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Rehabilitation of the hands is critical for restoring independence in ac-

tivities of daily living for individuals with upper extremity disabilities. Con-

ventional therapies for hand rehabilitation have not shown significant improve-

ment in hand function. Robotic exoskeletons have been developed to assist

in therapy and there is initial evidence that such devices with force-control

based strategies can help in effective rehabilitation of human limbs. However,

to the best of our knowledge, none of the existing hand exoskeletons allow

for accurate force or torque control. In this dissertation, we design and pro-

totype a novel hand exoskeleton that has the following unique features: (i)

Bowden-cable-based series elastic actuation allowing for bidirectional torque

control of each joint individually, (ii) an underlying kinematic mechanism that

is optimized to achieve large range of motion and (iii) a thumb module that

allows for independent actuation of the four thumb joints.
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To control the developed hand exoskeleton for efficacious rehabilita-

tion after a neuromuscular impairment such as stroke, we present two types

of subject-specific assist-as-needed controllers. Learned force-field control is a

novel control technique in which a neural-network-based model of the required

torques given the joint angles for a specific subject is learned and then used to

build a force-field to assist the joint motion of the subject to follow a trajectory

designed in the joint-angle space. Adaptive assist-as-needed control, on the

other hand, estimates the coupled digit-exoskeleton system torque requirement

of a subject using radial basis function (RBF) and on-the-fly adapts the RBF

magnitudes to provide a feed-forward assistance for improved trajectory track-

ing. Experiments with healthy human subjects showed that each controller has

its own trade-offs and is suitable for a specific type of impairment.

Finally, to promote and optimize motor (re)-learning, we present a

framework for robot-assisted motor (re)-learning that provides subject-specific

training by allowing for simultaneous adaptation of task, assistance and feed-

back based on the performance of the subject on the task. To train the subjects

for dexterous manipulation, we present a torque-based task that requires sub-

jects to dynamically regulate their joint torques. A pilot study carried out

with healthy human subjects using the developed hand exoskeleton suggests

that training under simultaneous adaptation of task, assistance and feedback

can module challenge and affect their motor learning.
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Chapter 1

Introduction1

1.1 Motivation and Goals

Over 19.9 million people in the US exhibit a disability of physical func-

tion of the upper body and have difficulty lifting or grasping [18]. Rehabilita-

tion using robots has the potential to provide effective therapy to individuals

with disabilities while also allowing for quantitative assessment of recovery.

Clinical trials have shown that robot-aided hand therapy results in improved

hand motor function after chronic stroke with increased sensorimotor cortex

activity for practiced tasks [67, 152]. However, several technical challenges in

areas including hand biomechanics, rehabilitation, actuators, sensors, physical

human-robot interaction, and control based on the user intent [62] need to

be overcome for designing an effective, small, and light weight robotic hand

exoskeleton. Development of these exoskeletons requires physical hardware de-

sign (mechanism synthesis, human-robot interaction interface, optimal design

parameters) and software-based control algorithms (subject specific kinemat-

1Portions of this chapter has previously been published in the following article–P. Agar-
wal, J. Fox, Y. Yun, M. K. OMalley and A. D. Deshpande, “An Index Finger Exoskeleton
with Series Elastic Actuation for Rehabilitation: Design, Control and Performance Char-
acterization”, International Journal of Robotics Research, 34(14), pp.1747-1772, 2015. The
author carried out the literature review of the existing hand exoskeletons, and developed
and tested the presented hand exoskeleton in the cited work.
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ics estimation, position or torque control), to ensure desirable coupled system

performance.

Research over the past decade has shown initial evidence that force-

control based strategies (e.g. impedance, admittance, assist-as-needed [23])

can be more effective for rehabilitation of both the upper [16, 33, 117] and

lower limbs [102] than pure position-based control [58]. Force-control based

strategies can be designed to encourage an active effort from the subject during

therapy, which is shown to be more effective than passive motor training even

for a longer duration [98] and is thought to be essential for provoking motor

plasticity [119]. On the other hand, position-control based strategies physi-

cally guide the movement of the impaired limb to strictly follow a predefined

trajectory without enabling the subject to actively participate in the task [15]

or allowing for any subject-specific customization of the assistance [104]. The

guidance hypothesis in motor control research suggests that such a physically

guided movement may decrease motor learning for some tasks due to the re-

duction in burden (motor output, effort, energy consumption or attention) on

the subject’s motor system to discover the principles necessary to perform the

task successfully [132]. Furthermore, some hand disabilities (e.g. spasticity)

lead to uncertain motion of the digits. This uncertainty requires that during

rehabilitation therapy appropriate forces are applied on the digits rather than

simply moving them through some predetermined positions, which can lead to

the application of large forces and further harm the hand.

The introduction of passive compliance in the form of Bowden-cable-
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based series elastic actuator (SEA) has been identified as a good force or

torque source with low inertia for impedance controlled exoskeletons, especially

for the lower extremity [163]. It has been suggested for the lower extremity

exoskeletons that the interaction between a therapist and a patient’s limb can

be simulated by applying forces corresponding to virtual springs and dampers

[161]. In addition, introducing appropriate compliance in actuation can also

ensure safe and comfortable interaction with the human hand. However, the

role of compliance and series elastic actuation has not yet been explored in

hand exoskeletons. Thus, the existing hand exoskeletons suffer from two major

limitations. Firstly, none of them allow for accurate torque or impedance

control at individual finger joints for effective therapy. Secondly, none of them

decouples the inertia and nonlinear actuator gearing effects from the human

finger for kinematically and dynamically transparent [160] interaction with the

device to ensure comfort and safety.

Our goal is to design a robotic device that can provide therapeutic ex-

ercises that can lead to quicker recovery of the hand digits. Toward this goal,

we set the following objectives for the design of our hand exoskeleton: (i) the

device should allow for accurate and stable bidirectional torque control with

high backdrivability and low reflected inertia, (ii) the design should be kine-

matically and dynamically compatible with the human finger and be quickly

adjustable for a specific subject and (iii) the device should be light in weight

and allow for free motion of the hand with low movement resistance. We use

the following design goals for the actuator for our application of hand rehabili-
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tation: (i) a required bidirectional peak torque of at least 0.3 Nm based on the

torques applied by experienced therapists for hand rehabilitation as measured

through a torque measuring device [157], (ii) torque bandwidth of at least 2 Hz

based on the fact that the bandwidth of the human force compliance control

loop is 1–2 Hz [28, 141]. Also, typically rehabilitation exercises for the finger

are carried out at angular velocities of less than 50◦/s i.e. full range of motion

frequencies below 0.5 Hz [1, 79].

Physical assessment studies of hand function have shown that the loss

of finger adduction or abduction motion has minimal effect on the activities of

daily living [47]. Furthermore, abduction-adduction motion is not important

for achieving the critical hand functions including tip pinch, key pinch, pulp

pinch, power grasp, briefcase grip, holding glass etc. and therefore is not

considered during the ergonomic evaluation of biomechanical function of the

hand [90]. In addition, the index finger has limited range of motion (20 to

30 degrees) at the metacarpophalangeal (MCP) abduction-adduction joint [9,

47]. Also, incorporation of an active abduction-adduction joint significantly

increases the complexity of the design of our finger exoskeleton without much

additional benefit. Considering all these factors, we do not include active

rehabilitation of the abduction-adduction joint as the design goal for our index

finger exoskeleton. The rationale behind providing passive degree of freedom

(DOF) is that the device should allow for free movement at this joint while

the subject performs flexion-extension motion at the other finger joints.

The thumb provides more than 40% of the entire hand function and is
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given first priority for replantation [145]. Studies on understanding and clas-

sifying the human hand use in activities of daily living has shown that apart

from thumb flexion-extension at the carpometacarpal (CMC), metacarpopha-

langeal (MCP) and interphalangeal (IP) joints, thumb abduction-adduction at

the CMC joint plays a significant role in accomplishing different types of grasps

including power, tripod, precision, palmar, tip pinch and lateral pinch [40, 96].

Thumb opposition, which is vital for normal hand function, is achieved via

coordinated flexion-extension and abduction-adduction motion at the CMC

joint [94]. Furthermore, thumb abduction-adduction at the CMC joint has

large range of motion (40 to 45 degrees) [34, 144]. Considering all these fac-

tors, we aim for the active rehabilitation of thumb flexion-extension at the

CMC, MCP and IP joints and abduction-adduction at the CMC joint as the

design goal for our thumb exoskeleton.

In this dissertation, we present a novel hand exoskeleton with series

elastic actuation capable of achieving bidirectional and independent joint torque

control and introduce compliance in the mechanism to make it safe and com-

fortable. From the robot design and controls perspective, this dissertation

makes the following contributions: (i) presents a mechanism that inherently

induces low joint reaction forces at the joints of the hand digits during the ar-

ticulation of the digits, while providing large ranges of motion, (ii) implements

a miniature Bowden-cable-based SEA, which is small enough to fit on a hand

exoskeleton and is capable of achieving accurate torque control, (iii) presents

a method to use the redundant sensor information to estimate the unknown
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kinematic model parameters for accurate control, and (iv) demonstrates the

implementation of torque controllers for accurately applying torques both at

the exoskeleton and finger joints. From the rehabilitation perspective, we

present a fully developed prototype, a control system for the device, and ex-

perimental results with human subjects, that demonstrate the capabilities of

the device that are critical for delivering physical therapy.

The rest of the dissertation is organized as follows. A background

of the existing hand exoskeletons, series elastic actuators and controls along

with their limitations are presented in Chapter 1. The SEAs developed for

bidirectional torque control and the details of the index finger and thumb

exoskeleton prototypes along with their system model and experimentation

are described in Chapter 2. The details of the two subject-specific advanced

controllers developed for the hand exoskeleton are described in Chapter 3. The

details of the proposed rehabilitation framework are presented in Chapter 4.

Finally, the dissertation is concluded with a summary of the contributions of

this work along with the possible future research avenues.

1.2 Literature Review

1.2.1 Hand Exoskeletons

A number of hand exoskeletons have been designed to date, and these

can be categorized into passive (with no actuators) [19] and active (with actu-

ators) devices. Within the active category, devices can either provide continu-
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 1.1: Some of the existing hand exoskeletons designed for rehabilitation
and virtual reality applications. (a) Waveflex, (b) Kinetec Maestra Portable
Hand CPM, (c) Wege et al., (d) Ueki et al., (e) HX, (f) Rutger’s Master II
and (g) Cybergrasp.

ous passive movement (CPM) (e.g. Waveflex CPM2, Kinetec Maestra Portable

2http://www.remingtonmedical.com/product/detail/A1
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Hand CPM3, Ren et al. [121]) (Figs. 1.1a,b) or active assistance, where the

human hand actively interacts with the device and the device reacts as per the

interaction based on a feedback (e.g. position sensing) [73, 128, 157]. There

are devices that use geared servomotors either directly mounted at the ex-

oskeleton joints [150, 157] or connected through tendons [73]. However, this

makes the device bulky, restricts the hand to a stationary device and makes

it difficult to achieve torque control due to losses in the gearing or routing

pulleys without using explicit force feedback for controlling the device. The

hand is restricted in such designs as it is attached to a stationary device on

a bench top due to the fact that the forces from the transmission mechanism

needs to be transferred to the ground through the structure of the device.

A Bowden-cable-based mechanism allows the subject to freely orient

and translate their hand within a reasonably large range for physical therapy.

This is important for rehabilitation as some impairments of the upper limb

make it difficult to fix the hand in certain positions. In addition, a device that

would allow for free movement of the hand during operation can be used to

perform activities of daily living in a rehabilitation setting both for therapy

and assessment. Bowden-cable-based transmission has been employed with

electric motors to make devices portable, however, these devices focus only

on the position control of the digits [27, 93, 166] and use force measurements

from peizoresistive force sensors or strain gages, either to roughly compensate

3http://orthoplusinc.com/index.php/products/continuous-passive-motion/kinetec-
maestra-portable-hand-cpm
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for the combined resistance due to friction in the Bowden cable and moment

of inertia during only finger flexion motion (no contact force information was

available during extension motion) [165] or to limit the tension in the Bowden

cable for safe operation [32] or some altogether ignore the losses in the Bowden

cable transmission [127] (Figs. 1.1c,d,e). Also, experimentation with a hand

exoskeleton has shown that the force measurement using force sensing resistors

is inaccurate due to the nature of the sensors, inability to mount the sensors

to cover the entire contact area between the device and the finger, and change

in the angle of application of force to the sensor [167].

A few devices use pneumatic cylinders for actuation and estimate the

force applied on the finger tips by measuring the pressure inside the cylinder

[17, 20] (Fig. 1.1f). However, these could not be used to control interaction

force or torque at the individual phalanges or joints of the finger as their

mechanism had only one DOF for each finger and is controlled by attaching

the linear pneumatic actuator to only a specific phalanx. Thus by design,

any force that is applied on the distal phalanx is propagated to all the joints

without any means to control it individually. In addition, the mechanism on

these devices is located on the palmar side, which makes it difficult to perform

grasping tasks using physical objects for rehabilitation. [151] developed a

system to aid in grasping, without any explicit position or force control, using

air cylinders, which are pressurized or depressurized based on the output from

a bending sensor. [156] developed a power-assist glove that provided some

assistance using pneumatic actuators by recognizing the type of grasp based
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on the angle information from angle sensors. Some of the devices also used

EMG to control the motion of the device. These devices had a single actuator

for each digit and controlled only the hand opening and closing using the

EMG signal [37, 99, 112, 154] or had multiple actuators to apply some assistive

force for grasping based on EMG signal [59]. However, none of them could

accurately control the torque applied on the finger or its position.

Hand exoskeletons have also been developed for virtual reality applica-

tions. However, these devices are designed to apply only unidirectional forces

or torques to simulate contacts in a virtual environment [54]. Rehabilitation

exoskeletons, on the other hand, are required to apply bidirectional forces on

hand during therapy. A commerically available device, CyberGrasp, is also

only capable of exerting unidirectional forces to oppose the finger flexion mo-

tion with one actuated DOF for each digit (does not allow for control of torque

applied at the individual finger joints) at a limited sampling rate of 90 Hz [95],

which was improved to 2 kHz with an external ExHand box in [8] (Fig. 1.1g).

Several thumb exoskeletons have also been developed to date for re-

habilitation, virtual reality or teleoperation applications that allow for active

actuation of the thumb (Table 1.1). For this review, we consider the devices

(total 15) that could actively actuate the thumb and are published in the lit-

erature with some experimental results. We compare the devices based on

the following 8 criteria, which are important for a thumb exoskeleton for re-

habilitation: (i) whether the device supports each thumb joint individually

(exoskeletal type) or connects to the distal phalanx of the thumb (end-effector

10



type), (ii) the number of active DOFs in the device, (iii) the type of actuators

used, (iv) whether the actuators are situated locally or remotely, (v) the type

of sensors in the device, (vi) weight of the device, (vii) what physical quantities

could be controlled using the device and (viii) what are the peak achievable

forces or torques on the device.

