819 research outputs found

    Diamond machining of freeform-patterned surfaces on precision rollers

    Get PDF
    Rapid development of freeform surfaces faces the challenges of not only higher form accuracy and smoother surface finishing, but also high machining efficiency and lower manufacturing cost. Combining diamond turning and roll-to-roll embossing technologies is a promising solution to fulfil these requirements. This paper presents a generic method to design and machine freeform surfaces on precision rollers. The freeform surface designed on the flat substrate is first transferred onto the cylindrical roller surface. The freeform-patterned roller surface is then diamond turned using the toolpath generated by a purposely developed toolpath generator. With the proposed method, the complex freeform surfaces designed on flat substrate can be transferred to and precisely machined on the cylindrical roller surfaces. A cutting experiment has been conducted to demonstrate the capability of the proposed method. In the experiment, a sinusoidal surface was designed and diamond turned on a precision roller. The results demonstrate that the proposed method is accurate and effective. The proposed method provides guidance for the design and precision manufacturing of freeform-patterned surfaces on precision rollers

    Design of ultraprecision machine tools with application to manufacturing of miniature and micro components

    Get PDF
    Currently the underlying necessities for predictability, producibility and productivity remain big issues in ultraprecision machining of miniature/microproducts. The demand on rapid and economic fabrication of miniature/microproducts with complex shapes has also made new challenges for ultraprecision machine tool design. In this paper the design for an ultraprecision machine tool is introduced by describing its key machine elements and machine tool design procedures. The focus is on the review and assessment of the state-of-the-art ultraprecision machining tools. It also illustrates the application promise of miniature/microproducts. The trends on machine tool development, tooling, workpiece material and machining processes are pointed out

    Theoretical and experimental investigations on conformal polishing of microstructured surfaces

    Get PDF
    Microstructured surfaces play a pivotal role in various fields, notably in lighting, diffuser devices, and imaging systems. The performance of these components is intricately related to the accuracy of their shapes and the quality of their surfaces. Although current precision machining technologies are capable of achieving conformal shapes, the post-machining surface quality often remains uncertain. To appropriately address this challenge, this paper introduces a novel conformal polishing methodology, specifically designed to enhance the surface quality of microstructured surfaces while maintaining their shape accuracy. As part of the investigations, specialized tools, namely the damping tool and profiling damping tool, are methodically developed for polishing rectangular and cylindrical surfaces. A shape evolution model is established based on the simulation of individual microstructures, incorporating the concept of finite-slip on the microstructured surface. The findings reveal that principal stresses and velocities experience abrupt variations at the convex and concave corners of rectangular surfaces as well as at the ends of cylindrical surfaces. The numerically predicted surface shape errors after polishing demonstrate reasonably good agreement with experimental results such that their discrepancies are less than 1 μm. Additionally, this method is able to successfully eradicate pre-machining imperfections such as residual tool marks and burrs on the microstructured surfaces. The arithmetic roughness (Ra) of the rectangular surface is measured to be an impressively low 0.4 nm, whereas the cylindrical surface exhibits Ra = 6.2 nm. These results clearly emphasize the effectiveness of the conformal polishing method in achieving high-quality surface finishes

    Development of hybrid micro machining approaches and test-bed

    Get PDF
    High precision miniature and micro products which possess 3D complex structures or free-form surfaces are now being widely used in industry. These micro products require to be fabricated by several machining processes and the integration of these various machining processes onto one machine becomes necessary since this will help reduce realignment errors and also increase the machining efficiency. This thesis describes the development and testing of several hybrid machining approaches for machines which are typically used to produce micro products such as micro fluidic moulds, solar concentrator moulds, micro grooves in brittle materials and micro structured milling cutters. These are: (a) micro milling and laser deburring; (b) micro grinding involving laser pre-heating; (c) micro milling and laser polishing. The hybrid micro milling/ laser deburring process was tested during the fabrication of a micro fluidic injection mould. Micro burrs on the channel of micro fluidic mould generated during micro milling were completely removed by developed laser deburring process. This approach can achieve a good surface finish on a micro fluidic mould. The hybrid laser assisted micro grinding process was investigated by fabricating a set of micro grooves on brittle materials, including Al2O3 and Si3N4. The workpiece was pre-heated by laser to increase its temperature above that of the brittle to ductile transition phase interface. It was found that lower cutting forces were apparent in the grinding process when used to machine brittle materials. It was also found that laser assisted grinding helped achieve a very good surface finish and reduced subsurface damage. The final hybrid machining approach tested involved micro milling and laser polishing to fabricate solar concentrator moulds. Such a mould requires a good surface finish in order to accurately guide light focusing on a target. The laser polishing process was successfully used to remove any unwanted cutting marks generated by a previous micro milling process. Abstract iii As a novel extension to this hybrid machine world, a focussed ion beam (FIB) fabrication approach was researched regarding the generation of microstructures on the rake faces of milling cutters with the aim of reducing cutter cutting forces and increasing tool life. The tool wear resistance performance of these microstructured tools was evaluated through three sets of slot milling trials on a NAK80 specimen with the results indicating that micro structured micro milling cutters of this kind can effectively improve the tool wear resistance performance. A microstructure in a direction perpendicular to the cutting edge was found to be the best structure for deferring tool wear and obtaining prolonged tool life. This approach can potentially be further integrated into a hybrid precision machine such that micro structure cutters can be fabricated in-situ using a laser machining process. The conceptual design of a 5-axis hybrid machine which incorporates micro milling, grinding and laser machining has been proposed as a test-bed for the above hybrid micro machining approach. Through finite element analysis, the best configuration was found to be a closed-loop vertical machine which has one rotary stage on the worktable and another on machining head. In this thesis, the effectiveness of these novel hybrid machining approaches have been fully demonstrated through machining several microproducts. Recommendations for future work are suggested to focus on further scientific understanding of hybrid machining processes, the development of a laser repairing approach and the integration of a controller for the proposed hybrid machine

