any slot then
beep← true

if a beep was heard in both slots then
collision← true

i← i+ 1
until i = k;
End Procedure

5.2 Emulation procedures
Based on this tie-breaking mechanism, we define two probabilistic emulation procedures
whose purpose is to replace beep or listen instructions with collision detection in BL. Both are
Monte Carlo in the sense that detection is only guaranteed with some probability. The first
procedure, EmulateBcdinBL(), is given by Algorithm 8 and the second, EmulateLcdinBL(),
by Algorithm 9. Both procedures are parametrized by an integer k > 1, which accounts for
the number of sub-phases that are used in each invocation of the procedure (k controls the
error bound). They return true if a collision has been detected, false otherwise.

Before the execution each vertex generates a sequence s of k random bits (u.a.r.) which
will be the ones used in each sub-phase. The reason why this is made once at the beginning
rather than in each invocation is a technicality that relates to preventing an additional
union bound in the analysis (more k would be needed to guarantee that each invocation is
successful if the numbers are drawn every time).

Hence, the value of k depends on the bound we require on the probability of error, a
straightforward adaptation of the above analysis gives us the values of Lemma 3.

I Lemma 3. For any ε > 0, and any n > 0:
1. if k = dlog

(1
ε

)
e, the procedures are correct for a given node with probability 1− ε;

2. if k = dlog
(
n
ε

)
e, the procedures are correct for any node with probability 1− ε;

3. if k = d2 log(n)e, the procedures are correct for any node w.h.p.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari 15:15

4ms

2ms

1s
2s

2ms+ 2s

4s

2ms+ 4s ...

2ms+ 2is

2is...
. . .

2ms+ 1s

...

Figure 1 The wheel gadget used in the proof of optimality for emulation.

Observe that in general, the size of the network n is not known to the nodes, which is an
obstacle to achieving the second and third types of guarantees. However, it is reasonable
in practice to assume that the nodes know an upper bound on n, e.g., when a network of
wireless sensors is deployed. The upper bound may even be loose without much consequence:
so long as it is polynomial in n, the slowdown factor remains of the same order.

Using the procedures

In the listings of our algorithms (see Section 4), listen instructions are implicit. By default,
a node listens if it does not beep. Emulation procedures should be used explicitly for both
beep and listen primitives, in order for the nodes to remain synchronized (since each of them
takes logarithmically many rounds to be carried out). Therefore, whenever a node calls
EmulateBcdinBL or EmulateLcdinBL, the other nodes should call one of these or wait the
corresponding amount of time. Likewise, the procedures should not be interrupted even after
a collision with a given neighbor is detected, to preserve synchrony with other neighbours or
farther nodes.

5.3 Optimality of the emulation
In this section we prove that the emulation procedures presented in Section 5.2 are essentially
optimal (i.e. asymptotically and up to a constant factor), namely, we prove a Ω (logn) lower
bound on the number of slots required to detect collision in some graphs called wheels. A
(m, s)-wheel, illustrated in Figure 1, is a graph W = (V,E) such that V = u1, . . . u4ms,
the edges E are all the (ui−1, ui) (arithmetic modulo 4ms) plus m spokes, that is edges
(uis, u(i+2m)s) (1 ≤ i ≤ 2m), where the wheel can be odd (all spokes with i odd) or even
(all spokes with i even). The even and odd (m, s)-wheels are isomorphic. We consider only
situations in which all vertices uis are in the same state, a state in which they wish to beep
and all other vertices are in the same internal state, a state in which they do not wish to beep.
Thus vertices at the ends of spokes and no others must conclude that there is a collision. The
slot complexity of any algorithm which detects collision in such a graph with high probability
is to be Ω(logn). Due to space limitations, the full proofs are relegated to the long version.
We provide, however, a minimal sentence of insight for each.

Considering a computation of a collision detecting algorithm on a wheel, we define, for
any t > 0, bit as the signal (beep or not) from ui to all its neighbours at time t, and, for any
t ≥ 0, Bit the sequence bi1 · · · bit . Then, we define the event Et for a spoke uis, u(i+2m)s as
follows:

Et =
{

(Bist = B
(i+2m)s
t) ∧ (Bis+1

t = B
(i+2m)s+1
t) ∧ (Bis−1

t = B
(i+2m)s−1
t)

}
.

OPODIS 2016

15:16 Design Patterns in Beeping Algorithms

I Lemma 4. For any t (0 ≤ t < s), it holds that Pr (Et) ≥ 2−3t.

The proof proceeds by induction on t, with base case t = 0. (Full proof in the long
version.)

If Et holds for the spoke (uis, u(i+2m)s), we say that the spoke fails to break symmetry
within time t. This happens with probability at least 2−3t and, if it happens, the existence
of the spoke has had no influence on the computation up to time t. In particular, whenever
uis beeped, u(i+2m)s also beeped and so neither has ever heard the other beep.

I Theorem 5. For any Monte Carlo algorithm A which detects collision in W , if A halts in
less than log2 n/4 rounds with probability greater than 3/4 then for some situations in some
wheels, A gives incorrect results for some vertices with probability greater than 1/4.

The proof proceeds using the wheel gadget of Figure 1 and Lemma 4 to characterize the
rate at which the symmetry induced by the spokes can be broken. (Full proof in the long
version.)

I Corollary 6. The complexity of a Monte Carlo algorithm which detects collision with high
probability in the BL model is Ω(logn).

References
1 Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a maximal

independent set. Distributed Computing, 26(4):195–208, 2013.
2 K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical

Journal, Second Series, 19(3):357–367, 1967.
3 A. Casteigts, Y. Métivier, J. Michael Robson, and A. Zemmari. Counting in one-hop

beeping networks. CoRR, abs/1605.09516, 2016.
4 J. Collier, N. Monk, P. Maini, and J. Lewis. Pattern formation by lateral inhibition with

feedback: a mathematical model of delta-notch intercellular signalling. Journal of Theor-
etical Biology, 183(4):429–446, 1996.

5 A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In DISC, pages 148–162,
2010.

6 S. Gilbert and C. Newport. The computational power of beeps. In Proc. of 29th Interna-
tional Symposium on Distributed Computing (DISC), 2015.

7 B. Huang and Th. Moscibroda. Conflict resolution and membership problem in beeping
channels. In DISC, pages 314–328, 2013.

8 P. Jeavons, A. Scott, and L. Xu. Feedback from nature: simple randomised distributed
algorithms for maximal independent set selection and greedy colouring. Distributed Com-
puting, 2016. doi:10.1007/s00446-016-0269-8.

9 S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological and com-
putational systems. Commun. ACM, 58(1):94–102, 2015.

10 J. Schneider and R. Wattenhofer. What is the use of collision detection (in wireless net-
works)? In DISC, pages 133–147, 2010.

11 A. Scott, P. Jeavons, and L. Xu. Feedback from nature: an optimal distributed algorithm
for maximal independent set selection. In PODC, pages 147–156, 2013.

http://dx.doi.org/10.1007/s00446-016-0269-8

	Introduction
	Contributions
	Design patterns
	Algorithms and analyses for basic graph problems
	Collision detection and emulation techniques

	Organisation of the paper

	Network Model and Definitions
	Design patterns for beeping algorithms
	Algorithms for basic graph problems
	Colouring
	2-hop colouring
	Degree computation
	Jeavons et al.'s Las Vegas Algorithm for the MIS in B-cdL
	Computing a 2-hop MIS

	Collision detection and emulation techniques
	Collision detection
	Emulation procedures
	Optimality of the emulation