Exoskeletal type devices allow for controlling the position or torque

applied at each joint explicitly as compared to end-effector type devices, which

could only control the position or force at the distal phalanx. The number of

active DOFs in a device determines the variety and complexity of assisted

motions it could provide. Individual support of thumb joints is important to

provide targeted therapy to a specific joint, which may be necessary for certain

thumb pathologies (e.g. spasticity). Ensuring natural coordinated motion at

pathological thumb joints require that the device be exoskeletal type with each

DOF actuated individually. The type of actuator and its placement determine

whether the device would be bulky or light and therefore, whether it will

allow for free movement of the hand while in operation. It is important for

certain hand pathologies where the upper extremity could not be oriented in

a certain manner. The type of sensors on the device determines what physical

quantities the device could control. The weight of the device determines how

easy or cumbersome it is for use. The controller on the device governs what

physical quantities (position or force) the device could control, which in turn

decides what robotic rehabilitation control paradigms (e.g. force-field control,

assist-as-needed control [102]) the device is capable of rendering. Finally, the

11



peak achievable forces or torques determine for what kind of impairments the

device could be used. One of the limitations of the exoskeletons developed for

virtual reality applications is that they only allow to apply unidirectional forces

on the thumb. Rehabilitation exoskeletons, are however, required to apply

bidirectional forces on the thumb based on the nature of the impairment. A

comparison of the weight of the proposed thumb exoskeleton with the existing

ones shows that it has the least weight for the number of degrees of freedom it

offers. The weight per DOF for our device is about 34 g including the weight

of the exoskeleton base on hand (Table 1.1).

There have been five main types of actuation mechanism used for

thumb exoskeletons: (i) linkage-based actuation with locally situated mo-

tor [49, 89, 128, 157], (ii) tendon-based actuation with locally situated mo-

tor [10, 59], (iii) cable and sheath transmission with remotely located motor

[8, 27, 56, 93, 127], (iv) flexible shaft transmission with remotely located motor

[164] and (v) pneumatic actuation [17, 151]. None of these mechanisms allow

for accurate and stable torque control of the digit joints individually. Further-

more, these mechanisms have poor backdrivability and results in high reflected

inertia. In addition, the transmission and actuator gearing in some of these

mechanisms suffer from nonlinear friction and stiction, which makes it difficult

to control actuator force or torque accurately.

The actuator mechanism of our thumb exoskeleton lies in category (iii)

and so we discuss the designs in that category in more detail. Commercially

available system, CyberGrasp [8, 17], supports only 1 DOF motion of the

12
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thumb, control unidirectional phalanx force using motor current and cannot

be used to control the position or forces of the thumb phalanges individually.

iHandRehab [93] is another hand exoskeleton with a thumb module that sup-

ports 4 DOF of the thumb. However, experiments with their device showed

that significant friction (percentage of friction torque accounting for the driv-

ing torque is up to 95%) was present in their transmission. In addition, no

control experiments were presented with their device. [56] introduced a 2 DOF

thumb exoskeleton, called IOTA (isolated orthosis for thumb actuation), for

unidirectional actuation of the thumb. However, their device was designed to

only control position of the joints. HX is another hand exoskeleton with a 2

DOF thumb module [27]. However, the flexion-extension motion at the MCP

and IP joints is under-actuated in their design and their device is designed

to be position controlled. Also, so far they have only presented the design

of the thumb module. Recently, [72] designed a hand exoskeleton having a

thumb module with a linear series elastic actuator (SEA) to control the grip

force. However, their design has only 1 DOF for thumb with no allowable

abduction-adduction motion at the CMC joint. Also, they have presented

only preliminary testing of the SEA and no experiment with human subjects

have been conducted with the device so far.

1.2.2 Series Elastic Actuators

A number of robotics applications demand a miniature actuation sys-

tem that can deliver precise control of force or torque. Examples include an

18



exoskeleton for hand rehabilitation, a haptic interface and miniature robotic

manipulator. 4In most miniature robots, electromagnetic actuators (e.g. DC

motors) are most suitable given the small form factor, ease of use and clean de-

sign. For electromagnetic actuators precise control of torque (or force) can be

achieved either with a torque (or force) sensor and feedback controls, or with

an arrangement of a spring in series with the actuator and hierarchical controls

with position feedback. Adding a torque (or force sensor), e.g. a load cell, is

costly and also requires significant space, which makes this option infeasible,

especially for miniature robots, when compared to the series elastic actuators

(SEA). An SEA also adds an inherent mechanical compliance in the system

which is shown to be advantageous in the robotic systems that physically in-

teract with the human body [35]. While SEAs are suitable for actuation with

precise force controls, there is a lack of miniature, compact and bidirectional

SEAs for the robotics applications.

An SEA consists of a motor, an elastic element and accurate position

sensors on either side of the spring, and by measuring the deflection of the

spring, torque (or force) is determined [120]. SEAs have been successfully

implemented in a number of robotics applications to precisely control torque,

including in a few exoskeletons for the lower extremity [148, 163] and upper

extremity [138], humanoids[136] and bipeds [44]. Table 1.2 presents a survey

of important SEAs for robotics applications. For the miniature robotics appli-

4Our broad definition of miniature or small-scale robot is a robot whose size is in the
centimeter scale.
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cations, we set the requirements on SEAs stiffness to be small (< 1 Nm/rad)

and peak torque to be (∼0.5 Nm), and we want the actuator to fit in the space

of 45 x 35 x 20 mm. None of the existing SEAs are designed to satisfy these

requirements.

We present two designs for miniature and compact SEAs that meet the

requirements for small-scale robotics applications including maximum torque,

torque tracking accuracy and torque tracking bandwidth. To reduce the size

of SEA for miniature robots, we decided to locate electric motors remotely

and use Bowden-cable transmission to connect motor to the springs and joint

to be actuated. Similar idea has been implemented in larger SEAs [148, 163],

but when applied to small size SEAs, it results in unique challenges. Our

designs address these challenges. The choice of type of spring configuration

and the choice of spring stiffness values are critical in successful functioning of

an SEA. There are three different possibilities for type of spring elements: i)

linear compression springs, ii) helical torsion springs, and iii) structural torsion

springs. Design of the elastic elements within limited space itself poses distinct

challenges for each configuration: (a) for linear compression springs - how to

achieve high stiffness while avoiding buckling of the spring, (b) for helical tor-

sion springs - how to achieve high stiffness in limited outer diameter and width

while maintaining linear bidirectional nature of the torque and (c) for struc-

tural torsion spring - how to achieve large angular deflection with relatively

high stiffness of such springs without material failure [24]. Also, to ensure

a compact design small angular sensor is required to sense the joint angular

20
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position, which typically have relatively poor resolution. This requires the

angular deflection of the elastic element to be sufficiently large for it to be

properly resolved by the sensor and in turn achieve a desirable torque res-

olution. A stiffer spring allows to achieve higher peak torques and torque

bandwidths, however, at a poorer resolution. Thus, a trade-off is involved in

choosing the stiffness of the spring while addressing all the aforementioned

challenges.

Bowden cables introduce elasticity and nonlinear friction in the trans-

mission [75, 165]. To achieve good torque control with Bowden-cable transmis-

sion, estimation of the effective stiffness of the Bowden cable and sheath com-

bination is necessary. In addition, the effective stiffness also changes with the

configuration of the design, which affects how the load is transferred through

the sheath. This requires explicit testing of SEAs having different configura-

tion even when the stiffness of the metallic elastic element is known a priori.

In the large-scale robotics applications, the problems due to Bowden-cable

elasticity and friction are overcome with explicit sensors to measure the de-

flection of the elastic element. In the small-scale robotic application these

problems lead to more severe effects and the small size makes it difficult to

mount additional sensors.

We present two SEA designs: one design is with a linear compression

springs (LC-SEA) and other is with a helical torsional spring (HT-SEA) (Sec-

tions 2.1.1, 2.1.2 and 2.1.3). We carried out experiments on a test rig to assess

the accuracy and fidelity of torque tracking, torque bandwidth, dynamic range,
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performance under various torque magnitude requirements and under various

disturbances (Sections 2.1.5 and 2.1.6).

1.2.3 Controls

Robotic rehabilitation has gained increasing attention in the past decade

due to the possibility of providing repetitive and intensive training with re-

duced manual labor and the potential to quantitatively assess recovery progress

[6, 11, 41, 100]. However, understanding what control algorithms are best suited

for these robotic devices in order to leverage neural plasticity and achieve best

possible functional recovery has been a challenge. Our focus in this work is on

developing controllers for a hand exoskeleton.

Research has shown some evidence that force-control based strategies

can be more effective for rehabilitation than position-based control alone [102].

However, basic force control requires an estimate of the subject-specific limb

joint torques and fails to produce an accurate movement without any error

correction at the exoskeleton joints. As a result, impedance [63] or admittance

control [103, 125] has been adopted, which are capable of providing compliant

interaction with the human limb, while assisting in tracking the desired ref-

erence trajectory [7, 33]. Impedance control requires high stiffness to create

accurate movement, especially at the finger joints, as the finger joint stiff-

ness varies considerably in its range of motion [85], in the absence of accurate

subject-specific model of the finger joint stiffness. However, a high exoskeleton

impedance could lead to uncomfortable or unsafe interactions. For example,

24



it leads to the application of increased torques at the finger joints in case

of occasionally stalled joint [2], which is possible during therapy due to the

nature of impairment (e.g. spastic catch phenomena and changing nature of

spasms in spastic finger muscles [42], accidental locking of finger joints due

to inflammatory joint disease such as rheumatoid arthritis [31]). In addition,

with impedance control there is a tendency to slack as the users rely on the

assistive force to a great extent, which reduces patient involvement in the

task and inhibits learning [64]. Thus, there is a need to learn subject-specific

models for the finger joint torques. Also, a means to adapt to the changing

requirements of a subject is an inherent control requirement.

To address the aforementioned challenges, we develop two assist-as-

needed controllers for a hand exoskeleton system. Learned force-field control

learns a subject-specific model of the required joint torques using a neural net-

work and use this model to build a force-field to assist the finger joint motion

of the subject. Adaptive assist-as-needed control, on the other hand, varies the

amount of assistance based on online estimation of the subject performance us-

ing measurements, to encourage active participation. A force-field control has

been developed for a lower limb exoskeleton, which provided only a constant

assistance along the task trajectory [71, 176], was not subject-specific and did

not have any learning aspect. Such a controller is not appropriate for a hand

exoskeleton. This is because for finger joints where the joint stiffness changes

considerably within the range of motion, accurate force-field assistance for the

specific subject is needed along the task trajectory to achieve the task at de-
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sired velocities. Also, the previous force-field control did not take into account

the fact that the nature of assistance can vary in the workspace due to the

non-homogeneous residual motor capabilities of a subject [116]. A few upper

and lower limb exoskeletons have also implemented adaptive assist-as-needed

control [117, 172]. However, such controllers have never been developed and

implemented for a hand exoskeleton system.

1.3 Research Goals

This work has the following three research goals:

1. Goal I: Design, Development and Testing - The first goal entails design-

ing, developing and testing the series elastic actuators, finger and thumb

modules of the hand exoskeleton.

2. Goal II: Advanced Control - The second goal involves developing two

subject-specific assist-as-needed controllers for the designed hand ex-

oskeleton.

3. Goal III: Development of a Framework for Rehabilitation - The third

goal consists of developing a framework for rehabilitation that gradu-

ally adapts the task, assistance and feedback to keep the task optimally

challenging for a subject based on the performance on the task.

1.4 Contributions

This work makes the following novel contributions:
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1. Presents the first hand exoskeleton with a series elastic actuator that

allows for: (i) accurate bidirectional torque control of each actuated joint,

(ii) large workspace with hand and (iii) independent torque control of

the four thumb joints.

2. Presents the design of two miniature Bowden-cable based rotary series

elastic actuators with linear and torsional springs. Compares and con-

trasts the performance of the two SEAs through experiments. Shows

accurate torque tracking performance (RMSE<12% and fidelity>97%)

with torque controllers that estimate the deflection of the elastic element

using the motor and joint position measurements for the Bowden-cable-

based SEAs.

3. Presents a novel neural-network-based learned force-field control that

allows to (a) perform tasks under significant joint stiffness variation at

desired velocities, which is present in hand digits and (b) capture the non-

homogeneity in residual motor capabilities of a specific subject, while

providing assistance.

4. Develops the learned force-field and adaptive assist-as-needed controls

for the hand exoskeleton and compare and contrast the two assist-as-

needed controllers.

5. Presents a framework for robot-assisted motor (re)-learning that provides

subject-specific training by allowing for simultaneous adaptation of task,
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assistance and feedback based on the performance of the subject on the

task.

6. Presents a learning from demonstration approach to model a continuous

and coordinated multi-joint task in a generative manner such that the

challenge-level of the task could be modulated in an online manner.

7. Presents a torque-based task that requires subject to dynamically regu-

late their joint torques capturing the essence of dexterous manipulation.
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Chapter 2

Design, Development and Testing of the Hand

Exoskeleton1

This chapter describes the design, control and experimentation of the

SEAs, index finger and thumb exoskeleton modules developed for the hand

exoskeleton.

2.1 Series Elastic Actuation

In this section, we will describe the details of the two SEA prototypes

developed for the hand exoskeleton, along with the experiments conducted to

validate their performance.

2.1.1 Mechanical Design

We first describe the details of the design of the Bowden-cable-based

SEAs including their design requirement, two configurations and modeling.

1Portions of this chapter has previously been published in the following article–P. Agar-
wal, J. Fox, Y. Yun, M. K. OMalley and A. D. Deshpande, “An Index Finger Exoskeleton
with Series Elastic Actuation for Rehabilitation: Design, Control and Performance Char-
acterization”, International Journal of Robotics Research, 34(14), pp.1747-1772, 2015. The
author carried out the literature review of the existing hand exoskeletons, and developed
and tested the presented hand exoskeleton in the cited work.
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2.1.1.1 Design Requirements

The design of the actuator for small-scale robotic applications require

the size of the actuator to be small. Considering our application of a hand

exoskeleton, we chose the required size to be smaller than 45 × 35 × 20 mm

including sensors, to accommodate several such actuators on the exoskeleton.

Also, the torque bandwidth of at least 2 Hz is required based on the fact that

the bandwidth of the human force compliance control loop is 1–2 Hz [28, 141].

In addition, an appreciable angular deflection (∼ 15◦) is required for the elastic

element at the maximum torque to provide sufficient torque resolution under

the noisy angle sensor measurements. We aim for our hand exoskeleton to

have a weight of under 300g and a total of 10 SEAs to actuate the joints of

all the digits. To meet this criterion on weight, each SEA is required to weigh

less than 30 g excluding the Bowden cables. Finally, we chose the required

bidirectional peak torque of at least 0.3 Nm for the SEA based on the torques

applied by experienced therapists for hand rehabilitation as measured through

a torque measuring device [157].

2.1.1.2 Two Design Configurations

We designed two different prototypes of the SEAs using linear and

torsion springs (Fig. 2.2). To achieve linear bidirectional torque characteristics,

we used two elastic elements in each SEA.
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Figure 2.1: Schematic for the two SEA designs–linear compression spring SEA
(LC-SEA) and helical torsion spring SEA (HT-SEA).

2.1.1.3 Linear Compression Spring SEA (LC-SEA)

In this SEA, we introduced a compression spring between the sheath

and the exoskeleton base at the exoskeleton side (Fig. 2.2a). Since Bowden

cable has the same tension as the compressive force acting on the sheath, the

estimation of the compressive force using spring deflection gives a measure

of the tension in the two cables and hence, torque acting at the joint. Also,

since one end of the compression spring rests on the exoskeleton base, there is

no translation of the compression spring. In addition, the compression spring

reduces in length as the device operates, thus avoiding any possible interference

with other components during operation. The linear compression spring for

this SEA should be sufficiently stiff, have small outer diameter (<10mm) to
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Figure 2.2: Two Bowden-cable-based SEA designs: (a) LC-SEA and (b) HT-
SEA.

meet the requirement on width including the sensor and not buckle at the

same time (Free length < 5× Mean diameter) [122].

