278 research outputs found

    A novel hand exoskeleton with series elastic actuation for modulated torque transfer

    Get PDF
    Abstract Among wearable robotic devices, hand exoskeletons present an important and persistent challenge due to the compact dimensions and kinematic complexity of the human hand. To address these challenges, this paper introduces HandeXos-Beta (HX-β), a novel index finger-thumb exoskeleton for hand rehabilitation. The HX-β system features an innovative kinematic architecture that allows independent actuation of thumb flexion/extension and circumduction (opposition), thus enabling a variety of naturalistic and functional grip configurations. Furthermore, HX-β features a novel series-elastic actuators (SEA) architecture that directly measures externally transferred torque in real-time, and thus enables both position- and torque-controlled modes of operation, allowing implementation of both robot-in-charge and user-in-charge exercise paradigms. Finally, HX-β's adjustable orthosis, passive degrees of freedom, and under-actuated control scheme allow for optimal comfort, robot-user joint alignment, and flexible actuation for users of various hand sizes. In addition to the mechatronic design and resulting functional capabilities of HX-β, this work presents a series of physical performance characterizations, including the position- and torque-control system performance, frequency response, end effector force, and output impedance. By each measure, the HX-β exhibited performance comparable or superior to previously reported hand exoskeletons, including position and torque step response times on the order of 0.3 s, −3 dB cut-off frequencies ranging from approximately 2.5 to 4 Hz, and fingertip output forces on the order of 4 N. During use by a healthy subject in torque-controlled transparent mode, the HX-β orthosis joints exhibited appropriately low output impedance, ranging from 0.42 to −0.042 Nm/rad at 1 Hz, over a range of functional grasps performed at real-life speeds. This combination of lab bench characterizations and functional evaluation provides a comprehensive verification of the design and performance of the HandeXos Beta exoskeleton, and its suitability for clinical application in hand rehabilitation

    EVA Glove Research Team

    Get PDF
    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area

    Hand exoskeleton for rehabilitation and functionalization

    Get PDF
    Many diseases and injuries of the hand require rehabilitation to restore function. However, the high human, financial, spatial, and temporal costs associated with rehabilitation often mean that the population in need does not have access to optimal rehabilitative care. Therefore, devices that complement the therapist are a possible solution, as they make rehabilitation more independent and frequent, and save healthcare facilities the aforementioned resources. Nevertheless, these devices are not widely distributed in the market, mainly due to their poor accessibility. The newly designed exoskeleton has four motors and a redundant transmission system that allows independent flexion and extension of each finger, except the thumb. Kinematics were analyzed with motion studies and loads were evaluated with static studies and structural analysis using motion loads. In the simulations, both flexion and extension were achieved in four seconds. A prototype transmission system was built and its kinematics matched that of the simulation and corresponded to the biomechanics of the fingers. At maximum flexion, the exoskeleton would be able to hold small objects and exert a normal force of up to 20 N with structural integrity.The authors would like to acknowledge the support of the project UIDB/04077/2020

    Design and bio-mechanical evaluation of upper-body exoskeletons for physical assistance

    Get PDF

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    A soft, synergy-based robotic glove for grasping assistance

    Get PDF
    This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test

    A fabric-based soft hand exoskeleton for assistance: the ExHand Exoskeleton

    Get PDF
    INTRODUCTION: The rise of soft robotics has driven the development of devices for assistance in activities of daily living (ADL). Likewise, different types of actuation have been developed for safer human interaction. Recently, textile-based pneumatic actuation has been introduced in hand exoskeletons for features such as biocompatibility, flexibility, and durability. These devices have demonstrated their potential use in assisting ADLs, such as the degrees of freedom assisted, the force exerted, or the inclusion of sensors. However, performing ADLs requires the use of different objects, so exoskeletons must provide the ability to grasp and maintain stable contact with a variety of objects to lead to the successful development of ADLs. Although textile-based exoskeletons have demonstrated significant advancements, the ability of these devices to maintain stable contact with a variety of objects commonly used in ADLs has yet to be fully evaluated. MATERIALS AND METHODS: This paper presents the development and experimental validation in healthy users of a fabric-based soft hand exoskeleton through a grasping performance test using The Anthropomorphic Hand Assessment Protocol (AHAP), which assesses eight types of grasping with 24 objects of different shapes, sizes, textures, weights, and rigidities, and two standardized tests used in the rehabilitation processes of post- stroke patients. RESULTS AND DISCUSSION: A total of 10 healthy users (45.50 ± 14.93 years old) participated in this study. The results indicate that the device can assist in developing ADLs by evaluating the eight types of grasps of the AHAP. A score of 95.76 ± 2.90% out of 100% was obtained for the Maintaining Score, indicating that the ExHand Exoskeleton can maintain stable contact with various daily living objects. In addition, the results of the user satisfaction questionnaire indicated a positive mean score of 4.27 ± 0.34 on a Likert scale ranging from 1 to 5
    • …
    corecore