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ABSTRACT   

The stinging proboscis in mosquitos have diameters of only 40-100 µm which is much less than the thinnest medical 
needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of 
injection devises. The mosquito use a range of different strategies to lower the required penetration force hence allowing 
a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how 
each of the single strategies reduces the required penetration force. The present paper gives an overview of the advanced 
set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that 
facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural 
mechanisms are presented. This includes skin stretching, insertion speed and vibration. Combining slow insertion speed 
with skin tension and slow vibration reduces the penetration force with 40%. 

Keywords: Medical needles, skin penetration, biomimetics 

1. INTRODUCTION  
The present research project is motivated by the wish to produce medical needles from polymer material. Polymer 
needles will enable new types of innovative medical treatments and improve the quality of existing treatments. In 
contrast to steel needles polymer needles offer a range of highly interesting added functionalities enabling new 
biomedical and biotechnological solutions. Polymer needles can be used within MRI-scanners to allow for the use of 
very short lived and non-toxic tracers such as hyperpolarized metabolic contrast agents1. This will enable accurate 
identification of small cancer metastases within MRI-scanning. Another advantage is that the needles can be made 
transparent enabling direct photonic analyses of chemical indicators in the body in combination with the medical 
injection.  Needles can furthermore be made so they have two or more delivery channels allowing simultaneous delivery 
of reactive agents such as two component chemotherapy. This makes much more precise medication possible where 
active components can be injected with high accuracy. The needles are also much easier to de-activate which makes 
them easier to dispose of. The latter is likely to become an important issue with the growing use of needles outside 
hospitals. 

However, there is a major challenge with using polymer needles: They are much softer than steel making skin 
penetration difficult. The stiffness measured as Young’s modulus is for most polymers are a factor 100 lower than steel. 
This gives two problems when injecting needles. A long slender needle buckles easily and the needle tip bends or flattens 
which increases tip area and hence the required penetration force. 

Nature has many examples of advanced penetration mechanisms where apparently soft materials succeed in penetrating 
skin. The mosquito being one of the more well-known and at the same time most advanced. The explanation of how this 
is possible is a combination of applied penetration strategies, which on the one hand reduces the required force for 
penetrating skin and on the other hand increases the effective stiffness of the penetrating organ. 

This paper gives an overview of selected biological strategies for skin penetration and of the detailed strategies that 
enable mosquitos and other stinging and biting insects to pass the skin barrier. Three of the strategies namely skin strain, 
vibration and insertion speed is further examined in an experimental setup. In contrast to earlier studies we also examine 
the effect of combining the penetration force reducing strategies. 
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1.1 Skin penetration in nature 

A range of different organisms have evolved mechanisms allowing them to penetrate the skin of mammals. Here we 
focus on organisms capable of penetrating the human skin with slender tube-like structures as these have the largest 
biomimetic potential for the development of micro-needles. We therefore ignore the large number of animals capable of 
biting through human skin with teeth as this typically cause too much tissue damage to provide any benefits in the 
development of medical needles. We divide the mechanisms into three separate categories; spine-like structures that have 
evolved as a defense-mechanisms to penetrate the skin causing maximum mechanical damage, spines and stingers that 
have evolved to penetrate the skin and inject toxins, slender mouthparts that have evolved to both inject anticoagulants, 
to extract blood and to efficiently withdraw the mouthparts. For each of the three categories we provide a couple of 
examples.  

1.2 Penetration only 

A number of plants and animals have evolved defensive spines to deter mammalian herbivores or predators, including 
humans, to attack them. Cacti is a group of spiny plants that are particularly well-known for their large number of sharp 
spines arising from modified leaves and capable of inflecting significant pain to any mammals attempting to eat or 
collect them. Their main function is to protect the plant against herbivores although some also protect against 
temperature stress2. Spines of Opuntia ficus-indica consist of around 50% cellulose and 50% hemicellulose in the form 
of the polysaccharide arabinan with a small amount of lignin, fat and waxes as well3. The cellulose is organized in 
internal fibres running along the length of the spines to provide high bending strength, while the external surface of the 
spines consists of cuticle cell that gives it a rough appearance3. The spines are typically about 25 mm long with a 
diameter of 0.2 mm and at the end tapers into a sharp rigid tip. Similar properties are found in other cacti although there 
is variation in spine morphology. In the Turbinicarpus, the spines show particular large variations in size, number, shape 
and texture with external surfaces being smooth, rough, with regular short protrusions or with longer hair-like structures 
and with varying degree of stiffness4. All stiff spines, independent of what external surface, invariable have a sharp rigid 
tip.     