2.1.1.4 Helical Torsion Spring SEA (HT-SEA)

In this SEA, two helical torsion springs were introduced between the

Bowden cable pulley at the joint side and the output link (Fig. 2.2b). However,

since the cable pulley and output link need to be separate in this design, it had

more components and was wider (24 mm) than the LC-SEA (17 mm). The

torsional springs were installed in a pre-stressed state in opposite directions to

achieve linear bidirectional nature of the torque.

2.1.1.5 Sensing

Typically SEAs employ explicit sensors (e.g. potentiometer) to directly

measure the deflection of the elastic element. However, the considerable size

of off-the-shelf sensors makes it difficult to mount these in the limited space on
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Figure 2.3: Schematic of different miniature Bowden-cable-based SEA mech-
anisms. (a) LC-SEA and (b) HT-SEA.

a hand exoskeleton. Instead, we estimated this deflection by using the motor

and joint position measurements for both the SEAs.

2.1.2 System Modeling

The dynamics of the joint end of the two SEAs is given by Eqn. (2.1).

Ij θ̈j + bj θ̇j + τj = (T2 − T1)rj (2.1)

The equations for the tensions in cable at the joint and motor end with k1 =

k2 = k are given by Eqn. (2.1.2).

T1 = T10 + k∆l1

T2 = T20 + k∆l2
(2.2)
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T3 = T1β
−σ(∆̇l1)

T4 = T2β
σ(∆̇l2)

β is the Bowden cable coefficient for the selected friction model [129].

2.1.2.1 LC-SEA Model

The kinematic relationship for the LC-SEA with two springs of same

stiffness values (k1 = k2 = k) is given by Eqn. (2.3). (Fig. 2.3(a))

∆l1 = −∆l2 = rjθj − rmθm (2.3)

The torque acting at the SEA joint is given by Eqn. (2.4).

(T2 − T1)rj = 2k (rmθm − rjθj) rj (2.4)

The feed-forward motor position with a given reference torque (τr) is given by

Eqn. (2.5).

θm,ff =
1

rm

(
τr

2krj
+ rjθj

)
(2.5)

2.1.2.2 HT-SEA Model

For the HT-SEA, the kinematic relation with k1 = k2 = kj is given by

the relative deflection of the pulley with respect to the joint as expressed in

Eqn. (2.6).

∆θ = θp − θj =
rmθm
rj
− θj (2.6)
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The torque due to the deflection of the springs at the joint is then given by

Eqn. (2.7).

2kj∆θ = 2kj

(
rmθm
rj
− θj

)
(2.7)

The feed-forward motor position with a given reference torque (τr) is given by

Eqn. (2.8).

θm,ff =
rj
rm

(
τr

2kj
+ θj

)
(2.8)

It can be seen that the feed-forward terms in Eqns. (2.5) and (2.8) are

mathematically equivalent when kj = kr2
j . However, in practice the effective

stiffness and friction acting in the system is significantly affected by the de-

sign configuration and hence, the performance of the two SEAs needs to be

experimentally validated.

2.1.3 Controller Design

Once a model of the torque output from each SEA is derived, a con-

troller is designed for the SEA. The goal of this controller is to track the

reference torque at the SEA joint using feed-forward PID control. The con-

troller consists of an inner position control loop at the actuator level and an

outer force control loop at the SEA level (Fig. 2.4). The output of the system

is the torque generated at the output joint through SEA. The PID controller

with the corresponding feed-forward term is then given by Eqn. (2.9).

u =θm,ff + kpe+ kdė+ ki

∫
edt (2.9)
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Figure 2.4: The schematic of the torque controller implemented for the SEAs.
The inner position control loop represents the position control implemented
in the motor driver. The outer force control loop refers to the control loop
implemented for output torque tracking.

where e = τr− τ̂j is the SEA joint torque error, τ̂j is the estimated torque and

u is the position control command for the actuator. The open-loop transfer

function of the linearized system from control command u to output torque τj

is given by Eqn. (2.10).

GOL(s) =
τj
u

=
C2(s)Ga1(s)Ga2(s)

1 + C2(s)Ga1(s)
(2.10)

The closed-loop transfer function of the linearized system from reference

torque τr to the output torque τj with transport delay in input is given by Eqn.

(2.11).

GCL(s) =
τj
τr

=
e−TsC1(s)C2(s)Ga1(s)Ga2(s)

1 + C2(s) (Ga1(s) + C1(s)Ga1(s)Ga2(s))
(2.11)

where T is the sampling time of the overall control loop. Since inner position

control loop ran at several kHz, we do not account for the transport delay in

that loop.
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Figure 2.5: The joint torque tracking performance for the PID controller with
sinusoidal torque input in simulation: (a) Output joint torque trajectory, (b)
motor angle trajectory, (c) motor side cable tension, and (d) joint side cable
tension. An effective spring stiffness of 2000N/m or 0.3 Nm/rad is used for
these simulations.
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2.1.4 Simulation

We carry out simulation of the SEA on the test rig (described in Sec-

tion 2.1.5) for tracking a desired torque trajectory with sinusoidally varying

torque output. Since, the two SEAs are equivalent theoretically, we only sim-

ulate the Bowden-cable-based SEA with an elastic element. The goal of the

simulation is to obtain estimates of the peak tension in the cable for choosing

the appropriate Bowden cable and sheath pair and required spring stiffness to

achieve peak torques of at least 0.3 Nm, which is needed for our application

of a hand exoskeleton. We model the load cell connected to the output link as

a high stiffness torsional spring. We simulate the system dynamics using the

model presented in Section 2.1.2 and the controller presented in Section 2.1.3.

A sinusoidal joint torque is used as reference for the torque controller (Eqn.).

τr = τA sin (2πft+ φ) (2.12)

where τr is the reference torque, τA is the peak torque amplitude, f and φ

are the sinusoidal torque frequency and phase, respectively and t is simulation

time.

The following values for the various parameters in the system model

are used for the simulation: Ij = 3.4 ×10−5 kgm2, rj = 12 mm, rm = 28 mm,

k = 1103 N/m, Ti0 = 14N , β = 1.1, τA = 0.3 Nm, f = 0.5 Hz, φ = 0◦. Since,

the SEA joint has a bearing, we do not consider the damping at the joint for

the simulation.

The simulation results show that the PID control with a feed-forward
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term is able to track the desired torque trajectory with a root mean square

error (RMSE) of 2.67% (0.008 Nm). Small deviation from the desired torque

was observed at the peaks of the sinusoid (Figure 2.5a). The motor angle

stays within safe bounds for the system to achieve bidirectional torque control

with a peak torque of 0.3 Nm (Figure 2.5b). The tension in the cable on joint

side shows a sudden change due to the nature of the model that captures the

change in the direction of friction as the motion reverses (Figure 2.5d). The

peak tension in the Bowden cable is observed to be 30 N, which ensures that

the stretch in the cable is negligible and that good spring deflection estimates

could be obtained using the joint and motor position measurement. We chose

a commercially available low friction Polytetrafluoroethylene (PTFE) coated

sheath (1mm inner diameter, 3mm outer diameter) and Fluorinated ethylene

propylene (FEP) coated cable (0.66 mm diameter) with a rated load capacity

of 35.6 N and design safety factor of 5:1 compared to breaking strength for

the SEAs. A quick test by hanging 10 kg load on the cable showed that it

stretched less than 1 mm. The simulations also showed that an effective spring

stiffness of around 2000 N/m or 0.3 Nm/rad is needed to achieve the required

peak torque with a motor angle of above 20◦.

2.1.5 Experiments with SEAs

A test rig was developed for testing the performance of the proposed

SEAs (Fig. 2.6). On the joint side a six-axis load cell was mounted to measure

the output joint torque. A compact magneto-resistive angle sensor (KMA210,
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NXP Semiconductors) similar to the one installed on the index finger exoskele-

ton was used to measure the joint angle and provide feedback to the torque

controller to take into account the effect of sensor noise on the control. We

used a geared brushed DC motor (20 W) from Maxon Inc. as the actuator for

the SEAs. The experiments with the SEA test rig and the developed exoskele-

ton were aimed at characterizing the following: (i) accuracy and fidelity of

torque tracking; (ii) torque bandwidth (iii) dynamic range; (iv) performance

at different peak torque magnitudes and (v) performance under disturbance.

Experiments (iv) and (v), which are carried out for detailed testing of the

SEA, are conducted with LC-SEA only, since the results showed that it is

better suited for our application.

The effective stiffness acting in the system differs from the catalog value

of the stiffness of the off-the-shelf springs. This is due to the fact that there are

several factors that contribute to the effective stiffness in the system. These

include the compression of the sheath and the interface in which the spring

rests for LC-SEA, which is designed to have a tight fit with the spring for it to

act as a built-in support for reducing sideways bending of the spring, leading

to reduction in the effective length of the spring and friction. This requires

explicit estimation of the effective stiffness acting in the system. Also, for the

miniature SEA with 3D printed parts the joint inertia is very small and also

for our application of hand rehabilitation the system is required to operate

at relatively low accelerations and velocities. In addition, the damping at the

joint is small as the joints are supported with miniature ball bearings. Thus,
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Figure 2.6: The test rig developed to assess the torque tracking performance
of the SEAs. A one meter long Bowden cable sheath separated the motor side
and joint side, which were mounted on two different mechanical breadboards.

the contribution of the inertial and damping terms is much smaller and the

torque applied using the Bowden cables is transmitted to the joint without

significant reduction.

To identify the effective stiffness, we first run the system using open-

loop feedforward control with a sinusoidal torque trajectory as the desired

torque and record the motor position, joint position and desired and measured
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joint torques. The effective stiffness is then identified using the torque output

models (Eqns. (2.4) and (2.7)) with least squares minimization [97] of the

error between the estimated and measured joint torque. The system is then

run with the identified stiffness for the same desired torque trajectory and the

process is iterated a few times to ensure that the identified effective stiffness

does not vary significantly. This identified stiffness is kept constant throughout

the experiments for each SEA. Finally, the PID gains of the torque controller

are manually tuned to achieve a stable and accurate control of the joint torque.

2.1.5.1 Accuracy and Fidelity of Torque Tracking

The goal of this experiment was to track a sinusoidal joint torque on

the SEA test rig and verify the tracking accuracy and fidelity of the output

torque using the measurements obtained through the load cell. Torque output

fidelity has been defined in the past to quantify the distortion of the output

due to the nonlinearities present in the system for SEAs [60, 110, 163]. We use

the measure defined in Eqn. (2.13) to quantify the torque tracking fidelity.

F =

(
1− var(τjm − τr)

var(τjm)

)
× 100% (2.13)

where F represents the force fidelity, τjm and τd are the measured and the

desired torque output, respectively, and var(.) is the variance.
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2.1.5.2 Torque Bandwidth

Torque bandwidth is the maximum frequency at which an SEA can

deliver torque. Torque bandwidth of the proposed SEAs was evaluated by

using a linear chirp signal (Eqn. (2.14)) as the desired torque for the system.

τd = τA sin (2π(f0 + f1t)t) (2.14)

We evaluate the magnitude (|GCL|(jω)) of the frequency response of the SEAs

using the measured torque data using Eqn. (2.15) before fitting any model to

capture the response with the nonlinearities present in the system. This helps

in avoiding any approximation which is typically introduced when the response

is obtained by using a linear model fitted to the data.

|GCL(jω)| = |τjm(jω)|
|τr(jω)| (2.15)

where |τjm(jω)| and |τr(jω)|, represent the single-sided amplitude spectrum of

the measured and reference torque data obtained using fast Fourier transform.

We also identified the closed-loop system model Eqn. (2.11) from the sampled

frequency response data by fitting continuous-time systems of different orders

[53, 97] to obtain the model that best describes our system and then used the

identified models to obtain the frequency response.

2.1.5.3 Dynamic Range

The dynamic range of an SEA is a measure of how sensitive the actu-

ator is to small torques with respect to its full torque output range [123] and
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is typically defined as in Eqn. (2.16). However, for the Bowden cable based

SEAs, the torque resolution is not uniform throughout the force range, espe-

cially due to nonlinear friction in the Bowden cable. Thus, we define a bound

on the dynamic range by evaluating minimum resolvable output torque using

the measured joint angle sensor resolution (upper bound) and the maximum

error observed during torque tracking (lower bound). The actual dynamic

range of the SEA varies between the upper and the lower bound.

DR =
Maximum output torque

Minimum resolvable output torque
(2.16)

2.1.5.4 Performance at Different Peak Torque Magnitudes

Since the torque tracking accuracy and fidelity of the SEA varies with

the change in the peak torque magnitude, we carry out the tests to verify the

change in performance. We apply torques with different peak torque mag-

nitudes and separately evaluate these metrics. In addition, we identify the

effective stiffness that best explains the output torque.

2.1.5.5 Performance under Disturbance

Since the index finger exoskeleton will be moved around while the device

is actuating a subject’s hand, assessing the performance of the device under

varying degree of disturbance was important. To assess the performance un-

der disturbance, three different levels of disturbances were applied to the joint

side setup while the torque tracking experiment is carried out. For mild dis-
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turbance, the joint side base is moved up and down in a plane. For medium

disturbance, the joint side base was carried up and moved up and down as well

as sideways such that the cable is bent by 90 degrees both ways. For the severe

case, the base is carried and moved so that the Bowden cable is bent by over

180 degrees both ways. For our application, we anticipate a medium degree

of disturbance during the operation of the device. Moving the configuration

of the cable during the experiment helped in determining if significant error

would be introduced in torque tracking during the operation of the device.

2.1.6 Results

2.1.6.1 Accuracy and Fidelity of Torque Tracking

The controller was able to track the desired torque trajectory with high fidelity

for a 0.2 Nm peak torque sinusoid for both the actuators (Fig. 2.7, Table 2.1).

The measured, best fit, desired, and estimated refers to the torque measured

using the load cell, torque obtained by fitting the best curve to the measured

torque, desired torque trajectory as available to the real-time controller and

the torque trajectory as estimated by the real-time controller using SEA based

torque evaluation, respectively. All the trajectories show small errors (< 11 %

of peak torque) with respect to the desired torque trajectory (Table 2.1). The

measured curve shows some deviation from the estimated values especially

near the peak of the sinusoid. This is due to the error in torque estimation

introduced due to the load and configuration dependent effective backlash [75]

in the Bowden cable when the motor changes direction. Also, the effective
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Figure 2.7: The joint torque tracking performance of the proposed SEAs with
sinusoidal desired torque trajectory: (a), (b) Output joint torque trajectory
comparison for LC-SEA and (c), (d) Output joint torque trajectory comparison
for HT-SEA. The identified stiffness value used for evaluating the estimated
torque for LC-SEA and HT-SEA was k = 1103 N/m and k = 0.265 Nm/rad,
respectively.

stiffness was a result of the combined stiffness due to the springs and the

Bowden cable sheath compliance.
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Table 2.1: Joint torque root mean square error (RMSE) for the best fit, esti-
mated and actual torque trajectories for the proposed SEAs at a peak torque
of 0.2 Nm. The percent error represents the percentage of RMS error with
respect to the peak torque.

