1,625 research outputs found

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    Cognitive Radio Programming: Existing Solutions and Open Issues

    Get PDF
    Software defined radio (sdr) technology has evolved rapidly and is now reaching market maturity, providing solutions for cognitive radio applications. Still, a lot of issues have yet to be studied. In this paper, we highlight the constraints imposed by recent radio protocols and we present current architectures and solutions for programming sdr. We also list the challenges to overcome in order to reach mastery of future cognitive radios systems.La radio logicielle a évolué rapidement pour atteindre la maturité nécessaire pour être mise sur le marché, offrant de nouvelles solutions pour les applications de radio cognitive. Cependant, beaucoup de problèmes restent à étudier. Dans ce papier, nous présentons les contraintes imposées par les nouveaux protocoles radios, les architectures matérielles existantes ainsi que les solutions pour les programmer. De plus, nous listons les difficultés à surmonter pour maitriser les futurs systèmes de radio cognitive

    Type-driven automated program transformations and cost modelling for optimising streaming programs on FPGAs

    Get PDF
    In this paper we present a novel approach to program optimisation based on compiler-based type-driven program transformations and a fast and accurate cost/performance model for the target architecture. We target streaming programs for the problem domain of scientific computing, such as numerical weather prediction. We present our theoretical framework for type-driven program transformation, our target high-level language and intermediate representation languages and the cost model and demonstrate the effectiveness of our approach by comparison with a commercial toolchain

    Relay: A New IR for Machine Learning Frameworks

    Full text link
    Machine learning powers diverse services in industry including search, translation, recommendation systems, and security. The scale and importance of these models require that they be efficient, expressive, and portable across an array of heterogeneous hardware devices. These constraints are often at odds; in order to better accommodate them we propose a new high-level intermediate representation (IR) called Relay. Relay is being designed as a purely-functional, statically-typed language with the goal of balancing efficient compilation, expressiveness, and portability. We discuss the goals of Relay and highlight its important design constraints. Our prototype is part of the open source NNVM compiler framework, which powers Amazon's deep learning framework MxNet

    Model Exploration Using OpenMOLE - a workflow engine for large scale distributed design of experiments and parameter tuning

    Get PDF
    OpenMOLE is a scientific workflow engine with a strong emphasis on workload distribution. Workflows are designed using a high level Domain Specific Language (DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate the workload resulting from a workflow to a wide range of distributed computing environments. In this work, we briefly expose the strong assets of OpenMOLE and demonstrate its efficiency at exploring the parameter set of an agent simulation model. We perform a multi-objective optimisation on this model using computationally expensive Genetic Algorithms (GA). OpenMOLE hides the complexity of designing such an experiment thanks to its DSL, and transparently distributes the optimisation process. The example shows how an initialisation of the GA with a population of 200,000 individuals can be evaluated in one hour on the European Grid Infrastructure.Comment: IEEE High Performance Computing and Simulation conference 2015, Jun 2015, Amsterdam, Netherland
    corecore