380,589 research outputs found

    AEVUM: Personalized Health Monitoring System

    Get PDF
    Advancement in the field of sensors and other portable technologies have resulted in a bevy of health monitoring devices such as blue-tooth and Wi-Fi enabled weighing scales and wearables which help individuals monitor their personal health. This collected information provides a plethora of data points over intervals of time that a primary care physician can utilize to gain a holistic understanding of an individual’s health and provide a more effective and personalized treatment. A drawback of the existing health monitoring devices is that they are not integrated with the professional medical infrastructure. With the wealth of information collected, it is also not feasible for a physician to look through all the data to obtain relevant information or patterns from multiple health monitoring systems. Therefore, it would be beneficial to have a single platform of hardware devices to monitor and collect data and a software application to securely store the collected information, identify patterns for analysis, and summarize the data for the physician and the patient. The aim of this study was to design and develop an unobtrusive, user friendly system, Aevum, which would integrate technology, adapt itself to changes in consumer behavior and integrate with the existing healthcare infrastructure to help an individual monitor their health in a customized manner. Aevum is a multi-device system consisting of a smart, puck-shaped hardware product, a wristband and a software application available to the patient as well as the physician. In addition to monitoring vitals such as heart rate, blood pressure, body temperature and weight, Aevum can monitor environmental factors that affect an individual’s health and uses personalized metrics such as precise calorie intake and medication management to monitor health. This allows the user to personalize Aevum based on their health condition. Finally, Aevum identifies patterns of anomalies in the collected data and compiles the information which can be accessed by the physician to assist in their treatment

    Self-monitoring Practices, Attitudes, and Needs of Individuals with Bipolar Disorder: Implications for the Design of Technologies to Manage Mental Health

    Get PDF
    Objective To understand self-monitoring strategies used independently of clinical treatment by individuals with bipolar disorder (BD), in order to recommend technology design principles to support mental health management. Materials and Methods Participants with BD (N = 552) were recruited through the Depression and Bipolar Support Alliance, the International Bipolar Foundation, and WeSearchTogether.org to complete a survey of closed- and open-ended questions. In this study, we focus on descriptive results and qualitative analyses. Results Individuals reported primarily self-monitoring items related to their bipolar disorder (mood, sleep, finances, exercise, and social interactions), with an increasing trend towards the use of digital tracking methods observed. Most participants reported having positive experiences with technology-based tracking because it enables self-reflection and agency regarding health management and also enhances lines of communication with treatment teams. Reported challenges stem from poor usability or difficulty interpreting self-tracked data. Discussion Two major implications for technology-based self-monitoring emerged from our results. First, technologies can be designed to be more condition-oriented, intuitive, and proactive. Second, more automated forms of digital symptom tracking and intervention are desired, and our results suggest the feasibility of detecting and predicting emotional states from patterns of technology usage. However, we also uncovered tension points, namely that technology designed to support mental health can also be a disruptor. Conclusion This study provides increased understanding of self-monitoring practices, attitudes, and needs of individuals with bipolar disorder. This knowledge bears implications for clinical researchers and practitioners seeking insight into how individuals independently self-manage their condition as well as for researchers designing monitoring technologies to support mental health management

    Assessing the effects of power quality on partial discharge behaviour through machine learning

    Get PDF
    Partial discharge (PD) is commonly used as an indicator of insulation health in high voltage equipment, but research has indicated that power quality, particularly harmonics, can strongly influence the discharge behaviour and the corresponding pattern observed. Unacknowledged variation in harmonics of the excitation voltage waveform can influence the insulation's degradation, leading to possible misinterpretation of diagnostic data and erroneous estimates of the insulation's ageing state, thus resulting in inappropriate asset management decisions. This paper reports on a suite of classifiers for identifying pertinent harmonic attributes from PD data, and presents results of techniques for improving their accuracy. Aspects of PD field monitoring are used to design a practical system for on-line monitoring of voltage harmonics. This system yields a report on the harmonics experienced during the monitoring period

    Health Figures: An Open Source JavaScript Library for Health Data Visualization

    Get PDF
    The way we look at data has a great impact on how we can understand it, particularly when the data is related to health and wellness. Due to the increased use of self-tracking devices and the ongoing shift towards preventive medicine, better understanding of our health data is an important part of improving the general welfare of the citizens. Electronic Health Records, self-tracking devices and mobile applications provide a rich variety of data but it often becomes difficult to understand. We implemented the hFigures library inspired on the hGraph visualization with additional improvements. The purpose of the library is to provide a visual representation of the evolution of health measurements in a complete and useful manner. We researched the usefulness and usability of the library by building an application for health data visualization in a health coaching program. We performed a user evaluation with Heuristic Evaluation, Controlled User Testing and Usability Questionnaires. In the Heuristics Evaluation the average response was 6.3 out of 7 points and the Cognitive Walkthrough done by usability experts indicated no design or mismatch errors. In the CSUQ usability test the system obtained an average score of 6.13 out of 7, and in the ASQ usability test the overall satisfaction score was 6.64 out of 7. We developed hFigures, an open source library for visualizing a complete, accurate and normalized graphical representation of health data. The idea is based on the concept of the hGraph but it provides additional key features, including a comparison of multiple health measurements over time. We conducted a usability evaluation of the library as a key component of an application for health and wellness monitoring. The results indicate that the data visualization library was helpful in assisting users in understanding health data and its evolution over time.Comment: BMC Medical Informatics and Decision Making 16.1 (2016

    An agile business process and practice meta-model

    Get PDF
    Business Process Management (BPM) encompasses the discovery, modelling, monitoring, analysis and improvement of business processes. Limitations of traditional BPM approaches in addressing changes in business requirements have resulted in a number of agile BPM approaches that seek to accelerate the redesign of business process models. Meta-models are a key BPM feature that reduce the ambiguity of business process models. This paper describes a meta-model supporting the agile version of the Business Process and Practice Alignment Methodology (BPPAM) for business process improvement, which captures process information from actual work practices. The ability of the meta-model to achieve business process agility is discussed and compared with other agile meta-models, based on definitions of business process flexibility and agility found in the literature. (C) 2017 The Authors. Published by Elsevier B.V

    Aggregating multiple body sensors for analysis in sports

    Get PDF
    Real time monitoring of the wellness of sportspersons, during their sporting activity and training, is important in order to maximise performance during the sporting event itself and during training, as well as being important for the health of the sportsperson overall. We have combined a suite of common, off-the-shelf sensors with specialist body sensing technology we are developing ourselves and constructed a software system for recording, analysing and presenting sensed data gathered from a single player during a sporting activity, a football match. We gather readings for heart rate, galvanic skin response, motion, heat flux, respiration, and location (GPS) using on-body sensors, while simultaneously tracking player activity using a combination of a playercam video and pitch-wide video recording. We have aggregated all this sensed data into a single overview of player performance and activity which can be reviewed, post-event. We are currently working on integrating other non-invasive methods for real-time on-body monitoring of sweat electrolytes and pH via a textile-based sweat sampling and analysis platform. Our work is heading in two directions; firstly from post-event data aggregation to real-time monitoring, and secondly, to convert raw sensor readings into performance indicators that are meaningful to practitioners in the field
    corecore