SEA Best fit Estimated Actual Fidelity Catalog
Stiffness

Identified
Stiffness
(k or kj)

Nm % Nm % Nm % (%)

LC-SEA 0.0134 6.33 0.0231 10.92 0.0229 10.86 97.94 5630 N/m 1082 N/m

HT-SEA 0.0101 5.45 0.0101 5.47 0.0102 5.49 99.47 0.43 Nm/rad 0.26 Nm/rad

2.1.6.2 Torque Bandwidth

The frequency response results showed that both the actuators satisfy

the torque bandwidth criterion (> 2 Hz). The LC-SEA and HT-SEA have

closed-loop bandwidths (-3 dB magnitude) of 2.5 and 4.5 Hz, respectively,

for a 0.2 Nm peak torque (Figs. 2.8 and 2.9). LC-SEA has a more damped

frequency response as compared to HT-SEA. The fitting results showed that

LC-SEA and HT-SEA showed the best fit for a fifth and fourth order system,

respectively (Tables 2.2) A comparison of the system response from the iden-

tified model that best explains the system with the measured and the desired

torque trajectory shows that there is low phase angle between the trajectories

even at relatively higher frequencies of > 2 Hz for LC-SEA and > 3 Hz for HT-

SEA (Fig. 2.10). However, the fitting percentage shows that the non-linearity

in the system (possibility due to nonlinear friction in Bowden cable) is not

completely explained by these models (Table 2.2).
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Figure 2.8: Bode plot of the proposed SEAs: (a) magnitude and phase of
LC-SEA and (b) magnitude and phase of HT-SEA.

2.1.6.3 Dynamic Range

The dynamic range of LC-SEA was found to be about three times higher

than HT-SEA (Table 1.2). This is because of the higher effective stiffness of

HT-SEA as compared to LC-SEA. Also, gradually increasing the desired peak

torque for the HT-SEA showed that the achievable peak torque was limited to

0.3 Nm with off-the-shelf torsion springs (Fig. 2.11). In addition, the torque

was found to scale more non-linearly for HT-SEA as compared to LC-SEA.
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Figure 2.9: Bode plot of the proposed SEAs: (a) magnitude and phase of
LC-SEA and (b) magnitude and phase of HT-SEA.

2.1.6.4 Performance at Different Peak Torque Magnitudes

LC-SEA can be controlled to achieve good tracking performance (RMSE

< 12 % and fidelity > 97 %) for torques of peak magnitudes between 0.15 -

0.3 Nm (Fig. 2.12, Table 2.3). In addition, the identified stiffness was found to

be fairly constant at all peak torque magnitudes. Thus, LC-SEA can be used

as a good torque source for the hand exoskeleton.
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Figure 2.10: Comparison of the identified system response with the measured
and desired torque trajectories for a portion of the applied chirp signal: (a)
fifth order system response for LC-SEA and (b) fourth order system response
for HT-SEA.
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Table 2.2: Model fitting statistics for closed loop systems of different orders.
The missing values in the table show that the estimation algorithm failed to
converge. FPE refers to the Akaike’s Final Prediction Error criterion, which
is a measure of the fitted model quality [97].

LC-SEA HT-SEA

System
Order

Fit
(%)

FPE MSE Fit
(%)

FPE MSE

2nd 85.06 0.01067 0.01067 77.58 0.02010 0.02010

3rd 85.51 0.01006 0.01004 82.59 0.01213 0.01212

4th 85.32 0.01048 0.01030 87.47 0.00629 0.00628

5th 88.56 0.00634 0.00626 – – –

6th 87.82 0.00882 0.00709 86.14 0.01188 0.00767
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Figure 2.11: The joint torque tracking performance of HT-SEA with sinusoidal
desired torque trajectory. Output joint torque trajectory comparison for: (a)
one cycle and (b) several cycles.
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Table 2.3: Joint torque root mean square error (RMSE) for the best fit, es-
timated and actual torque trajectories for the LC-SEA. The percent error
represents the percentage of RMS error with respect to the peak torque. The
catalog stiffness of the compression spring used for LC-SEA is 5630 N/m

Peak
Torque

Magnitude

Best fit Estimated Actual Fidelity
Identified
Stiffness

(k)

Nm Nm % Nm % Nm % % N/m

0.15 0.0128 8.76 0.0132 9.00 0.0136 9.28 98.58 984

0.20 0.0134 6.33 0.0231 10.92 0.0229 10.86 97.94 1082

0.30 0.0179 5.54 0.0379 11.76 0.0374 11.59 97.70 1103

2.1.6.5 Performance under Disturbance

The results show that the tracking performance did not deteriorate

significantly even when severe disturbance was applied at the output end for

the LC-SEA (Fig. 2.13). However, the torque output showed increasing error as

the severity of the disturbance was increased. We anticipate a mild to medium

disturbance during the operation of our device. Thus, LCSEA ensures good

torque tracking performance during the operation of the device.

2.1.7 Discussion

The higher bandwidth of HT-SEA is because the effective stiffness for

LC-SEA was found to be much smaller than the catalog stiffness as compared

to HT-SEA (Table 2.1). This may be due to the difference in the way sheath

is clamped in the two SEAs. In LC-SEA, the sheath interfaced with the

linear compression spring directly, whereas in HT-SEA the sheath interfaced

with the housing and the cable is attached to the pulley, which housed the
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springs. Also, the springs in LC-SEA show some sideways deflection, which

might contribute to the reduction in effective stiffness. In addition, in LC-SEA

there is some friction between the spring and the interface where the linear

compression spring rests, which reduces the effective stiffness. No such friction

is present in HT-SEA.
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Figure 2.12: The joint torque tracking performance of LC-SEA with sinusoidal
torque input. Output joint torque trajectory comparison for peak torque of
magnitude: (a), (b) 0.15 Nm and (c), (d) 0.3 Nm. The identified stiffness value
of k = 1103 N/m was used to evaluate the estimated torque for the controller
for all torque trajectories.
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Figure 2.13: The joint torque tracking performance of LC-SEA under varying
degrees of disturbance: (a), (b) mild; (c), (d) medium and (e), (f) severe. The
plots in the left and right columns represent the tracking performance for one
and several cycles, respectively.
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The output torque range of the SEAs can be adjusted as per the appli-

cation by choosing the appropriate spring stiffness. However, the design with

helical torsional springs is limited by the availability of off-the-shelf springs.

Good performance of the SEA requires appropriate pretension of the Bowden

cable to ensure that the cable is not slack throughout the output torque range.

Both highly stiff and highly compliant springs deteriorate the performance of

the actuator. A very stiff spring reduces the torque resolution due to the noise

in the angle sensor measurements at the joint, whereas a very compliant spring

limits the maximum achievable torque at the joint. Despite the nonlinear fric-

tion in the Bowden cables, the performance of the actuator was satisfactory

with feed-forward PID control. Also, it was observed during the experiments

that the major contribution of the elasticity was due to the compression of the

sheath rather than the elongation of the Bowden cable.

2.2 Index Finger Module of the Exoskeleton

In this section, we present the details of the design, modeling, control,

simulation and experimentation of the index finger exoskeleton module of the

hand exoskeleton.

2.2.1 Design

In this section, we describe the details of the mechanism of the index

finger exoskeleton and the prototype developed using additive manufacturing

technique.
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2.2.1.1 Mechanism

Our goal is to design an index finger exoskeleton mechanism that leads

to low reaction forces at the finger joints, while achieving maximum range

of motion at the finger joints. Index finger consists of three joints, namely,

metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal in-

terphalangeal (DIP) (Fig. 2.15(a)). The MCP joint has two DOFs, namely,

flexion-extension (up-down motion) and abduction-adduction (sideways mo-

tion). The PIP and DIP joints have only flexion-extension motion. The three

finger phalanges are called proximal, middle and distal phalanx, respectively.

Figure 2.14: Index finger exoskeleton prototype mounted on a subject’s hand for
experimentation.

Simulation studies and experiments with existing index finger exoskele-
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ton prototypes have shown significant loading of the finger joints when exo-

tendons (tendons actuating the exoskeleton) are attached to links directly

connected to the finger phalanges [5, 6, 70]. To avoid this loading, we first

designed a mechanism in which the robotic kinematic chain is in parallel to

the finger kinematic chain to ground the actuation reaction forces and form

closed loops with the finger to avoid joint axes misalignment (Fig. 2.15(a)). A

study has shown that mechanical stress correlates well with clinically observed

patterns of frequency of degeneration and degenerative joint disease and sug-

gests that it is among the factors responsible for initiating and propagating

joint diseases in finger joints [109]. We introduced sliding joints as the inter-

face between the finger phalanx and the exoskeleton link to ensure that only

normal reaction forces are applied on the finger phalanges in all configurations

(Fig. 2.15(b)). Any lateral force would result in the translation of the slider

until only the normal reaction force exists between the two. The normal re-

action force component contributes to generating a moment at the joint while

the lateral component simply loads the joint without resulting in any joint

moment.

Some studies of the arm have shown that anatomical breakdown (inde-

pendent motion of different joints) is better than complex arm movement for

rehabilitation [81]. The complexity of the task is determined by the number

of anatomical joints involved in performing the task rather than the neuro-

logical effort needed. It has been shown that breaking down a simultaneous

movement of the shoulder in abduction-adduction, flexion-extension, internal-
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Figure 2.15: Kinematic schematic of various chains in the hand exoskeleton
system. (a) Kinematic chains in the system, (b) sliding joints connecting the
finger and the exoskeleton kinematic chain, (c) DOF analysis of the three
closed loops in the coupled system, and (d) actuated mechanism schematic.
The proximal, middle and distal chains are referred to as MCP, PIP and DIP
chains, respectively.

external rotation and elbow in flexion-extension along sinusoidal trajectories

into parts improve motor learning. A possible suggested hypothesis to explain

this is that the motor system has trouble determining where the problems lie

in making accurate, complex movements and breaking the movement into in-

dividual joint movements may allow for better identification and more focused
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practice on the key problems.

For the finger motion, breaking the simultaneous movement of both the

MCP and PIP joints into motion of each joint individually could improve motor

learning. In addition, a device that would enable independent motion at the

MCP and PIP joint would be more versatile in rehabilitating targeted joints

more effectively and assessing recovery progress. Thus, we aim for independent

DOF at the finger MCP and PIP joints. We do not aim to actively actuate

the DIP joint, as the PIP and DIP joints are anatomically coupled in a human

hand [92]. However, connecting the MCP chain with the PIP chain using a

single link (L1) results in a significantly low range of motion (ROM) at the

finger PIP joint due to the limited range of the available sliding length. To

overcome this problem, we introduced two links (L1 and L2) connected through

a revolute joint to connect the MCP chain with the PIP chain (Fig. 2.15(c)).

This resulted in one DOF in the MCP chain and a coupling between the PIP

and DIP finger joints whose effects can be adjusted based on the link lengths

in the two chains. However, the PIP chain has two DOF and for full actuation

requires two actuators. The system can be controlled with one actuator by

introducing a stiffness element in the chain [32]. However, the problem of

underactuation in this design became more difficult to address as the stiffness

requirement in the PIP chain varies based on the configuration of the MCP

chain. We decided to remove the sliding joint in the PIP chain and fix the link

to the PIP phalanx rest (exoskeleton link connected to the middle phalanx).

With this configuration the PIP chain can be controlled with one actuator but
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also results in increased finger joint reaction forces.

In the final design (Fig. 2.15(d)), the robotic chain was parallel to the

finger which ensured that all the actuation forces are grounded. There were

three phalanx-exoskeleton closed-loop kinematic chains to avoid the joint axes

misalignment problem. The MCP chain consisted of four links with three

rotational and one translational joint resulting in one DOF. The PIP chain

consisted of four links with four rotational joints (assuming the first chain was

fixed) resulting in one DOF. The DIP chain consisted of four links with three

rotational and one translational joint leading to one DOF.

2.2.1.2 Additive Manufacturing

We chose to manufacture various components of our prototype using

Selective Laser Sintering (SLS)2 with Nylon 12 (Fig. 2.14). This additive man-

ufacturing method allowed us to print small and intricate components, while

keeping them strong and light in weight. Since size, rather than complexity,

determines the cost for SLS (as opposed to complexity more than size, for

conventional machining), SLS was a particularly effective manufacturing so-

lution for our prototype. SLS was also advantageous in that it allowed us to

design components that serve multiple functions (e.g. housing for the angle

sensor magnets and SEA springs were integrated with the links). This helped

us in reducing both the number and size of components in the design. Also,

since this method allowed for quick manufacturing of the parts, it significantly

2http://en.wikipedia.org/wiki/Selective laser sintering
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reduced the development time of the prototype, leading to quick iterations of

design and testing. Furthermore, the printed components were highly machin-

able allowing for post-processing needed for accurate dimensioning of critical

parts and also for required subject specific customization (if any).

2.2.1.3 Prototype

We implemented the proposed mechanism in the form of an overall

design for the index finger exoskeleton (Fig. 2.16(a)). In addition to the var-

ious joints mentioned in Section 2.2.1, a passive DOF for finger adduction-

abduction motion in the MCP chain was also implemented in the design. The

sliding and revolute joints were realized using ultra-miniature linear and rotary

ball bearings. For components with significant loading, we used off-the-shelf

steel parts (e.g. shafts) to reduce size and avoid excessive deformation. The

entire chain is grounded on the exoskeleton base, which is attached on the

wearer’s hand with a velcro strap. In addition, a high-density rubber foam

is attached on the base for comfort to the wearer. Slots are provided on the

base such that the attachment of the entire chain can be adjusted both in

longitudinal and lateral directions as well as in angular position to adapt to

the index finger size and natural position of the wearer.

Each link consists of two segments which can slide with respect to each

other and can be locked in a specific position using a screw (Fig. 2.16(b)).

This allows for length adjustment of the links as per the requirement of the

wearer’s phalanx lengths. A magneto-resistive angle sensor module (KMA210,
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Figure 15: CAD model of the designed index finger exoskeleton prototype. (a) Overall design of
the exoskeleton, (b) adjustable link length assembly, (c) angle sensor and ring magnet assembly
for joint angle sensing, and (d) Bowden-cable-based compression spring SEA design.

32

Figure 2.16: CAD model of the designed index finger exoskeleton prototype.
(a) Overall design of the exoskeleton, (b) adjustable link length assembly,
(c) angle sensor and ring magnet assembly for joint angle sensing, and (d)
Bowden-cable-based compression spring SEA design.
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NXP Semiconductors) with a diametrically magnetized ring magnet is used as

a joint angle sensor (Fig. 2.16(c)). The ring magnet casing is built into the

corresponding link with the sensor attached to the link moving relative to the

previous one. The device has five angle sensors to collect data from five joint

angles with one redundant sensor (Fig. 2.16(a)). This redundant measurement

is used to estimate the kinematic parameters of the coupled finger exoskeleton

system in situ.

We implemented a Bowden-cable-based compression spring SEA in the

prototype (Fig. 2.16(d)). Each actuated joint consists of a pulley with a cable

attached on the circumference of the pulley. The Bowden cable consists of an

MFA (modified fluoroalkoxy) coated Nylon sheath (0.125 inch outer diameter)

with an FEP (fluorinated ethylene propylene) coated stainless steel (0.026 inch

diameter) wire rope to reduce the friction between the cable and the sheath.

For each end of the Bowden cable connected to the joint-pulley, there is a

compression spring attached to the Bowden cable sheath. When the motor

actuates the joint-pulley, it first compresses the spring. The introduction of

the passive series elastic element in the transmission mechanism provides a

means for accurately estimating the cable tension using the joint displacement

measurements obtained using the magnetic angle sensor mounted at the joint

and the motor encoder. We used DC motors (RE-max 29, 22 W, Maxon Pre-

cision Motors Inc.) with planetary gearheads as the actuators for the device.