The animal equivalents to cacti are the hedgehogs (belonging to the mammalian order Eulipotyphla) and the porcupines 
(belonging to the order Rodentia), which are both covered in long spines. In porcupines, these are commonly referred to 
as quills. While the spines and quills are superficially quite similar with both being slender, hollow keratin structures 
tapering to a sharp point, quills are significantly longer (up 144 mm long with a diameter of 4.8 mm) than hedgehog 
spines (21 mm long with a 1.2 mm diameter)5. The mechanical properties of the two are also different with quills having 
evolved to be as straight and stiff as possible without buckling too easily, while hedgehog spines are slightly curved and 
can buckle elastically allowing them to take a higher load and possibly absorb elastic energy from falls5. Hedgehog 
spines have smooth surfaces, whereas most quills have backward facing barbs on their surface6. Interestingly, quills with 
barbs require up to 50% less penetration force into bird muscle tissue than barbless quills, presumably because the high 
stress concentrations near the barbs reduce the need to deform the entire circumference of the surrounding tissue7. 

1.3 Penetration and injection 

Mechanical damage from stiff spines work well as an immediate deterrent to attack, but some plants and animals have 
evolved more potent defenses and inject toxic substances into the tissue after penetration. Some caterpillars, for example, 
have hollow spines connected to a poison sac. Caterpillars of the Parasa consocia moth have spines that are about 500-
700 µm long and 30-35 µm in diameter with the external surface possessing backward facing barbs in low densities8. The 
mean penetration force of five spines into mouse skin was found to be as low as 0.2 mN, which the authors mainly 
ascribed to high stiffness (low risk of buckling failure) and an ultra-sharp tip8.   

More well-known and more aggressively defensive, however, are the social hymenopterans such as the honey bee. The 
individual workers do not reproduce and will therefore mount a very determined defense of the queen and the hive. 
When honeybees sting larger animals such as mammals and humans, they sacrifice their own life as the stingers and part 
of the abdomen with the poison sac remains in their victim when the bee pulls away. The stinger of the honeybee Apis 
cerana cerana is about 1.8 mm long with a diameter of 50 µm and consists of an unpaired stylet and paired lancets9. The 
tips of the lancets are ultra-sharp and both stylet and lancets contain relatively long (up to 13 µm) backward facing barbs. 
The penetration force of stingers into artificial skin was measured to be around 0.6 mN, whereas the barbs acting as 
hooks into the tissue meant that the withdrawal force was almost 260 times higher9.  
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1.4 Penetration, injection and withdrawal 

Haematophagy (feeding on blood) has evolved in a number of different species, although predominantly in insects (see 
Table 1 for a list of haematophagous animals specializing on human blood). Blood is nutritious source of proteins and 
saccharides which can be obtained relatively effortless. Haematophagy is particularly interesting from a biomimetic 
perspective, because it involves ectoparasites using specialized mouthparts to penetrate skin, extract liquid and withdraw 
their feeding apparatus afterwards covering the same stages medicine injection or taking blood samples require. In 
addition, there has been strong selection on the animals to inflict as little pain as possible on the host to avoid host 
defenses such as removing or killing the parasite becoming activated10. Table 1 provides an overview of the major 
haematophagous parasites capable of extracting blood from humans, but here we focus on two of the most important and 
best studied groups; the ticks and the mosquitoes.  

Table 1: List of haematophageous animals that feed on human blood 

 Taxonomic order Taxonomic family Number of species* 

Insects:    

Mosquitoes Diptera Culicidae >100 

Tetseflies Diptera Glossinidae 6 

Sandflies Diptera Psychodidae 70 

Horse and deer flies Diptera Tabanidae >100 

Biting midges Diptera Ceratopogonidae <10 

Fleas Siphonaptera Pulicidae 1 

Lice Phthiraptera Pediculidae, Pthiridae 3 

Assassin bugs Hemiptera Reduviidae >100 

Bed bugs Hemiptera Cimicidae 1 

    

Other animals:    

Medicinal leeches Hirudinida Hirundinidae 6  

Vampire bats Chiroptera Phyllostomidae 3  

Ticks Ixodida Ixodoidae >20 

*An approximate number of species that are obligate or opportunistic parasites of humans. Most orders/families contains 
a much larger number of species specialising on other mammals and vertebrates. 

