164 research outputs found

    DSP compensation for distortion in RF filters

    Get PDF
    There is a growing demand for the high quality TV programs such as High Definition TV (HDTV). The CATV network is often a suitable solution to address this demand using a CATV modem delivering high data rate digital signals in a cost effective manner, thereby, utilizing a complex digital modulation scheme is inevitable. Exploiting complex modulation schemes, entails a more sophisticated modulator and distribution system with much tighter tolerances. However, there are always distortions introduced to the modulated signal in the modulator degrading signal quality. In this research, the effect of distortions introduced by the RF band pass filter in the modulator will be considered which cause degradations on the quality of the output Quadrature Amplitude Modulated (QAM) signal. Since the RF filter's amplitude/group delay distortions are not symmetrical in the frequency domain, once translated into the base band they have a complex effect on the QAM signal. Using Matlab, the degradation effects of these distortions on the QAM signal such as Bit Error Rate (BER) is investigated. In order to compensate for the effects of the RF filter distortions, two different methods are proposed. In the first method, a complex base band compensation filter is placed after the pulse shaping filter (SRRC). The coefficients of this complex filter are determined using an optimization algorithm developed during this research. The second approach, uses a pre-equalizer in the form of a Feed Forward FIR structure placed before the pulse shaping filter (SRRC). The coefficients of this pre-equalizer are determined using the equalization algorithm employed in a test receiver, with its tap weights generating the inverse response of the RF filter. The compensation of RF filter distortions in base band, in turn, improves the QAM signal parameters such as Modulation Error Ratio (MER). Finally, the MER of the modulated QAM signal before and after the base band compensation is compared between the two methods, showing a significant enhancement in the RF modulator performance

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Advanced signal processing techniques for the modeling and linearization of wireless communication systems.

    Get PDF
    Los nuevos estándares de comunicaciones digitales inalámbricas están impulsando el diseño de amplificadores de potencia con unas condiciones límites en términos de linealidad y eficiencia. Si bien estos nuevos sistemas exigen que los dispositivos activos trabajen cerca de la zona de saturación en busca de la eficiencia energética, la no linealidad inherente puede producir que el sistema muestre prestaciones inadecuadas en emisiones fuera de banda y distorsión en banda. La necesidad de técnicas digitales de compensación y la evolución en el diseño de nuevas arquitecturas de procesamiento de señales digitales posicionan a la predistorsión digital (DPD) como un enfoque práctico. Los predistorsionadores digitales se suelen basar en modelos de comportamiento como el memory polynomial (MP), el generalized memory polynomial (GMP) y el dynamic deviation reduction-based (DDR), etc. Los modelos de Volterra sufren la llamada "maldición de la dimensionalidad", ya que su complejidad tiende a crecer de forma exponencial a medida que el orden y la profundidad de memoria crecen. Esta tesis se centra principalmente en contribuir a la rama de conocimiento que enmarca el modelado y linealización de sistemas de comunicación inalámbrica. Los principales temas tratados son el modelo Volterra-Parafac y el modelo general de Volterra para sistemas complejos, los cuales tratan la estructura del DPD y las series de Volterra estructuradas con compressed-sensing y un método para la linealización en un rango de potencias de operación, que se centran en cómo los coeficientes de los modelos deben ser obtenidos.Premio Extraordinario de Doctorado U

    Cavity Field Control for Linear Particle Accelerators

    Get PDF
    High-energy linear particle accelerators enable exploration of the microscopic structure of pharmaceuticals, solar cells, fuel cells, high-temperature superconductors, and the universe itself. These accelerators accelerate charged particles using oscillating magnetic fields that are confined in metal cavities. The amplitudes and phases of the electromagnetic fields need to be accurately controlled by fast feedback loops for proper accelerator operation.This thesis is based on the author's work on performance analysis and control design for the field control loops of the linear accelerator at the European Spallation Source (ESS), a neutron microscope that is under construction in Lund, Sweden. The main contribution of the thesis is a comprehensive treatment of the field control problem during flat-top, which gives more insight into the control aspects than previous work. The thesis demonstrates that a key to understand the dynamics of the field control loop is to represent it as a single-input single-output system with complex coefficients. This representation is not new itself but has seen limited use for field control analysis.The thesis starts by developing practical and theoretical tools for analysis and control design for complex-coefficients systems. This is followed by two main parts on cavity field control. The first part introduces parametrizations that enable a better understanding of the cavity dynamics and discusses the most essential aspects of cavity field control. The second part builds on the first one and treats a selection of more advanced topics that all benefit from the complex-coefficient representation: analysis of a polar controller structure, field control design in the presence of parasitic cavity resonances, digital downconversion for low-latency feedback, energy-optimal excitation of accelerating cavities, and an intuitive design method for narrowband disturbance rejection. The results of the investigations in this thesis provide a better understanding of the field control problem and have influenced the design of the field controllers at ESS