The motors are mounted on a stationary platform and the Bowden cable acts

as the transmission mechanism in the current design. Sufficiently long Bow-
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den cables allow for moving the hand around without significantly affecting

the curvature of the Bowden cables. The cable tension is maintained using

a cable tensioning mechanism. The mechanism consists of a sliding platform

on which the motor is mounted and the position of the platform can be fixed

using a lead screw mechanism that gradually builds tension in the cable.

The entire kinematic chain is actuated in the center plane of the mech-

anism to ensure that no sideways forces are applied on the finger while the

device is actuated. Remote actuation along with SLS using Nylon 12 signifi-

cantly reduces the overall weight (hand base (30 g) + finger exoskeleton (50 g)

≈ 80 g) of the device compared to other exoskeletons (110 g for HANDEXOS

[32], 140 g for CAFE [73]). The design also allows for the possibility of re-

placement of the stiffness element (for adjusting the achievable torque range

specific to a subject) without having to remove the cables.

2.2.2 System Modeling

Control of the developed device requires good estimates of the joint an-

gles of the wearer and the forces acting in the system. Thus, we developed the

kinematic and statics model of the mechanism to estimate the finger joint an-

gles and static torques of the wearer. We assumed small abduction-adduction

joint angles for the index finger and thus, analyze the mechanism for planar

motion.
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2.2.2.1 Kinematics

The loop-closure equation for the proximal (MCP) chain of the index

finger exoskeleton (Fig. 2.17) is given by (2.17).

lBCe
iθ1 + lCDe

iθ2 + x3e
i(θ4−π) = xA + iyA (2.17)

where lBC , lCD are the lengths of the links BC and CD, respectively. x3 rep-

resents the sliding length in MCP chain at a given configuration, θ’s represent

the various angles (Fig. 2.17). (xA, yA) represent the coordinate of the human

MCP joint (point A) in the coordinate frame located at the exoskeleton joint

at B. Similarly, the loop closure equations for the middle (PIP) and distal

(DIP) chains were expressed.

The forward kinematics deals with evaluating the finger MCP and PIP

joint angles (θ4, θ8) and the exoskeleton passive joint displacements (x3, θ5)

given the exoskeleton relative joint angles (θ1r, θ6r). The relative joint angle

is the angle between the links connected at the joint as measured by the

sensors mounted at the joint. Since, each chain can be treated as a four-bar

mechanism (by fixing the remaining DOFs), we solved for the kinematics of

the system using the standard four-bar kinematics solution [113]. In addition,

we evaluated the least-squares solution for the closed-form kinematics when

the system failed to evaluate the exact kinematics solution due to error in

geometric parameters. Thus, the solution can be expressed as in (2.18).

X = X(Θr) (2.18)
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finger exoskeleton. All angles are measured in counterclockwise direction. The
arrows in red color depict forces or torques acting on the system. The arrows
in black represent kinematic variables. (Best viewed in color)

where X =
[
x3 θ4 θ5 θ8

]T
and Θr =

[
θ1r θ6r

]T
.

The velocity level kinematics (2.19) can then be obtained by differen-

tiating the position kinematics equations for the MCP (2.17) and the PIP

chains. We used symbolic computation in MATLAB to evaluate the Jacobian

of the system. [
Ẋ
]

4×1
= [J(Θr)]4×2

[
Θ̇r

]
2×1

(2.19)

where
[
Ẋ
]

4×1
represents the velocity vector,

[
Θ̇r

]
2×1

represents the exoskele-

ton joint relative velocity vector and [J(Θr)]4×2 represents the Jacobian of the

system.
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2.2.2.2 Statics

An experimental study has shown that the human hand dynamics is

dominated by the intrinsic passive viscoelastic torques at the finger joints [36].

In addition, the velocities for a rehabilitation task are relatively small. Thus,

we consider only a statics model of the coupled finger exoskeleton system for

developing a torque controller. The static forces/torques acting in the system

can be related using the Jacobian as in (2.20).

[
τj,mcp
τj,pip

]
= J(Θr)

T


f3(= 0)
τmcp

τ5(= 0)
τpip

 (2.20)

where τj,mcp and τj,pip represent the torques applied at the actuated exoskeleton

MCP and PIP joints, respectively. τmcp and τpip represent the torques applied

at the finger MCP and PIP joints, respectively. The force or torque acting at

the linear or rotary passive joint, respectively, was assumed to be zero as each

joint had a bearing which made the friction at the joint small.

2.2.3 Controls

We developed two types of torque controllers for the device: exoskele-

ton and finger joint torque controllers. The exoskeleton joint torque controller

is a basic controller implemented to test the torque control performance of the

two SEAs on the device. The finger joint torque controller, on the other hand,

is a more complex controller which controls the torque being applied at the in-

dividual finger joints based on a subject specific kinematics and statics model.
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In addition, accurate operation of these controllers required estimation of the

kinematic parameters for a specific subject. We implemented an optimization

based technique to estimate the kinematic parameters of the coupled finger

exoskeleton system for a specific subject.

2.2.3.1 Exoskeleton Joint Torque Control

The goal of this controller was to track the desired torque trajectories

at the exoskeleton SEA joints (Fig. 2.18). The output of the system was

considered to be the torque generated at the exoskeleton joints through SEA

as expressed in (2.21).

ŷ =

[
τj,mcp
τj,pip

]
= 2Krj (rmΘm − rj(Θr −Θr0)) (2.21)

where

K =

[
kj,mcp 0

0 kj,pip

]
, Θm =

[
θm,mcp
θm,pip

]
kj,mcp and kj,pip represent the magnitude of the effective stiffness at the ex-

oskeleton MCP and PIP joints, respectively. θm,mcp and θm,pip are the MCP

and PIP motor angles, respectively. The PID controller with the corresponding

feed-forward term is then given by (2.35).

e =yd − ŷ

ė =ẏd − ˙̂y

u =
1

rm

(
K−1yd

2rj
+ rj (Θr −Θr0)

)
+ Kpe + Kdė+

Ki

∫
edt

(2.22)
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where e is the vector containing exoskeleton joint torque errors, yd is the

vector containing the desired torque at the two exoskeleton joints and u is the

control input vector for the two exoskeleton joints. The gain matrices for the

controller are given by

Kp =

[
kp,mcp 0

0 kp,pip

]
,Kd =

[
kd,mcp 0

0 kd,pip

]
Ki =

[
ki,mcp 0

0 ki,pip

]

2.2.4 Finger Joint Torque Control

The two actuated exoskeleton joints contributed to the torque applied

on the two finger joints due to the mechanical coupling caused by the exoskele-

ton mechanism. The goal of this controller was to track the desired torque

trajectories at the two finger joints (MCP and PIP) by applying appropriate

torques through the exoskeleton SEAs (Fig. 2.18). Since, the contribution of

the inertial effects to the dynamics of the index finger exoskeleton system is

small [36], we evaluated the output finger joint torques based on the applied

SEA joint torques as given by (2.23).

ŷ = Jn
−T2Krj (rmΘm − rj(Θr −Θr0)) (2.23)

where Jn represents the Jacobian relating the exoskeleton joint torque to the

finger joint torque and is given by (2.24).

Jn =

[
J21 J22

J41 J42

]
(2.24)

where Jij represents the (i,j)th entry in the Jacobian matrix J (see (2.19)).
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The PID controller is developed considering the corresponding feed-

forward term is then given by (2.25).

τfe =yd − ŷ

e =Jn
T τfe

ė =(J̇Tnτfe + Jn
T τ̇fe)

u =
1

rm

(
Jn

TK−1yd

2rj
+ rj(Θr −Θr0)

)
+

Kpe + Kdė + Ki

∫
edt

(2.25)

where τfe is the vector containing finger torque errors, yd is the vector contain-

ing desired torque at the two finger joints, e is the vector containing exoskeleton

torque errors and u is the desired motor position vector used as control input

for the two exoskeleton joints. The derivative of the Jacobian (J̇n), which is

used to evaluate the error derivative (ė), is computed numerically.

2.2.4.1 Parameter Estimation

Since the relative attachment of the exoskeleton on the wearer’s hand

changed the geometric parameters of the system, estimating the correct ge-

ometric parameters was essential for the controller to function. Also, it was

difficult to measure the exact geometric parameters that were dependent on

the hand of the wearer [178], since the exact locations of the finger joint axes

were difficult to determine. In order to deal with these problems, we used

the redundant sensor data (Fig. 2.16(a)) to estimate the uncertain geometric

parameters. We collected the data from the redundant sensor for certain du-

ration so that the full joint range of motion was traced at least once (e.g. 2
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Figure 2.18: The torque controllers implemented on the index finger exoskele-
ton. For the exoskeleton joint torque controller, the feed-forward control and
torque observer refers to the exoskeleton joint torque feed-forward control and
SEA-based exoskeleton joint torque estimation. For finger joint torque con-
troller, the feed-forward control and torque observer refers to the finger joint
feed-forward torque control and finger joint torque estimation using the system
statics model.

seconds for a 0.5 Hz sinusoid torque trajectory) and then used an optimization

based technique to estimate all the uncertain parameters in the system offline.

We formulated the following optimization problem to estimate the parameters

P̂min = arg min
P̂

N∑
i=1

(yk − ym,k)2

P =
[
xA yA lBC lCD lAH lFG lGH

]T (2.26)

where yk and ym,k are the measured and the model-based redundant joint angle

data, respectively and N is the number of measurements. The interior-point

algorithm, described in [22] was used for solving the optimization problem.
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2.2.5 Simulation

The proposed controller was first implemented in simulation to verify

its effectiveness, before implementation on the prototype. We developed a

dynamics model of the coupled finger exoskeleton system and controlled it

using the proposed finger joint torque controller. In addition, simulations

helped in choosing the correct magnitude of stiffness at the two SEA joints

and an appropriate Bowden cable and sheath combination for the exoskeleton.

2.2.5.1 Dynamics Model

We developed a dynamics model (2.27) of the coupled finger exoskeleton

system.

IjΘ̈j + BjΘ̇j + Jn
T τf = τj (2.27)

τf =

[
τmcp
τpip

]
, τj =

[
τj,mcp
τj,pip

]
,

where Ij is the inertia matrix and Bj is the damping matrix. Since the ex-

oskeleton links were prototyped using SLS, the link mass and inertia was low

and hence, we did not consider the configuration dependent change in the

inertial and Coriolis terms in the dynamics (2.27). We used the human fin-

ger phalanges inertia values available in the literature [173] and estimated the

exoskeleton link inertia from the CAD model (Fig. 2.16). We also assumed

a linear viscous damping at the exoskeleton joints to take into account the

damping due to the Bowden cable and the damping at the human joints [12].
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The motion of finger joints causes passive tissues such as tendons, liga-

ments, skin and inactive muscles to be deformed. This deformation manifests

in the form of a passive resistance or stiffness at the joint. A lumped passive

torque model can be built by combining the contributions from all the con-

stitutive factors. Experimental studies have shown that this passive torque at

the finger joints exhibits double exponential nature [39, 46, 85]. We use this

biomechanically consistent joint torque model (2.28) for the MCP (τMCP ) and

PIP (τPIP ) joints [5, 85] for simulation.

τx(θx) = Ax(e
−Bx(θx−Ex) − 1)− Cx(eDx(θx−Fx) − 1) (2.28)

where τx is the passive torque offered by the joint, θx is the joint angle, and Ax,

Bx, Cx, Dx, Ex, Fx are the model coefficients. The finger joint torque controller

(Section 2.2.4) was implemented on the device using the developed dynamics

model of the coupled finger exoskeleton system to verify the effectiveness of

the controller.

2.2.5.2 Simulation Results

The simulation results showed that the controller developed was able to

track the desired sinusoidal torque trajectories with a normalized RMS error

of 1.6% (0.0032 Nm) and 9.2% (0.0037) at the finger MCP and PIP joint,

respectively (Figs. 2.19a and 2.19b). Also, better torque tracking was observed

at the MCP joint as compared to the PIP joint as the system became more

non-linear down the exoskeleton chain. This is due to the fact that both the

kinematics and dynamics of the PIP chain is affected by the MCP chain and
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hence, the system becomes more non-linear as one moves away from the base.

The fluctuations at the peaks in the PIP joint torque did not result in large

oscillations of the exoskeleton joint angles (Fig. 2.19c) and were a result of

the large changes in torque with small changes in angle at the extreme angles

for the double exponential torque model (2.28). The required motor angles

were well within the safe limits (Fig. 2.19d) and so actuator saturation was

not explicitly modeled in the controller. Also, the torque requirement for the

MCP joint is higher than the PIP joint. The simulation also provided estimates

of the appropriate stiffness values for the SEA springs at the MCP (kj,MCP =

2816 N/m) and the PIP (kj,P IP = 744 N/m) joint, which were commercially

available. The stiffness values were chosen so that the requirement of the peak

torque from the coupled system dynamics (2.27) and joint torque model (2.28)

could be met while ensuring sufficient torque resolution under noisy joint angle

sensing (motor angle >20 degrees at peak torque) along with the availability

of off-the-shelf compression springs. In addition, motor angle should be in safe

limits for bidirectional torque control (motor angle lies within ±60 degrees at

peak torque). Also, a smaller motor angle to achieve the peak torque allows

for a higher bandwidth of the SEA. In addition, estimates of the tension in

the Bowden cable also helped in choosing the appropriate Bowden cable and

sheath combination.
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Figure 2.19: The finger joints torque tracking performance for the feed-forward
PID controller with sinusoidal torque input in simulation. (a) Finger MCP
joint torque trajectory, (b) finger PIP joint torque trajectory, (c) exoskeleton
relative joint angle trajectories and (d) motor joint angle trajectories.

2.2.6 Experimentation

The experiments with the SEA test rig and the exoskeleton prototype

were aimed at characterizing the following: (i) the torque tracking performance

and bandwidth of the SEA; (ii) the kinematic transparency of the device, i.e.
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how did the device affect natural motion of the finger joints; (iii) active range

of motion with and without the device; (iv) validate the kinematic model,

which was employed for the control of the device; (v) exoskeleton joints torque

tracking performance; (vi) finger joints torque tracking performance; and (vii)

dynamic transparency of the device, i.e. how did the device resist natural

motion of the finger joints.

2.2.6.1 Kinematic Transparency

Since the index finger exoskeleton will be the basis for the exoskele-

ton modules for the other fingers, kinematic transparency tests are carried

out to quantify the similarity of motion with and without the exoskeleton.

Two healthy subjects (both males, ages 20-24 years) voluntarily participated

in this pilot study, after they provided their informed consent (The University

of Texas at Austin institutional review board study number 2013-05-0126).

We used the following protocol to perform the kinematic transparency experi-

ments. During experimentation, first the motion capture markers were placed

on the various joints of the subject. The markers were placed on the side of the

finger both with and without the exoskeleton to avoid any possible interference

with the device and assess the performance under similar conditions (Fig. 2.20).

The subjects were asked to perform the following four different motions: (i)

MCP joint articulation through full active range of motion (AROM) in flexion-

extension while maintaining zero flexion angle at the PIP and DIP joints, (ii)

full AROM flexion-extension at the PIP and DIP joints while maintaining zero
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flexion angle at the MCP joint, (iii) full AROM flexion-extension at the MCP,

PIP and DIP joints, and (iv) MCP joint full AROM while maintaining full

flexion at the PIP and DIP joints. The subjects were then asked to wear the

device and the link lengths were adjusted so that they can comfortably reach

their full AROM with the device. The motion capture markers were again

placed on the various joints and the subjects were asked to perform the four

different motions with the device. The subjects were allowed to practice each

motion for a certain duration (∼ 2 min) after which the actual experiment was

conducted. In addition, the subjects were asked to keep the motion limited

to the flexion-extension plane with no abduction-adduction motion. We do

not carry out motions for explicit testing of the MCP abduction-adduction

motion, since in our design the joint is not actuated and its role is to allow for

free finger motion sideways while performing the flexion-extension motion at

the other finger joints.