Ticks are a form of ectoparasitic mites that attach firmly to their hosts and feed for several days. It is during this time that 
the tick can infect its human host with Lyme disease, which is caused by bacteria that transfers from the tick to the 
human after feeding has lasted for more 36 hours. The penetrating mouthparts of the Ixodes ricinus tick consist of a 
ventral hypostome about 0.36 mm long and 0.14 mm wide and a pair of chelicerae of similar length but half of the 
width11. The chelicerae end in sharp tips that provide the first penetration into the skin, where after the two chelicerae 
flex into a V-like form that firmly attach them to the tissue as the hypostome extends. The hypostome has large teeth 
along both edges and through a series of ratched-like extensions ‘saw’ its way into the tissue11. Interestingly both the 
chelicarae and the hypostome contains numerous barbs that might facilitate easier penetration into the skin similar to the 
barbs on the porcupine quills discussed above, although the tick mouthparts allow a much more dynamic and flexible 
interaction with the host tissue11.  

Without doubt the most well-known and best studied hamaetophagous animal is the mosquito. It is also one of the 
deadliest animals in the world as several species of mosquitoes are carries for the protozoan Plasmodium falciparum, 
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which causes malaria. Malaria affects more than 200 million people annually and causes almost half a million deaths per 
year. In addition, mosquitoes are transmitting a range of other diseases including dengue, West Nile virus and yellow 
fever. While individual mosquito species usually specialise on a specific host species most attack multiple hosts and 
while some species are particularly anthropophilic such as Anopheles gambiae, one of the main carriers of malaria, and 
Aedes egypti, the main carrier of dengue and yellow fever, others are opportunists and shifts to humans when the 
opportunity arise10. Mosquitoes are attracted to their host over long distances via CO2 and odour emissions from the host 
and once they are close to the host a combination of odour cues, temperature and species specific preferences for specific 
body parts guide them to the biting site12. In the next section, we provide more details on the mechanics of skin 
penetration in mosquitoes.  

1.5 Skin penetration in mosquitoes 

The mosquito proboscis (the stinging organ) is a specialized variant of the ancestral insect biting mouth parts. It is a 
delicate mechanism consisting of 7 elements13,14 as illustrated in figure 1. Outermost is the labium, which like a sheath 
covers the other 6 elements that together forms the fascicle to be inserted into the skin. The labium has the form of a 
sliced tube allowing it to open and bend away from the fascicle as it is inserted into the skin. The tip of the labium has 
two flaps that are pushed to each side when the proboscis is pushed towards the skin causing the skin to stretch. The 6 
elements in the fascicle are the labrum (a relatively large tube used for transporting blood with sharp projections at the 
tip), the hypopharynx (a small diameter vessel used for injecting blood thinning saliva), two maxillae (stylets with 
serrations on the side) and two mandibles (pointed stylets). The fascicle of Aedes albopictus is about 1.5 to 2.5mm in 
length and 20-40 µm in diameter13. 

 
Figure 1. The mosquito proboscis: Seen from above (a) and cross section (b). li: labium, l: labrum, h: hypopharynx,  
m: mandible, mx: maxilla 

Ramasubramanian et al. explains the sequence of actions for mosquito stinging as follows15. After landing on the skin the 
mosquito search for a suitable injection place by poking its proboscis. The tip of the labrum together with the mandibles 
are the first to enter the skin and Kong and Wu found that the mean penetration force of only 18 µN for Aedes albopictus 
penetrating skin13. The process is very adaptive where the mosquito compensates for unwanted bending. The facile is 
anchored, i.e. the tip penetrate the outermost layer of the skin and the facile is repeatedly pushed forth and back within 
the labium at a frequency around 15 Hz15. As the facile progresses through the skin and becomes more stable due to a 
shorter free length the vibration is reduced to around 6 Hz. The serrated maxillae appear to ‘saw’ the fascicle deeper into 
the skin in a similar manner to the tick hypostome discussed in the previous section13. Aoyagi et al. describes how the 
labium bends as the facile penetrates the skin and they observed a higher frequency of 30 Hz during insertion. They also 
noticed that as the labrum bended the tip of the labrum opened and closed giving tension to the skin14. Choumet 
measured the duration of the stinging process for a Anopheles gambiae mosquito and found median probing time to be 
142 s and median feeding time to be 240s16. The stinging process can therefore be considered rather slow. 

