24 research outputs found

    Observations and models for needle-tissue interactions

    Get PDF
    The asymmetry of a bevel-tip needle results in the needle naturally bending when it is inserted into soft tissue. In this study we present a mechanics-based model that calculates the deflection of the needle embedded in an elastic medium. Microscopic observations for several needle- gel interactions were used to characterize the interactions at the bevel tip and along the needle shaft. The model design was guided by microscopic observations of several needle- gel interactions. The energy-based model formulation incor- porates tissue-specific parameters such as rupture toughness, nonlinear material elasticity, and interaction stiffness, and needle geometric and material properties. Simulation results follow similar trends (deflection and radius of curvature) to those observed in macroscopic experimental studies of a robot- driven needle interacting with different kinds of gels. These results contribute to a mechanics-based model of robotic needle steering, extending previous work on kinematic models

    Survey on Current State-of-the-Art in Needle Insertion Robots: Open Challenges for Application in Real Surgery

    Get PDF
    AbstractMinimally invasive percutaneous treatment robots have become a popular area in medical robotics. Minimally invasive treatments are an important part of modern surgery; however percutaneous treatments are a difficult procedure for surgeons. They must carry out a procedure that has limited visibility, tool maneuverability and where the target and tissue surrounding it move because of the tool. Robot technology can overcome those limitations and increase the success of minimally invasive percutaneous treatment. In this paper we will present a review of the current state-of-the-art in robotic insertion needle for minimally invasive treatments, focusing on the limitations and challenges still open for their use in clinical application

    Mosquito inspired medical needles

    Get PDF
    The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview of the advanced set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural mechanisms are presented. This includes skin stretching, insertion speed and vibration. Combining slow insertion speed with skin tension and slow vibration reduces the penetration force with 40%.</p

    Study of Needle Insertion Parameters of Human Body Tissue for Surgical Operations

    Get PDF
    The thesis introduces the study on needle insertion during the laboratory experiment. The percutaneous needle insertion is performed several times in day to day life. Manually placement of needle in the tissue may cause damage inside the body sothe thesis presents the existing methodology of needle insertion and researched methodology in our laboratory. It shows the proper way of needle placement and which parameters are necessary to keep in mind when perform the needle insertion. It deals with the proper way of needle insertion, minimise the deflection of needle inside the tissue and gives an idea of reduction in deformation of tissue. The test procedures and experimental setup provide an understanding on the mechanics of needle placement and the design improvement of insertion instruments.The experimental analysis optimize the results of operative parameters of needle when it insert in the tissue like needle translation motion during the insertion, needle rotational motion during insertion, angle of needle insertion and force acting on the needle when it inserted in the tissue. The optimize results provide a brief knowledge for the surgeons about the needle behaviour during the insertion in soft tissue so surgeons are pre imagined the situations by which they would going through during the operation. The model enhances the quality of insertion by presenting the optimize model for parameters of needle insertion. In most of the insertion operations accuracy and precision is important parameters which must be kept in mind by the surgeons when they performed the insertion of needle inside the tissue so this is study is relevant for them to get the accuracy and precision in work. The aim of this research is to present standard methodology for needle insertion which can be possible by experimental analysis of needle insertion in laborator

    Device for positioning surgical tool in the body of patient

    Get PDF
    The present disclosure relates to a device for positioning and/or orienting, in the body of a patient, a surgical tool carried by a tool-holder, including a platform capable of being placed on the body of the patient, an orientable carrier, at least one part of which is rigidly connected to the tool-holder, means for guiding the orientable carrier rotationally relative to the platform in two directions of a plane parallel to the platform, at least 2 pneumatic actuators which engage with the orientable carrier such that a variation in pressure of at least one of the pneumatic actuators causes the orientable carrier to rotate in the first direction and/or the second direction, in which the pneumatic actuators are volumes that can deform in a predetermined direction as a function of the internal pressure

    Respiratory Compensated Robot for Liver Cancer Treatment: Design, Fabrication, and Benchtop Characterization

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death in the world. Radiofrequency ablation (RFA) is an effective method for treating tumors less than 5 cm. However, manually placing the RFA needle at the site of the tumor is challenging due to the complicated respiratory induced motion of the liver. This paper presents the design, fabrication, and benchtop characterization of a patient mounted, respiratory compensated robotic needle insertion platform to perform percutaneous needle interventions. The robotic platform consists of a 4-DoF dual-stage cartesian platform used to control the pose of a 1-DoF needle insertion module. The active needle insertion module consists of a 3D printed flexible fluidic actuator capable of providing a step-like, grasp-insert-release actuation that mimics the manual insertion procedure. Force characterization of the needle insertion module indicates that the device is capable of producing 22.6 ± 0.40 N before the needle slips between the grippers. Static phantom targeting experiments indicate a positional error of 1.14 ± 0.30 mm and orientational error of 0.99° ± 0.36°. Static ex-vivo porcine liver targeting experiments indicate a positional error of 1.22 ± 0.31 mm and orientational error of 1.16° ± 0.44°. Dynamic targeting experiments with the proposed active motion compensation in dynamic phantom and ex-vivo porcine liver show 66.3% and 69.6% positional accuracy improvement, respectively. Future work will continue to develop this platform with the long-term goal of applying the system to RFA for HCC

    Mechanics of Dynamic Needle Insertion into a Biological Material

    Full text link

    Force-Sensor-Based Estimation of Needle Tip Deflection in Brachytherapy

    Get PDF
    A virtual sensor is developed for the online estimation of needle tip deflection during permanent interstitial brachytherapy needle insertion. Permanent interstitial brachytherapy is an effective, minimally invasive, and patient friendly cancer treatment procedure. The deflection of the needles used in the procedure, however, undermines the treatment efficiency and, therefore, needs to be minimized. Any feedback control technique to minimize the needle deflection will require feedback of this quantity, which is not easy to provide. The proposed virtual sensor for needle deflection incorporates a force/torque sensor, mounted at the base of the needle that always remains outside the patient. The measured forces/torques are used by a mathematical model, developed based on mechanical needle properties. The resulting estimation of tip deflection in real time during needle insertion is the main contribution of this paper. The proposed approach solely relies on the measured forces and torques without a need for any other invasive/noninvasive sensing devices. A few mechanical models have been introduced previously regarding the way the forces are composed along the needle during insertion; we will compare our model to those approaches in terms of accuracy. In order to conduct experiments to verify the deflection model, a custom-built, 2-DOF robotic system for needle insertion is developed and discussed. This system is a prototype of an intelligent, hand-held surgical assistant tool that incorporates the virtual sensor proposed in this paper

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S
    corecore