The experiments were performed at three different speeds–low (0.4 Hz),

medium (0.8 Hz), and high (1.2 Hz). An audio cue was provided to the subjects

to help them maintain the required finger frequency using GTick metronome.

During all the experiments, the motion capture data was recorded using a

motion capture system (PhaseSpace Inc.) at 480 Hz. For experiments with

the exoskeleton, synchronized data from the angle sensors were also recorded

at 1000 Hz. All the data acquisition subroutines were coded in C++ with

the motion capture data acquisition task and the sensor data acquisition task

running on two parallel threads to ensure hard-real-time performance. The
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Figure 2.20: The experimental setup for the hand exoskeleton system with the
motion capture markers.

motion capture data was post-processed to reconstruct any missing data [97],

smoothed using a moving average filter, and resampled at 1/10 frequency (48

Hz) to filter out the noise. The angle sensor data was resampled at 1/10

frequency (100 Hz) to filter out the noise. Note that since these experiments

were aimed at characterizing only the kinematics of device, the Bowden-cable-

based SEAs were not connected during this experimentation.

2.2.6.2 Active Range of Motion

The subjects were asked to move their fingers at a specified frequency

for the kinematic transparency tasks. However, it was difficult for the subjects

to reach their full AROM while performing the task. Thus, to accurately

evaluate the AROM, we separately measured the AROM for each joint with
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and without the device. The subjects were asked to voluntarily move their

fingers to the extreme positions for each joint. An image was captured with

an overhead camera to ensure that the finger plane is parallel to the image

plane of the camera for accurate measurement of the angles.

2.2.6.3 Kinematic Model Validation

Since the data from the motion capture system and the magnetic angle

sensor were collected synchronously, the former was used to validate the esti-

mates obtained using the kinematic model with the latter. The estimates of

the various kinematic parameters for the kinematic model were obtained us-

ing the measurements obtained from an image of the coupled hand exoskeleton

system. The sensor data from the MCP joint was first used to solve for the

kinematics of the MCP chain. The obtained solutions along with the sensor

data from the PIP chain were then used to solve for the kinematics of the PIP

chain. Finally, using the PIP chain solutions and the DIP chain sensor data,

the kinematics of the DIP chain was solved.

2.2.6.4 Exoskeleton Joint Torque Tracking

The exoskeleton joint torque control was implemented on the actual

prototype to test the exoskeleton joint level torque tracking performance. We

used the phase and mean shifted sinusoidal trajectories as the desired torque

input to the system (2.29).

τjd = τjA sin (2πft+ φj) + τjµ (2.29)
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where τjd is the desired joint torque, τjA, f , φj and τjµ is the amplitude,

frequency, phase and mean of the sinusoidal torque trajectory. The values of

various parameters in the desired trajectories were determined experimentally

for a subject by gradually increasing the desired torque amplitudes at the two

exoskeleton joints within the user’s comfort level. All the experiments with

the actuated device are carried out with one healthy human subject who has

no history of any neuromuscular disorder.

2.2.6.5 Finger Joint Torque Tracking

The goal of the finger joint torque tracking test was to verify if the

SEAs at the two exoskeleton joints can coordinate to generate desired torques

at the two finger joints using the estimated system parameters. We experi-

mentally determined the parameters of the desired torque trajectories (2.29)

for a subject by gradually increasing the desired torque amplitudes at the two

finger joints within the user’s comfort level. In addition, we evaluated the

finger joint reaction forces both at the MCP and PIP joints by analyzing the

joint reaction forces in the two four-bar chains [113] to ensure that the human

joints are not loaded significantly.

2.2.6.6 Dynamic Transparency

Finally, experiments were carried out to test dynamic transparency of

the device while a subject interacts with the device. The goal was to test if the

device can be controlled to offer least resistance to the finger joints. A subject
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wore the device and generated fast random motions. The device is controlled

to render zero torque at the exoskeleton joints which in turn should lead to

zero applied torque at the finger joints.

2.2.7 Results

2.2.7.1 Kinematic Transparency

For the kinematic transparency experiments, the MCP, PIP and DIP

joint angles were evaluated using the motion capture data with and without the

device (Fig. 2.21). We used Pearson’s product moment correlation coefficient

averaged over 3 repetitions to quantify the level of similarity between the joint

angle trajectories with and without the exoskeleton. We use correlation as a

measure of transparency instead of RMS error as it is difficult for the subject

to exactly replicate the same motion over and over again with or without the

device.

Results from the kinematic transparency tests showed that in general

there is strong correlation between the joint angle trajectories without and

with the exoskeleton (Table 2.4). The results for motions (ii) and (iii) showed

that the exoskeleton preserved the nature of motion at the MCP, PIP and DIP

in flexion-extension and MCP in abduction-adduction (Figs. 2.21(c), (d), (e)

and (f)). For motion (i), higher PIP joint angle variation was observed with

the device (< 20◦) than without it (< 10◦)(Figs. 2.21(a) and (b)). This might

be due to the coupling that exists between the exoskeleton MCP and PIP

chains, which makes some motion at the PIP joint while moving the MCP

84



2 4 6 8

0

20

40

60

80

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(a)

2 4 6 8

0

20

40

60

80

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(b)

0.5 1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

120

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(c)

0.5 1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(d)

Figure 2.21: Kinematic transparency results without and with the exoskeleton
for one subject. The left and right columns represent the plots of the various
finger joint angles without and with the hand exoskeleton for the different
experiments, respectively. (a) and (b) represent the motion (i) at low speed,
(c) and (d) represent the motion (ii) at medium speed, (e) and (f) represent
the motion (iii) at high speed, and (g) and (h) represent the motion (iv) at
low speed.

joint relatively more comfortable for the subject. Also, higher motion was

observed at the PIP joint for motion (iv) without the exoskeleton (< 30◦)

than with the exoskeleton (< 10◦). This shows that some deviation might be
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Table 2.4: Pearson’s product moment correlation coefficient averaged over 3
repetitions as obtained from the kinematic transparency tests. The p-value
was coumputed using a Student’s t distribution.

Motion type MCP PIP DIP

(i) 0.9002 (p < 0.01) – –

(ii) – 0.9723 (p < 0.01) 0.9209 (p < 0.01)

(iii) 0.8937 (p < 0.01) 0.9852 (p < 0.01) 0.9892 (p < 0.01)

(iv) 0.7888 (p < 0.01) – –

observed due to a subject’s inability to maintain constant finger joint angles

for certain tasks rather than solely the kinematics of the device. In addition,

some MCP abduction-adduction joint motion (< 12◦) was observed even when

the subject’s were instructed to maintain a constant angle at that joint both

without and with the exoskeleton. For motion (i), similar MCP abduction-

adduction motion is observed without and with the device, which shows that

the device allows for the natural abduction-adduction motion while performing

flexion-extension motion at the other joints. Thus, the overall nature of the

motion at the MCP, PIP and DIP joints is similar without and with the device

at all speeds. In addition, at low speeds the joint angles at the PIP joint were

higher when the subject was wearing the device as compared to without the

exoskeleton (Fig. 2.21(a) and (b)). Also, the plots showed that at high speed,

the angle range of the subject was significantly reduced both without and with

the exoskeleton as the task was demanding (Fig. 2.21(e) and (f)).

The current design with adjustable link lengths supports hand sizes

with index finger lengths in the range of 60 to 80 mm which corresponds to

86



0.5 1 1.5 2

0

20

40

60

80

100

120

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(e)

0.5 1 1.5 2

0

20

40

60

80

100

120

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(f)

1 2 3 4 5 6 7

0

20

40

60

80

100

120

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(g)

1 2 3 4 5 6 7

0

20

40

60

80

100

120

Index Finger Joint Angles vs Time

Time (t) (s) →

Jo
in
t
A
n
gl
es

(θ
)
(d
eg
)
→

 

 

θmcp θpip θdip θabad

(h)

Figure 2.21: Kinematic transparency results without and with the exoskeleton
for one subject. The left and right columns represent the plots of the various
finger joint angles without and with the hand exoskeleton for the different
experiments, respectively. (a) and (b) represent the motion (i) at low speed,
(c) and (d) represent the motion (ii) at medium speed, (e) and (f) represent
the motion (iii) at high speed, and (g) and (h) represent the motion (iv) at
low speed. (contd.)

95th percentile of the British adult population (both males and females) aged

between 19 and 65 years [45, 48]. All ranges of middle and distal phalanx

thickness could be accommodated as a velcro strap is used to connect the

87



Table 2.5: Active Range of motion results for the different subjects without
and with the index finger exoskeleton.

Active Range of Motion

Without Exoskeleton With Exoskeleton

Subject Joint Flexion Extension Flexion Extension

Subject 1
MCP 94◦ 5.2◦ 72.1◦ 2.2◦

PIP 113.4◦ 0.2◦ 92.4◦ 0◦

DIP 88◦ 10◦ 64.13◦ 8◦

Subject 2
MCP 84.1◦ 2.5◦ 68.4◦ 0.5◦

PIP 125.9◦ 0.5◦ 89.6◦ 0◦

DIP 83.3◦ 5.9◦ 56.2◦ 1.1◦

device at these phalanges. In addition, we have three different sizes for the

proximal phalanx rest (link that connects to the proximal phalanx) and hand

base to allow for ergonomic fit to hands of different sizes. The design allows

for quick replacement of these parts to reduce the donning time of the device.

2.2.7.2 Active Range of Motion

The AROM with the exoskeleton was affected by the relative attach-

ment of the device to the subjects’ fingers. Table 2.5 presents the results of the

AROM for the two subjects. Results showed that the AROM of the subject

was reduced when the device is attached to the hand. The reduction in AROM

was larger for PIP and DIP joints as compared to the MCP joint.
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2.2.7.3 Kinematic Model Validation

Normalized RMS differences of 5.8% (1.6878◦), 7.5% (5.9485◦) and

19.7% (8.6929◦) are observed between the finger joint angle estimates obtained

using the sensor data with the kinematic model and the motion capture data

at the MCP, PIP and DIP joint, respectively (Fig. 2.22(a) and (b)). Box plot

of the differences also show increasing difference median and spread from MCP

to PIP to DIP joint (Fig. 2.23). This is because the estimates in the MCP

chain affect the estimates of both the PIP and DIP chains and the estimates

in the PIP chain affect the estimates of the DIP chain. This increasing model

uncertainty down the exoskeleton chain leads to increased finger joint angle

differences.
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Figure 2.22: A comparison of the finger joint angle estimates obtained using:
(a) angle sensor data with kinematic model and (b) motion capture data.
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Figure 2.23: Box plot of the differences between the finger joint angle estimates
obtained using the sensor data with kinematic model and motion capture data.
The central mark represents the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not
considered outliers and the outliers are plotted individually.

2.2.7.4 Exoskeleton Joint Torque Tracking

The controller was able to track the desired torque with normalized

RMS error of 2.7% (0.0061 Nm) and 14.7% (0.0064 Nm) at the exoskeleton

MCP and PIP joint, respectively (Fig. 2.24a and 2.24b). Limited noise was

observed after filtering the exoskeleton joint angle sensor data (Fig. 2.24c).

However, some noise was observed in the exoskeleton joint velocity estimates

due to numerical differentiation (Fig. 2.24d). The residual noise in the filtered

data also shows up in the estimated joint torque trajectories.
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Figure 2.24: The exoskeleton joints torque tracking results from the index fin-
ger exoskeleton prototype. (a) Exoskeleton MCP joint torque trajectories, (b)
exoskeleton PIP joint torque trajectories, (c) exoskeleton joint angle trajecto-
ries and (d) exoskeleton joint velocity trajectories.

2.2.7.5 Finger Joint Torque Tracking

The off-line parameter estimator was able to estimate the system pa-

rameters, which lie within the reasonable range based on typical hand sizes

for these parameters (Table 2.6). The results showed that the system was

able to track the desired finger torque trajectory satisfactorily well with a nor-

malized RMS error of 1.7% (0.0041 Nm) and 3.4% (0.0012 Nm) at the finger
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MCP and PIP joint, respectively (Fig. 2.25a and 2.25b). Also, better tracking

is observed at the MCP joint as compared to the PIP joint as the system

exhibits more non-linear and uncertain behavior (due to error in parameter

values) down the exoskeleton chain compared to the MCP joint. The obtained

Jacobian estimates were relatively noise free (Fig. 2.25c), however, some noise

was observed in the Jacobian derivative estimates (Fig. 2.25d) as these are

obtained using the noisy velocity estimates. Also, the terms Jn,11 and Jn,22

had much more significant contribution in the control input as compared to

the other terms. However, at the derivative level the term J̇n,11 had much

more significant contribution to the control input as compared to the other

terms. Also, the kinematics estimator was able to estimate the various joint

displacements in the coupled system using the obtained parameter estimates

(Fig. 2.25e). The estimates of the reaction forces at the MCP and PIP joints

(Fig. 2.25f) showed that the forces (< 12.5 N both at the finger MCP and

PIP joints) were well below that experienced by the human finger joints while

performing activities of daily living (∼ 86.6 N and ∼ 58.5 N at MCP and PIP

joint, respectively) [109].

Table 2.6: The offline parameter estimation results (P̂) along with the initial
parameter values (P0) used for optimization.3

P xA yA lBC lCD lAH lFG lGH

P0 (m) 0.008 -0.030 0.047 0.025 0.047 0.018 0.015

P̂ (m) 0.000 -0.036 0.042 0.035 0.040 0.029 0.029

LB (m) -0.002 -0.029 0.040 0.024 0.038 0.016 0.014

UB (m) 0.010 -0.039 0.050 0.037 0.052 0.030 0.030
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2.2.7.6 Dynamic Transparency

The exoskeleton was able to maintain small torques both at the MCP

(RMSE = 0.0029 Nm) (Fig. 2.26c) and PIP joints (RMSE = 0.0092 Nm)

(Fig. 2.26d) throughout the arbitrary motion generated by the wearer (Fig. 2.26b).

Some transient residual torques were observed when the wearer performed fast

movements which settled down to zero subsequently. Residual torques gener-

ated at the exoskeleton joints were due to the error in tracking the desired

motor joint angle trajectories (Figs. 2.26e and 2.26f).