Proc. of SPIE Vol. 10162  1016208-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/03/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 
 

 
 

 
 

2. SKIN PENETRATION STRATEGIES 
Animal skin consist of several layers17. The outermost layer is the epidermis which is covered with stratum corneum 
which consists of dead tissue cells. It is the hardest and toughest part of the skin and also the part that is most difficult to 
penetrate. Under the epidermis there are the dermis and subcutis which is a fatty layer. Needle injection experiments 
often apply an artificial skin model using a tough elastomer such as silicone rubber, latex or polyurethane as an 
equivalent to the stratum corneum layer and a gel to mimic the softer underlying layers. 

Penetrating skin involves at least two distinct activities: The initial making of a hole and the insertion of the stinging 
organ. The present paper focus on the first activity where the challenge is to maintain the pointed tip geometry ensuring a 
high fracture stress. This can be achieved by reducing the skin resistance or by improving the penetration tool itself. 
Another big challenge is to avoid buckling of a slender tube, i.e. the lateral deflection of the tube when the axial 
compression force exceeds a critical load – but this is not dealt with in this paper. Sakes et al provide an extensive review 
of buckling reducing strategies in nature18. 

2.1 Reducing skin resistance 

Applying different strategies can change skin properties. These include skin insertion speed, tension, vibration and skin 
hydration. 

Insertion speed impacts insertion characteristics, but results from different sources point in opposite directions. Van 
Gerven et al. reviewed a number of studies and found that higher velocities tend to decrease puncture force and increase 
friction for biological materials while the opposite seems to be the case for artificial materials19. Mahvash et al. found 
that increased velocity lead to lower forces when injecting a needle into a porcine heart using velocities between 1 and 
250 mm/s20. Hing et al. measured lower forces at higher velocities using a porcine liver at velocities between 1 and 25 
mm/s21. Crouch et al. reports increasing force for higher velocities when injecting in a silicone gel at speeds between 3 
and 21 mm/s22. Webster et al found that increasing insertion velocity lead to higher insertion forces when using a rubber-
like skin model and insertion velocities between 5 and 25 mm/s23. 

Stretching skin has an effect on the skin penetration force. The tip of the labium of the mosquito splits as the proboscis is 
pressed towards the skin14. The labium therefore stretches the skin increasing the skin tension in the penetration area. 
Aoyagi et al.14 mimicked the skin tensioning by stretching a silicone rubber strip and injecting a needle (needle width 
230 µm) with and without the tensioning. With an applied 6% strain the penetration force was 0.3N compared to 0.4N 
without the strain. This is equivalent to 25% decrease in penetration force. 

Vibration affects the skin by provoking a shear thinning effect referred to as thixotropy18. When at rest ordered 
microstructures in the skin give a relative stiffness but when shaken the microstructures becomes more unstructured 
giving a more viscous and less stiff characteristic24. There are several examples of how vibration reduces the force 
required to penetrate skin. 

Ramasubramanian et al. studied a mosquito having a ca. 2 mm long proboscis using a high-speed camera and found that 
a longitudinal oscillation of around 15 Hz is used in the beginning of the insertion. When the proboscis is half way into 
the skin, the vibration is reduced to ca. 6 Hz. Izumi made a similar observation and reports a frequency of several dozen 
Hz25. Yang reports 200-400 Hz vibration in mosquitos26 but did not measure it or provide a reference. 

Muralidharan found significant reduction in penetration force using longitudinally vibration27. Two skin models were 
used: A chicken ventriculus and a skin mimic made from latex and clay. Using amplitude of 0.03 mm and a frequency 
between 0-1000Hz penetration forces varied for a diameter of 0.51 mm needle between 0.23N and 0.51N for the chicken 
model and between 0.77N and 1.43N for the skin mimic. The lowest penetration force was found for the highest 
frequencies, but the most drastic reduction in penetration force was for very slow vibrations (a reduction from 1.4N to 
1.05N going from 0 to 1 Hz). 