    Novel end-fly-cutting-servo system for deterministic generation of hierarchical micro–nanostructures

    Get PDF
    This paper reports on the diamond cutting based generation of hierarchical micro-nanostructures, which are conventionally difficult for both mechanical and non-mechanical methods to achieve. A novel end-fly-cutting-servo (EFCS) system, with four-axis servo motions that combine the concepts of fast/slow tool servo and endface fly-cutting, is proposed and investigated. In the EFCS system, an intricately shaped primary surface is generated by material removal, while the desired secondary nanostructures are simultaneously constructed using residual tool marks by actively controlling tool loci. The potential of the EFCS system is demonstrated firstly by fabricating a nanostructured F-theta freeform surface and a nanostructured micro-aspheric array

    Design, control and error analysis of a fast tool positioning system for ultra-precision machining of freeform surfaces

    Get PDF
    This thesis was previously held under moratorium from 03/12/19 to 03/12/21Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis.Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis

    Freeform terahertz structures fabricated by multi-photon lithography and metal coating

    Get PDF
    Direct-write multi-photon laser lithography (MPL) combines highest resolution on the nanoscale with essentially unlimited 3D design freedom. Over the previous years, the groundbreaking potential of this technique has been demonstrated in various application fields, including micromechanics, material sciences, microfluidics, life sciences as well as photonics, where in-situ printed optical coupling elements offer new perspectives for package-level system integration. However, millimeter-wave (mmW) and terahertz (THz) devices could not yet leverage the unique strengths of MPL, even though the underlying devices and structures could also greatly benefit from 3D freeform microfabrication. One of the key challenges in this context is the fact that functional mmW and THz structures require materials with high electrical conductivity and low dielectric losses, which are not amenable to structuring by multi-photon polymerization. In this work, we introduce and experimentally demonstrate a novel approach that allows to leverage MPL for fabricating high-performance mmW and THz structures with hitherto unachieved functionalities. Our concept exploits in-situ printed polymer templates that are selectively coated through highly directive metal deposition techniques in combination with precisely aligned 3D-printed shadowing structures. The resulting metal-coated freeform structures offer high surface quality in combination with low dielectric losses and conductivities comparable to bulk material values, while lending themselves to fabrication on planar mmW/THz circuits. We experimentally show the viability of our concept by demonstrating a series of functional THz structures such as THz interconnects, probe tips, and suspended antennas. We believe that our approach offers disruptive potential in the field of mmW and THz technology and may unlock an entirely new realm of laser-based 3D manufacturing

    DEVELOPMENT AND APPLICATION OF ON-MACHINE SURFACE MEASUREMENT FOR ULTRA-PRECISION TURNING PROCESS

    Get PDF
    Optical freeform components, featured with high functional performance, are of enormous demand in advanced imaging and illumination applications. However, the geometrical complexity and high accuracy demand impose considerable challenges on the existing ultra-precision freeform machining technologies. Surface measurement and characterisation become the key to further improving machining performance. In order to further increase the metrology availability and efficiency, a shift in the approach of surface metrology from offline lab-based solutions towards the use of metrology upon manufacturing platforms is needed. On-machine surface measurement (OMSM) will not only allow the assessment of manufactured surfaces just-in-time without transportation and repositioning, but also provide feedback for process optimization and post-process correction with consistent coordinate frame. In the thesis, a single point robust interferometer is integrated onto a diamond turning lathe to establish the metrology-embedded ultra-precision manufacturing platform. To extract a priori information for the subsequent OMSM, a theoretical and experimental study of surface generation was carried out for ultra-precision turning of optical freeform surfaces. With the proposed machining methodology and surface generation simulation, two freeform surfaces (sinusoidal grid and micro-lens arrays) were successfully fabricated using the slow tool servo technique. The machined topography of freeform surfaces was uniformly distributed and in agreement with simulated results. Since it operates in the manufacturing environment, the machine tool effects on the OMSM were comprehensively evaluated, including on-machine vibration test, machine kinematic error mapping and linearity error calibration. A systematic calibration methodology for single point OMSM was proposed. Both theoretical and experimental investigation have been conducted to prove the validity of the proposed calibration methodology and the effectiveness of OMSM. With the aid of OMSM, potential applications were explored to exploit the integration benefits to further enhance the ultra-precision machining performance. OMSM integration will increase the automation level of the manufacturing. As OMSM preserves the coordinate system between the machining and measurement, the process investigation can be carried out in a more deterministic manner. The effect of process parameters on the surface form errors was investigated for ultra-precision cylindrical turning process. An empirical model based on response surface methodology has been established and validated with the experimental results. Moreover, a corrective machining methodology was proposed to further improve the accuracy of diamond turned surfaces with OMSM. According to different correction tasks, corresponding OMSM data processing methods were presented. Profile and surface correction experiments were performed to validate the proposed corrective machining methodology and 40% improvement of surface accuracy was achieved
    corecore