2.2.8 Discussion

The control experiments showed that the device actuated the finger

with good bidirectional torque control. However, since it was difficult to di-

rectly measure the joint torques on the actual prototype using a load cell

while a subject was wearing the device, the estimates from the SEA were com-

pared to the desired torque trajectory (Figs. 2.24a, 2.24b, 2.25a, 2.25b, 2.26c,

2.26d). We anticipate that the actual torques would show some deviation from

the desired torques, especially at the peaks, as observed on the SEA test rig

(Figs. 2.12c, 2.12d). Also, there were several simplifications made during the

simulation: (i) the finger passive joint torque model is an approximation of the

torque offered by the human finger and varies among subjects, (ii) the human

joint also offers some non-linear damping torque [46] which was modeled as

3LB and UB represent the lower bound and upper bound, respectively, of the parameter
as measured using a caliper for typical hand sizes.
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Figure 2.25: The finger joints torque tracking results from the index finger
exoskeleton prototype. (a) MCP finger joint torque trajectory, (b) PIP finger
joint torque trajectory, (d) Jacobian estimates, (e) Jacobian derivative esti-
mates, (c) estimated joint displacements for the various joints in the MCP
and PIP chain (x3 is plotted on the right Y-axis) and (f) finger joint reaction
forces. (Best viewed in color)
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Figure 2.26: The dynamic transparency test results as obtained from the in-
dex finger exoskeleton prototype. (a) Exoskeleton joint angle trajectories, (b)
estimated finger joint angle trajectories, (c) exoskeleton MCP joint torque tra-
jectories, (d) exoskeleton PIP joint torque trajectories, (e) MCP joint motor
angle trajectories and (f) PIP joint motor angle trajectories.
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linear, (iii) the losses due to friction at the exoskeleton joints was assumed to

be negligible and (iv) the inertial torque was not accurately modeled.

The experiments for kinematic characterization showed that the device

fits well to the hands of the subjects and was easily adjustable. It was also

observed that the relative attachment of the exoskeleton to the finger pha-

langes affected the achievable range of finger flexion-extension angle by the

exoskeleton. So, by adjusting the exoskeleton attachment relative to the fin-

ger, different regions of the finger ROM can be exercised. However, there were

a few limitations of the methodology used to evaluate the kinematic perfor-

mance of the device. First, the motion capture data were assumed to be the

ground truth for the actual motion of a subject’s finger; however, there was

some noise in the data, especially, due to the close proximity of the markers on

a subject’s finger. Second, the subjects were asked to move the finger without

significant adduction-abduction motion, however, some motion was observed

(< 12◦) as it was difficult for the subjects to avoid it during a timed trial.

Any out of plane rotation due to the adduction-abduction motion will result

in an over-estimation of the joint angles. Overall the prototype manufactured

using SLS was strong and light in weight. We envision that, given the per-

vasiveness of 3D printing technology in the future, rapid customization of the

interfacing components in the design to a specific patient in a clinical setting

will become a reality, thereby improving both the ergonomics and performance

of the device.
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2.3 Thumb Module of the Exoskeleton

In this section, we present the details of the test, control and experimen-

tation carried out with the thumb exoskeleton module of the hand exoskeleton.

Figure 2.27: Thumb exoskeleton prototype mounted on a subject’s hand for
experimentation.
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2.3.1 Design

In this section, we present the underlying mechanism of the proposed

design, the kinematics of the coupled thumb-exoskeleton system, kinematic

optimization carried out to improve the range of motion of the design, de-

tails of the actuation mechanism for torque control and finally, the developed

prototype.

2.3.1.1 Mechanism

The human thumb consists of primarily four DOFs, namely, carpometa-

carpal flexion-extension (CMC FE), carpometacarpal abduction-adduction (CMC

AA), metacarpophalangeal flexion-extension (MCP FE) and interphalangeal

flexion-extension (IP FE). The mechanism for the thumb exoskeleton consists

of three closed-loop chains to actively actuate these four DOFs while avoiding

the exoskeleton-human joint axes misalignment problem (Figure 2.28). The

CMC chain consists of four revolute and one prismatic joint forming closed-

loop chain with the thumb carpometacarpal bone allowing for two DOFs in

the chain. The use of a sliding joint as the interaction interface between the

exoskeleton and the thumb ensures that only normal forces are applied on the

phalanx. One of the revolute joints allows for the thumb abduction-adduction

motion. Both the MCP and IP chains consist of four revolute joints which

provides 1 DOF to each chain.
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2.3.1.2 Kinematics

To solve for the kinematics of the CMC, MCP and IP chains, each

of these chains is considered as a four-bar mechanism. A more detailed 3D

kinematic model of the coupled thumb-exoskeleton could have been developed.

However, a number of unknown and difficult to measure kinematic parameters

(e.g. location and orientation of the CMC FE and CMC AA axes, orientation

of the exoskeleton links with respect to the thumb joints etc.) makes it chal-

lenging to capture the kinematics of the coupled system accurately using such

a model. Furthermore, reliable estimation of these unknown subject-specific

parameters using redundant sensor data proved to be significantly challenging

due to the highly nonlinear nature of the motion in 3D space. Hence, in lieu

of a more detailed but uncertain 3D kinematic model, an approximate more

reliable 2D model is developed.

For the CMC chain, since the motion at the CMC abduction-adduction

joint is out of plane, an equivalent four-bar mechanism is realized that takes

into account the changing length of the link AC due to abduction-adduction

motion. The loop-closure equation for the proximal (CMC) chain of the thumb

exoskeleton (Figure 2.28) is then given by (2.30).

lAC(θ2)eiθ1 + lCEe
iθ3 + r4e

i(θ5−π) = xG + iyG (2.30)

where lAC(θ2) is the effective length of the link AC in the CMC four-bar chain,

which is function of θ2. lCE is the length of line segment CE. r4 represents the

sliding length in CMC chain at a given configuration. θ’s and θr’s represent
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the absolute and relative joint angles between the links participating in a joint,

respectively. (xG, yG) represents the coordinate of the human CMC joint (point

G) in the coordinate frame located at the exoskeleton joint at A. Similarly,

the loop closure equations for the middle (MCP) and distal (IP) chains are

expressed.

The forward kinematics deals with evaluating the thumb CMC, MCP

and IP joint angles (θ5, θ9, θ13) and the exoskeleton passive joint displacements

(r4, θ6, θ10) given the exoskeleton relative joint angles (θ1r, θ7r, θ11r). The

relative joint angle is the angle measured by the joint angle sensor mounted

at the joint. The kinematics of the system is solved using the standard four-

bar kinematics solution [113] in the order–CMC, MCP and IP. When the

loop closure equation (2.30) resulted in significant residual due to error in

geometric parameter measurement, we evaluated the least-squares solution of

the equation. The final solution can be expressed as in (2.31).

X = X(Θr) (2.31)

where X =
[
r4 θ5 θ9 θ13

]T
and Θr =

[
θ1r θ2r θ7r θ11r

]T
.

2.3.1.3 Kinematics Optimization

A thumb exoskeleton that allows for large range of motion for different

hand sizes could be used to serve different target population with minimal

customization. To this end, we carry out an optimization study to maximize

the range of motion by varying the kinematics of the design. A design that
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Figure 2.28: Nomenclature for the kinematic model of the designed thumb
exoskeleton. All angles are measured in counterclock-wise direction. The
arrows in red color depict forces acting on the system. The arrows in black
represent kinematic variables. (Best viewed in color.)

also results in increased mechanical advantage from the exoskeleton joint to

the human joint would reduce the torque requirement at the exoskeleton joint

and thus, help in minimizing the size of the transmission mechanism. We

carried out such a study for the thumb exoskeleton module to both increase

its range of motion and ensure kinematic robustness of the design against hand

size variation.
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In order to determine the mechanical advantage for CMC flexion-extension

motion, we take the differential of the kinematic equation of the CMC chain

(2.30) and solve for δθ1 and δr4, which results in (2.32).[
−lAC(θ2) sin θ1 cos θ5

lAC(θ2) cos θ1 sin θ5

] [
δθ1

δr4

]
=

[
lCE sin θ3 + r4 sin θ5

−lCE cos θ3 − r4 cos θ5

]
δθ5

(2.32)

The mechanical advantage in flexion-extension at CMC joint is then evaluated

as η = δθ1/δθ5. An optimization study is then set up to maximize the range

of motion at the CMC chain while also maximizing the mechanical advantage.

Also, since CMC joint has higher extension range of motion than flexion, we

constraint the lower and upper limits of the angle.

max
P

(θ5,max(P)− θ5,min(P), η(P))

s.t. θ5,max ≥ θ5,u

θ5,min ≤ θ5,l

r4,l ≤ r4 ≤ r4,u

Pl ≤ P ≤ Pu

(2.33)

where θ5,max and θ5,min refers to the maximum and minimum CMC flexion an-

gle. θ5,u and θ5,l are the upper and lower limit, respectively, of θ5 that a feasible

solution must achieve. r4,u and r4,l are the upper and lower bound, respec-

tively, of r4 that a feasible solution must satisfy. P =
[
xG yG lAC lCD

]T
are

the design variables to be determined that satisfies the optimization criteria.
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Since (2.33) is a multi-objective optimization problem with non-linear

objective functions, we use a parametric study to determine the best feasible

solution for the problem. We varied the various design variables in the design

space and evaluated the range of motion for small and large hand sizes for each

design configuration. We gave preference to solutions that resulted in larger

range of motion. For solutions that resulted in the same range of motion, we

chose the ones that maintained the range of motion across all hand sizes.

The parametric study resulted in several different solutions with differ-

ent upper and lower limits on the CMC flexion-extension angle (Figure 2.29).

Results showed that solutions with higher range of motion tends to have

lower mechanical advantage. For all solutions the range of motion reduces

as the CMC abduction-adduction angle increases. However, the CMC flexion-

extension range of motion of the human thumb also decreases as the CMC

abduction-adduction angle increases. Also, the range of motion is adversely

affected as the size (thickness) of the thumb metacarpal bone increases while

keeping the available sliding length constant. Furthermore, solutions that are

better in terms of range of motion were also more robust to changes in thumb

thickness variation. The results also showed that the range of motion in the

CMC chain is particularly sensitive to dimension lCD. Smaller values of lCD

resulted in larger ranges of motion for hands of different thicknesses both in

unabducted and abducted positions. We chose the solution that maximized

the range of motion over the one that maximized mechanical advantage as

reduced range of motion limit functionality whereas reduced mechanical ad-
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Figure 2.29: The three best solutions from the parametric study carried out to
maximize the range of motion and mechanical advantage for flexion-extension
motion at CMC joint. The plots in the left and right columns show the slider
displacement, which determines the flexion-extension range of motion at the
CMC joint and the corresponding mechanical advantage, respectively. Baseline
and thicker refers to a thinner and thicker hand metacarpal bone, respectively.
Abducted refers to the solution in a fully abducted thumb position (θ2 =
25◦). The values in square brackets in the left column show the minimum
value, maximum value and range of motion, respectively, of the flexion angle
at the CMC joint for the baseline configuration of the solution. The values in
square brackets in the right column show the minimum and maximum values,
respectively, of the mechanical advantage for the baseline configuration of the
solution.

vantage just increases the forces and torques acting in the system by a small

magnitude. For the MCP and IP chains, there were several feasible solutions
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Figure 2.29: The three best solutions from the parametric study carried out to
maximize the range of motion and mechanical advantage for flexion-extension
motion at CMC joint. The plots in the left and right columns show the slider
displacement, which determines the flexion-extension range of motion at the
CMC joint and the corresponding mechanical advantage, respectively. Baseline
and thicker refers to a thinner and thicker hand metacarpal bone, respectively.
Abducted refers to the solution in a fully abducted thumb position (θ2 =
25◦). The values in square brackets in the left column show the minimum
value, maximum value and range of motion, respectively, of the flexion angle
at the CMC joint for the baseline configuration of the solution. The values in
square brackets in the right column show the minimum and maximum values,
respectively, of the mechanical advantage for the baseline configuration of the
solution. (contd.)

which could be easily obtained without explicitly setting up any optimization

study. So, we chose the links lengths for those chains manually and solve for

the kinematics while satisfying the design constraints.

2.3.1.4 Prototype

The optimized kinematic mechanism of the thumb exoskeleton pre-

sented in Sections 2.3.1.1 and 2.3.1.3 is realized in the form of a prototype

(Figure 2.30). The SEA referred to in Section 2.1 are implemented at each
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Figure 2.30: CAD model of the designed thumb exoskeleton prototype.

of the actuated joints of the exoskeleton. The CMC joint required multi-axis

SEA to actuate both the flexion-extension and the abduction-adduction joint.

The SEA for the CMC AA joint is mounted on the output of the SEA for the

CMC FE joint to achieve this. Since, our SEA is small enough (44 mm ×

35 mm × 17 mm) this was possible. Each joint has a bearing to reduce the

friction at the joints. Each link is adjustable to allow for quick customization

of the device for a specific subject. Also, we use a magneto-resistive angle

sensor (KMA210, NXP Semiconductors) with a diametrically magnetized ring

magnet to measure the exoskeleton joint angles (enclosed in casings). Due to

the close proximity of the CMC FE and CMC AA joint axes, we do not use
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a magnetoresistive sensor at the CMC AA joint to avoid interference in the

measurements from the two sensors. Instead, we use a sliding contact type

miniature rotary potentiometer to sense the joint angle.

The thumb exoskeleton chain is mounted on a hand base through an

adjustable mount that allows for changing the angular and linear position of

the chain to accommodate for the variability in different hand sizes. Also, the

wires for the sensors are routed internally to ensure durability of the sensors

and connected to the sensor board mounted on the hand base. The various

parts of the exoskeleton are manufactured using Selective Laser Sintering4

(SLS) to keep the overall design light in weight. Some of the load bearing

parts (e.g. SEA pulleys, adjustable mount) are machined our of metal to

ensure durability of the device.

One of the challenges in thumb exoskeleton design has been to apply

bidirectional forces on the thumb metacarpal. This is because it is difficult to

hold on to the metacarpal bone of the thumb as there is no circumferential

access to it and the bellies of the Thenar eminence muscles change in shape as

the thumb moves around. We designed an ergonomic wire-form structure with

galvanized steel wire to address this issue. The structure has a ring around the

MCP joint with four protruded legs placed so as to have minimal interference

with any deformation of the muscles. The structure rests closely against the

metacarpal, cages the metacarpal bone and provides stability to transfer and

4See http://en.wikipedia.org/wiki/Selective laser sintering
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distribute the forces applied by the exoskeleton on the metacarpal. The slider

in the CMC chain is attached with an adjustable mount to the wire-form

structure to allow for the transmission of the forces from the exoskeleton to

the metacarpal. The structure is kept in place with the help of an elastic band

(not shown in figure), which prevents it from slipping forward when the forces

are applied. This wire-form design is a lightweight and comfortable solution

to the challenging problem of exoskeleton attachment to the thumb.

2.3.2 Controls

A torque controller was implemented to track the desired torque trajec-

tories at the exoskeleton SEA joints (Figure 2.31). The output of the system is

the torque (ŷ) generated at the exoskeleton joints through SEA as estimated

using (2.34).

ŷ =


τj,cmc,fe
τj,cmc,aa
τj,mcp
τj,ip

 = 2Krj (rmΘm − rj(Θr −Θr0)) (2.34)

where

K =


kj,cmc,fe 0 0 0

0 kj,cmc,aa 0 0
0 0 kj,mcp 0
0 0 0 kj,ip



Θm =


θm,cmc,fe
θm,cmc,aa
θm,mcp
θm,ip


kj,cmc,fe, kj,cmc,aa, kj,mcp and kj,ip represent the magnitude of the effective stiff-

ness at the exoskeleton CMC F/E, CMC A/A, MCP and IP joints, respectively.

108



Torque 

Controller 

C1(s) 
Σ 

SEA Test Rig 

Ga2(s) + _ 

u Actuator 

Controller 

C2(s) 

Inner Position Control Loop 

Actuator 

Dynamics 

Ga1(s) 

Outer Force Control Loop 

Σ 
θm   

+ 

_ 
  

j̂

jm
r

Figure 2.31: The schematic of the torque controller implemented for the SEAs.
The inner position control loop represents the position control implemented
in the motor driver. The outer force control loop refers to the control loop
implemented for output torque tracking.