Yang et al. found a 70% reduction (from 0.26N to 0.08N) for a 0.1mm diameter silicon needle in penetration force using 
lateral vibration using an amplitude of 0.6 mm and kHz frequency in animal tissue26. Izumi also used a micro-fabricated 
silicon needle using 30 Hz vibration and an amplitude of 140 µm with a penetration force around 0.1 N in silicon rubber 
skin model. In a similar study Aoyagi et al. used 30 Hz and amplitude of 8µm resulting in a force reduction from 0.4N to 
0.3 N. 
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Hydration also has an effect on the mechanical properties of skin. Wildnauer investigated the role of relative humidity on 
skin28. The experiments were made on the stratum corneum i.e. the outer most layer of the skin. It was found that 
humidity had a noticeable effect on ultimate strength and elongation. When relative humidity was increased from 0 to 
100 the ultimate strength was reduced from 0.5N to 0.1N and elongation was increased from 20% to 200%. 

2.2 Improve the penetration tools 

The shape of the penetration tool has an impact on the resulting penetration force. Aoyagi14 found that a more pointed tip 
had lower penetration force. They examined 4 angles: 15, 30, 45 1nd 75 degrees. A 15-degree needle tip had three times 
as low penetration force compared to a needle with 75-degree tip. Another factor is dynamic loading. If the load duration 
becomes sufficiently small the impulse load becomes more important than the static load18. This means that the needle 
will become less sensitive to buckling and a lower penetration force since the substrate is prevented movement and 
deformation. The tip geometry also has an impact on the penetration load where beveled, conical and diamond shapes 
performs differently18. 

3. TESTING PENETRATION STRATEGIES 
As described above, there are a number of different strategies for making skin penetration easier. We have chosen to 
experimentally validate three of the strategies and if the superposition principle applies to a combination of these results, 
i.e. if the effect of each of the strategies can be added together when applied simultaneously. We therefore have 4 
hypotheses: 

1) Increased insertion velocity increases penetration force. 

2) Higher skin tension will up to a certain threshold reduce penetration force. 

3) Penetration force can be reduced using vibration. 

4) A combination of two or three penetration strategies will reduce the penetration force adding together the effect 
from each strategy. 

	
	

 
Figure 2 Basic phases in needle insertion: a) no interaction, b) boundary displacement and penetration of the tip, c) tip 
is halfway inserted, d) tip is fully inserted e) tip and shaft insertion. The graph at right shows a typical curve for 
penetration force. The unit for the vertical axis is force (N).  

 

To examine if a strategy has a positive impact on ease of insertion the following experimental setup was made. Metal 
needles were mounted in a material testing machine and inserted into a skin analogue while recording force acting 
axially on the needle and its velocity. The penetration force curve was recorded as the needle entered the skin model and 
the penetration force was found as point b shown in figure 2. The figure illustrates that the needle first deflects the skin 
(from a to b), then puncture the skin at b, halfway at c there is a maximum where two grindings of the needle tip meet, at 
d the tip is fully inserted and at e the resistance mainly comes from friction.  
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3.1 Methods and materials 

A compression/tensile test machine 5940 Single Column from Instron was used for the experiments. The experimental 
setup is shown in figure 3. The mechanisms were explored experimentally using a standard skin model consisting of a 
polyurethane (PUR) strip and a gel29 shown in figure 4. The fixture for the skin model is a polymer cube with a 
cylindrical hole. The hole contains the gel and the PUR-strip is placed over the gel. The PUR-strip was 18.7 mm wide 
and 0.38 mm thick. Young’s modulus was measured to 20 MPa using tensile testing. The strip is clamped in two sides 
making it possible to stretch the strip a controllable amount. Aligning marks on the PUR-strip with a ruler controls skin 
stretching as illustrated in the right-hand side of figure 3. A maximum strain value of 0.12 was chosen because Aoyagi et 
al. found close to lowest penetration forces for 0.06 strain.   

The needles are 25G x 5/8” from BD Microlance coated with silicone. The luer connector was removed by heating to be 
able to mount it in the 3-jaw chuck. The needle was then cleaned using ethanol and it is therefore likely that the silicone 
lubricant is removed from the side of the needle. Needles were only used once in order to rule out the effect of a 
deformed tip. 