    Digital assistance design for analog systems : digital baseband for outphasing power amplifiers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 145-150).Digital assistance is among many aspects that can be leveraged to help analog/mixed-signal designers keep up with the technology scaling. It usually takes the form of predistorter or compensator in an analog/mixed-signal system and helps compensate the nonidealities in the system. Digital assistance takes advantage of the process scaling with faster speed and a higher level of integration. When a digital system is co-optimized with system modeling techniques, digital assistance usually becomes a key enabling block for the high performance of the overall system. This thesis presents the design of digital assistances through the digital baseband design for outphasing power amplifiers. In the digital baseband design, this thesis conveys two major points: the importance of the use of the reduced-complexity system modeling techniques, and the communications between hardware design and system modeling. These points greatly help the success in the design of the energy-efficient baseband. The first part of the baseband design is to realize the nonlinear signal processing unit required by the modulation scheme. Conventional approaches of implementing this functionality do not scale well to meet the throughput, area and energy-efficiency targets. We propose a novel fixed-point piece-wise linear approximation technique for the nonlinear function computations involved in the signal processing unit. The new technique allows us to achieve an energy and area-efficient design with a throughput of 3.4Gsamples/s. Compared to the projected previous designs, our design shows 2x improvement in energy-efficiency and 25x in area-efficiency. The second part of the baseband design devotes to the nonlinear compensator design, aiming to improve the linearity performance of the outphasing power amplifier. We first explore the feasibility of a working compensator by use of an off-line iterative solving scheme. With the confirmation that a compensator does exist, we analyze the structure of the nonlinear baseband-equivalent PA system and create a dynamical real-time compensator model. The resulting compensator provides the overall PA system with around 10dB improvement in ACPR and up to 2.5% in EVM.by Yan Li.Ph.D

    Repetitive predictive control and its application to PMSMs

    Get PDF
    Repetitive Control is a learning control algorithm used to solve the problems of tracking the references and/or rejecting the disturbances that have repetitive nature. One of the challenging problems in repetitive control is to maintain the performance of the controller when the manipulated and/or state variables are hitting the constraints. Meanwhile, it is well known that Model Predictive Control (MPC) has its reputation in dealing with the constrained control problem through the use of optimization algorithms. This thesis incorporates the concept of repetitive control into the design of an MPC controller, resulting a new controller termed Repetitive-Predictive Control (RPC), so that the benefits of both controllers are combined, such as repetitiveness, constraints and multi-variable control. The design of the RPC controller is achieved by incorporating the dominant frequency components identified by the frequency decomposition of the reference signal into the receding horizon control of MPC. To further investigate the strength and weakness of the RPC, the design, tuning and performance of the RPC controller is thoroughly explored by its application to the control of Permanent Magnet Synchronous Motors (PMSMs) that have been broadly adopted for industrial control application due to their low volume and high efficiency. The decision to use PMSMs as the application of RPC is reflected by the increasing trend to apply the Repetitive Control (RC) and Model Predictive Controller (MPC) for the electric drives in recent years. The design of RPC for the position, speed and current regulation of a PMSM has been investigated under two different schemes based on the Field Oriented Control (FOC). The first scheme employs the cascade structure with constrained MPC and RPC replacing the PI controllers for the inner-loop current control and outer-loop speed/position control, respectively. The second scheme is to combine both speed and current controllers into one single multi-variable model predictive controller with operating constraints imposed. The experimental comparisons of the two control schemes with cascade PI controllers demonstrate the superior performance of cascade RPC/MPC in terms of the ability of constrained control, disturbance rejection and position tracking. All results in the thesis have been validated by an experimental test-bed with an industrial-sized PMSM

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Applications of Power Electronics:Volume 2

    Get PDF
    corecore