Vibration was achieved by using a piezoelectric generator APA 400M from Cedrat Technologies as shown in figure 5. 
The piezoelectric elements were placed inside a frame so that the resulting vibration dominantly was in the axial 
direction of the needle. Frequencies of 10Hz and 30 Hz were chosen as these are similar to what the mosquito uses13,15. 
The amplitude was set to the lowest possible value which was calculated to be 10µm and the waveform was sinusoidal.  

Each experiment was repeated 4 times. The following parameters were examined: Velocity (0.2; 1.66; 3.12 mm/s), strain 
(0; 0.3; 0.6; 0.12) and vibration (0; 10; 30 Hz). In total 120 experiments were made. 

 

 
Figure 3: The experimental setup incl. the skin model and method for skin tensioning. 

Mean values and standard deviations were calculated for each test series. The null hypothesis was that mean values for 
two datasets belonged to the same greater dataset and had the same mean. This was tested using a student T-test 
assuming normality and unequal variance for the two datasets. The T-test determines the probability of whether the 
means of the two datasets are equal. If the probability is low, e.g. lower that 5%, it is unlikely that the two means are 
equal, or said in other words, it is likely that the two means are different. In our case the T-test is used to determine if the 
means of tests for different values of velocity, strain or vibration are different. We assume normality in the datasets, but 
since the sample sizes are small it can be difficult to tell and we therefore also used the non-parametric Wilcoxon's test 
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that can be used on datasets that are not normally distributed. The statistics was calculated using the functions in 
Microsoft Excel 2016 and cross checked using the open source statistical software R from the Cran project. 

 

 
Figure 4: Skin model: gelatin powder, polyurethane membrane and polymer cube. 

 

 
Figure 5: The vibration unit and the skin model. 

 
3.2 Results 

Figure 6 describes penetration forces for different insertion velocities. The lowest penetration forces were found for low 
insertion velocity also when vibration and strain were applied. 
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Figure 6 The role of skin strain (no unit) and velocity for penetration force (N) 

As seen in figure 7 vibration and strain result in a lower penetration force. Strain alone reduces the penetration force with 
14.7%, vibration with 18.5% and the combination of the two with 31.4%. Penetration force is reduced from 0.87N to 
0.6N wich is 31.4%. The experiments confirm that the superposition principle can be applied and the effect of the two 
strategies can be added together. A surprising finding is that best results (0.71N) were found for vibrational frequencies 
of 10Hz and that penetration forces increased for higher frequencies. Injection at higher frequencies up to 300 Hz were 
explored with a sample size of one showing penetration forces between 0.8N and 0.9N. 

 

 
Figure 7 The role of skin strain (no unit) and vibration (Hz) for penetration force (N) at constant low velocity (0.2 mm/s) 
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The differences in mean values for each test series were tested statistically (see table 2) using t-test which in all cases 
except strain had p-values below 0.05. The equivalent p-values using a Wilcinson test were larger: For velocity, strain 
and vibration the values were between 0.06 and 0.11 that is higher than the 0.05 treshold. For the combination of the 
three the value was 0.029 which was significant. 

Table 2. Statistical values for penetration force for different values of velocity, strain and vibration. 

 
mean st.dev. p-value  

(t-test) 
p-value 

(wilcinson test) 

Velocity 
    

0.2 mm/s 0.869 0.094 
  

3.2 mm/s 1.059 0.104 0.035 0.114 

Strain 
    

0 0.869 0.094 
  

0.12 0.742 0.033 0.067 0.057 

Vibration 
    

0 Hz 0.869 0.094 
  

10 Hz 0.709 0.070 0.037 0.059 

Strain + vibration 
   

0 + 0 Hz 0.869 0.094 
  

0.12 + 10 Hz 0.596 0.065 0.004 0.029 

 
3.3 Discussion 

All three strategies for lowering penetration strategies namely velocity, strain and vibration had a noticeable effect. 
Furthermore, the experiments showed that the superposition principle applies and the effect of the single strategies can 
be added together. For injection velocity, we had best results for the slowest injection, which is similar to other authors 
that worked with artificial skin models but in contrast to many results from biological skin models (see table 3 for an 
overview). The skin model is off course important for the quality of the results. Human skin would give the results 
closest to reality, but for ethical reasons this is very difficult to work with. For this reason, a range of different models 
are used including animal tissue, latex, silicone rubber and PUR. It should be expected that animal tissue possess some of 
the same viscoelastic and thixitropic properties as human skin, even though other properties like stiffness can be quite 
different. Animal tissue is not homogeneous and larger sampling sizes are therefore required. For ease of access and 
predicted experimental conditions the artificial skin models are often preferred.  
 
The experiments showed that strain reduces the penetration force. This is similar to earlier findings from other studies. 
Aoyaki et al. found a force reduction of 25% for 0.06 strain14 but also that a higher strain did not reduce the force further. 
Our experiments showed the lowest forces (14.7% reduction) for a strain of 0.12. Possible explanations could be due to 
the skin model. Aoyagi et al. used silicon rubber and we used PUR.  
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Table 3. Force/velocity relationship from different sources 

Lowest force Skin model Velocity range Source 

Lower velocity 
Higher velocity 

Artificial materials 
Biological tissue 

1-20 mm/s 
(1-20 mm/s) 

Van Gerven et al.19 

Higher velocity Porcine heart 1-250 mm/s Mahvash et al.20 

Higher velocity Porcine liver 1-25.4 mm/s Hing et al.21 

Lower velocity Silicone gel 3-21 mm/s Crouch et al.22 

Lover velocity Rubber-like 5-25 mm/s Webster et al.23 

Lower velocity 
Lower velocity 

Latex + clay 
Soft chicken tissue 

0.02-0.75 mm/s 
0.02-0.75 mm/s 

Muralidharan27 
Obs: using 100Hz 

vibration 

Lower velocity PUR strip + gel 0.2-3.12 mm/s This paper 

 
 

Table 4. Role of frequency in different sources 

Frequency 
(Hz) 

Amplitude (µm) Force (N) Skin model Source 

0 
1 

1000 
0 
1 

1000 

 
30 
30 

 
30 
30 

0.51 
0.35 
0.23 
1.4 

1.05 
0.77 

Chicken ventriculus 
Chicken ventriculus 
Chicken ventriculus 

Latex+clay 
Latex+clay 
Latex+clay 

Muralidharan27 

0 
kHz 

 
600 (lateral) 

0.26 
0.08 

Animal tissue Yang et al.26  

0 
30 

 
140 

0.22 
0.1 

Silicon rubber Izumi et al.25 

0 
30 

 
8 

0.4 
0.3 

Silicon rubber Aoyagi et al.14 

0 
10 
30 

 
10 
10 

0.87 
0.71 
0.77 

PUR+gel This paper 

 
 
For vibration, we found the best results (18.4% lower force) for a relatively slow frequency of 10Hz. For larger 
frequencies penetrations forces were higher. This is in contrast to many of the other papers (see table 4 for an overview). 
However, one study showing lower forces for higher frequencies had the largest marginal reduction in required force 
going from 0 to 1 Hz, i.e. the smaller frequencies had the largest marginal impact. The skin model could also have a role 
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in explaining the differences here but other explanations can be proposed, such as the direction of the vibration and the 
amplitude. Thixotropy should be expected no matter the direction of the vibration, but for longitudinal vibration the 
amplitude could have an effect. For larger amplitudes, the effective local stress would be considerably higher when the 
oscillatory movement is at its one extreme, but the motion is too small to be recorded on the testing equipment, due to 
the dampening in the skin model.  
 
The statistical testing of measurement results showed significance (p-values below 5%) when strain and vibration was 
combined with slow insertion. Significance levels for each of the strategies when viewed alone were between 0.035 and 
0.11, i.e. some of them could not be shown to be statistically significant. A possible reason could be the variance within 
each of the test series caused by deterioration of the gel in the skin model and the role of injection position.  

4. CONCLUSION 
The present paper presented a number of biological strategies for penetrating skin in a way that causes as little damage as 
possible to the skin. This includes spines in cactus and porcupines, poisonous spines in caterpillars and bees and 
specialized mouthparts in ticks and mosquitos. Mosquito strategies are explained and three of them are selected for 
experimental testing. Skin strain, vibration and insertion velocity are all shown to have an improvement effect on 
penetration force. Furthermore, it is shown that the effects of the three strategies can be added together, i.e. that they do 
not affect each other negatively. 
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