θm,cmc,fe, θm,cmc,aa, θm,mcp and θm,ip are the CMC F/E, CMC A/A, MCP and

IP motor angles, respectively. The feed-forward PID controller is then given

by (2.35).

e =yd − ŷ

ė =ẏd − ˙̂y

u =
1

rm

(
K−1yd

2rj
+ rj (Θr −Θr0)

)
+ Kpe+

Kdė + Ki

∫
edt

(2.35)

where e is the vector containing exoskeleton joint torque errors, yd is the

vector containing the desired torque at the two exoskeleton joints and u is the

control input vector (desired motor position) for the four exoskeleton joints.

Kp, Kd and Ki represent the diagonal proportional, derivative and integral

gain matrices for the PID controller.
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2.3.3 Experimentation

To validate the effectiveness of the designed thumb exoskeleton in achiev-

ing our design goals, we carry out experiments with the prototype to assess (i)

workspace of thumb with and without the exoskeleton, (ii) kinematic trans-

parency of the device to understand how the natural motion of the thumb

is affected by the device and (iii) torque control of the device. Four healthy

subjects (three males and one female, ages 20-33 years) with no history of

any neuromuscular injury voluntarily participated in the experiments, after

they provided their informed consent (The University of Texas at Austin in-

stitutional review board amended study number 2013-05-0126). The subjects

donned the device and the link lengths and neutral position of the exoskele-

ton were adjusted so that the device is comfortable for each subject. For the

workspace and kinematic transparency experiments, motion capture data were

recorded using an active marker motion capture system (PhaseSpace Inc.) at

480 Hz. The location of the motion capture markers was chosen to ensure

minimal interference with exoskeleton attachment interface (Figure 2.32) and

maintain similar experimental conditions without and with the device. Three

markers were placed on the wrist to establish a coordinate frame to account for

any movement of the hand. The remaining four markers were placed at each

of three joints and tip of the thumb. The hand of the subjects was supported

to ensure minimal motion at the wrist joint. Since, these experiments were

aimed at characterizing only the kinematics of device, the Bowden-cable-based

SEAs were not connected during this experimentation.

110



1

2 3

4

5

6

7

Figure 2.32: The motion capture marker set used to carry out the kinematic
experiments with the thumb exoskeleton. The number next to each marker
represents the marker number used to refer the marker.

2.3.3.1 Workspace Analysis

In order to quantify the volume of the workspace of the thumb with

human subjects, we carry out experiments using the motion capture system.

We asked the subjects to move there thumb to reach full achievable range

of motion at each joint. In order to accurately capture the curvature of the

workspace boundary several repetitions of the motion were performed. These

experiments were carried out both without and with the exoskeleton. The
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collected data is then processed to correct for any overall hand movement

using the three ground markers on the wrist. A convex hull is fitted to the

data for markers 4, 5, 6, and 7 to evaluate the volume of the region the thumb

was able to reach. The percentage volume of the workspace of the thumb

with the exoskeleton with respect to without exoskeleton is given in (2.36),

which gives a measure of the volumetric range of motion preserved with the

exoskeleton.

η =
Vwe
Vne
× 100% (2.36)

2.3.3.2 Kinematic Transparency

Kinematic transparency tests were carried out to quantify the simi-

larity of the motion without and with the thumb exoskeleton. We used the

following protocol to perform the kinematic transparency experiments. The

motion capture markers are placed on the thumb and the subjects were asked

to perform four different motions at four different speeds: (i) CMC, MCP and

IP joints articulation through full active range of motion (AROM) in flexion-

extension while maintaining the abduction-adduction angle at the CMC joint,

(ii) full AROM abduction-adduction motion at the CMC joint while maintain-

ing the position of the other joint angles, (iii) full AROM flexion-extension and

abduction-adduction motion in a circular pattern at the CMC joint and (iv)

full AROM flexion-extension motion at the MCP and IP joint while maintain-

ing the position of the other joints. The rationale behind choosing motion

(i) rather than isolated motion at the CMC joint was that it was difficult to
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achieve the full AROM by the subjects without flexing the MCP joint. The

subjects were asked to wear the device and the link lengths were adjusted to

ensure that the subjects can reach their full AROM with the device. Care was

taken to ensure that the motion capture markers did not move while wearing

the device. Some initial time was provided to the subject to get comfortable

with the device and practice each motion for a certain duration. The subjects

are then asked to perform the same motions with the exoskeleton. The ex-

periments were performance at four different speeds–(i) 0.25 Hz, (ii) 0.5 Hz,

(iii) 0.75 Hz and (iv) 1 Hz. An audio cue with the help of a metronome was

provided to the subjects to help them maintain the required finger frequency.

The motion capture data was resampled at 1/10 frequency (48 Hz).

The motion capture data is processed to evaluate the angle of each pha-

lanx with respect to the ground reference frame established using the markers

placed on the wrist. The orientation of the ground reference frame is first

calculated using Gram-Schmidt orthonormalization [30] as given in (2.37).

ux =p3 − p2 êx =
ux
||ux||

uy =p3 − p1 − êx.(p3 − p1) êy =
uy
||uy||

ez =êx × êy

(2.37)

where pi is the 3d position of the ith marker in the reference frame of the

motion capture system. ex, ey and ez refer to the unit vectors in the ground

reference frame along the X, Y and Z axis, respectively. ux and uy are the

vectors evaluated to calculate the unit vectors. The rotation angles of the

metacarpal phalanx in 3D is calculated with respect to the evaluated reference
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frame using direction cosines as given in (2.38). Similarly the angles for the

middle and distal phalanges are calculated using their respective markers.

θcmc,x = cos−1

(
(p5 − p4) .êx
|| (p5 − p4) ||

)
θcmc,y = cos−1

(
(p5 − p4) .êy
|| (p5 − p4) ||

)
θcmc,z = cos−1

(
(p5 − p4) .êz
|| (p5 − p4) ||

) (2.38)

2.3.3.3 Torque Control

The torque control experiments are carried out to ensure if the device is

able to track a desired torque trajectory using the controller proposed in Sec-

tion 2.3.2. The four subjects participated in this experiment. In the first phase

of the experiment, the subjects were asked to avoid any voluntary contraction

of the muscle and let the exoskeleton actively move their thumb around. In

the second phase, the subjects were asked to block the motion to validate if

the device still tracks the desired torque trajectory. We use a mean and phase-

shifted sinusoidal trajectory as the desired torque trajectory at each joint of

the thumb exoskeleton as given in (2.39).

τj,i = τA,i (sin (2πft+ φτ,i) +Dτ,i)× S(t)

S(t) =
1

1 + e−(t−5)

(2.39)

where S(t) is sigmoid function, which is multiplied to gradually increase the

torque levels from zero to their respective value to ensure that any phase and

amplitude relationship between the thumb torques can be achieved.
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2.3.4 Results

In this section, we present the results from the workspace analysis,

kinematic transparency tests and torque control of the device.

2.3.4.1 Workspace Analysis

Table 2.7: Thumb workspace analysis results without and with the device for
the different subjects.

Subject
#

Vne
(cm3)

Vwe
(cm3)

η

I 707.31 560.25 79.21 %

II 1152.54 1049.86 91.09 %

III 729.38 570.73 78.25 %

IV 701.32 658.16 93.84 %

Average 85.59 %

Results showed that the device is able to retain around 85.59 % workspace

on average with the exoskeleton (Table 2.7). Also, some variability was ob-

served in the percent reachable workspace from subject to subject. This vari-

ability might be due to the significant natural variation that exists in thumb

anatomy which has been shown to support the idea of non-existence of a single

generic biomechanical model that can represent the entire population [126]. A

comparison of the workspace in XY, YZ and XZ plane without and with the

exoskeleton for Subject III shows that the major portion of the workspace can

be reached with the exoskeleton (Figure 2.33).
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(g) (h)

Figure 2.33: Workspace results without and with the exoskeleton for subject
III. The left and right columns represent the plots of the thumb workspace
without and with the thumb exoskeleton, respectively. The dark trajectories
are the plotted marker data as captured using the motion capture system.
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2.3.4.2 Kinematic Transparency

A comparison of the thumb phalanx angles in 3D without and with

the exoskeleton is carried out for the different motions. Pearsons product

moment correlation coefficient averaged over three repetitions is calculated to

quantify the degree of similarity between the angle trajectories without and

with the exoskeleton. Correlation is used as a measure of transparency instead

of RMS error as it is difficult for a subject to exactly replicate the same motion

consistently with or without the device.

Table 2.8: Pearson’s product moment correlation coefficient averaged over 3
repetitions as obtained from the kinematic transparency tests. The p-value
was coumputed using a Student’s t distribution. The correlation is calculated
only for those trajectories where significant motion was observed either in with
or without exoskeleton trajectory.

Motion
type

CMC MCP IP

X Y Z X Y Z X Y Z

(i) 0.9122
(p <
0.01)

0.9201
(p <
0.01)

0.5368
(p <
0.01)

0.9397
(p <
0.01)

0.7997
(p <
0.01)

0.4796
(p <
0.01)

0.9132
(p <
0.01)

0.6073
(p <
0.01)

0.5990
(p <
0.01)

(ii) 0.9077
(p <
0.01)

0.8874
(p <
0.01)

0.6727
(p <
0.01)

0.9414
(p <
0.01)

0.9071
(p <
0.01)

0.8293
(p <
0.01)

0.9383
(p <
0.01)

0.9277
(p <
0.01)

0.8375
(p <
0.01)

(iii) 0.9024
(p <
0.01)

0.8324
(p <
0.01)

0.6200
(p <
0.01)

0.9442
(p <
0.01)

0.6228
(p <
0.01)

0.6880
(p <
0.01)

0.9441
(p <
0.01)

0.5149
(p <
0.01)

0.7932
(p <
0.01)

(iv) – – – 0.9658
(p <
0.01)

0.9582
(p <
0.01)

– 0.9677
(p <
0.01)

0.8852
(p <
0.01)

0.8139
(p <
0.01)

Results of motion (i) at 0.25 Hz showed that most of the thumb phalanx

angle trajectories without and with the exoskeleton (Figure 2.34) are strongly
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Figure 2.34: Kinematic transparency results without and with the exoskeleton
for motion (i) at 0.25 Hz with subject I. The left and right columns represent
the plots of the various thumb phalanx angles with respect to the reference
frame without and with the thumb exoskeleton, respectively.

correlated (Table 2.8) for the two phalanges and metacarpal of the thumb.

Some deviation was observed in the trajectory of the angles about the Z axis

for the phalanges. However, the range of motion about Z axis is relatively

smaller as compared to the other two axes. Results of motion (ii) at 0.5 Hz

also showed that the two sets of angle trajectories (Figure 2.35) are strongly

correlated (Table 2.8). The range of motion at the CMC joint is relatively
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Figure 2.35: Kinematic transparency results without and with the exoskeleton
for motion (ii) at 0.5 Hz with subject I. The left and right columns represent
the plots of the various thumb phalanx angles with respect to the reference
frame without and with the thumb exoskeleton, respectively.

reduced with the exoskeleton than without it. This is because the wireform

structure and the velco strap to hold the exoskeleton base on the hand oc-

cupies some space, which reduces the effective range. However, the nature of

motion is preserved showing that the exoskeleton has not affected the motion

adversely. The two sets of angle trajectories (Figure 2.36) are also strongly

correlated (Table 2.8) for motion (iii) at 0.75 Hz. The peaks of the motion with
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Figure 2.36: Kinematic transparency results without and with the exoskeleton
for motion (iii) at 0.75 Hz with subject I. The left and right columns represent
the plots of the various thumb phalanx angles with respect to the reference
frame without and with the thumb exoskeleton, respectively.

the exoskeleton are plateaued for some of the trajectories. Also, some devia-

tion was observed in the metacarpal trajectory about the Z axis, proximal and

distal phalanges about the Y and Z axes for this motion. Finally, trajectories

for motion (iv) at 1 Hz also showed significant correlation (Table 2.8). Since,

this motion involved only moving the MCP and IP joint in flexion-extension,

small motion was observed at the CMC joint both without and with the ex-
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Figure 2.37: Kinematic transparency results without and with the exoskeleton
for motion (iv) at 1 Hz with subject I. The left and right columns represent
the plots of the various thumb phalanx angles with respect to the reference
frame without and with the thumb exoskeleton, respectively.

oskeleton (Figures 2.37a and 2.37b). This shows that the subject were able

to move the MCP and IP joints with minimal motion at the CMC joint both

without and with the exoskeleton. Some deviation was observed for the dis-

tal phalanx joint angle about Z axis for this motion. Also, it was observed

that it took slightly longer for the subject to complete the motion with the

exoskeleton than without it, especially at higher frequencies. However, the
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nature of the trajectories is not significantly affected as the speed of motion

increases, showing that the device does not alter the coordinated motion of the

phalanges even at higher speeds. Thus, these experiments demonstrate that

overall the device preserves the natural motion of the thumb. Similar results

were obtained for the other subjects.

2.3.4.3 Torque Control

Results from the first phase of the experiment showed that the joint

torque controller is able to track the desired torque at the thumb exoskeleton

joints with an RMS error of 4.16% (0.0151 Nm), 13.07% (0.0294 Nm), 6.6%

(0.0132 Nm) and 10.53% (0.0084 Nm) at the CMC FE, CMC AA, MCP and IP

joint, respectively (Figure 2.38). A relatively noisier torque output is observed

at the CMC AA joint as a sliding-contact type potentiometer was used at that

joint for joint angle sensing (Section 2.3.1.4). Furthermore, the torque at each

joint increase gradually as expected due to the Sigmoid function in (2.39). The

torque envelop and mean torque required to move the four thumb joints were

also obtained for the four subjects (Figure 2.39).

Results from the second phase of the experiment showed that even when

significant external disturbance is applied at the exoskeleton joints, which re-

sulted in considerable changes in the exoskeleton joint angles (Figure 2.40(a)),

the controller is able to maintain the desired torque level (Figure 2.40(b)).

Thus, the device can perform torque control irrespective of the impedance of
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Figure 2.38: The joint torque tracking performance at the thumb exoskeleton
joints for Subject 1. (a) Exoskeleton joint angles (b) torque at exoskeleton
CMC FE joint, (c) torque at exoskeleton CMC AA joint, (d) torque at ex-
oskeleton MCP joint and (e) torque at exoskeleton IP joint.
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Figure 2.39: The joint torque envelope (shaded region) and mean joint torque
(solid line) trajectory at the thumb exoskeleton joints for the four subjects.
(a) Torque at exoskeleton CMC FE joint, (b) torque at exoskeleton CMC AA
joint, (c) torque at exoskeleton MCP joint and (d) torque at exoskeleton IP
joint. The joint torque envelope refers to the area between the maximum and
minimum joint torque trajectory considering the torque trajectories of the four
subjects.
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Figure 2.40: The joint torque tracking performance at the thumb exoskeleton
joints when external disturbance is applied on the system for Subject 1. (a)
Exoskeleton joint angles (b) torque at the four exoskeleton joints.

the external environment with which the exoskeleton is interacting.

2.3.5 Discussion

We presented a novel thumb exoskeleton with Bowden-cable-based SEAs

that accomplishes the stated design objectives of accurate and stable bidirec-

tional torque control of each thumb joint individually, kinematically compat-

ible motion at the four thumb joints, large workspace with thumb and low

weight with capability for free movement of the hand during the operation of

the device. Experiments with multiple human subjects showed that the de-
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vice is capable of bidirectional torque control at each thumb joint individually.

The kinematic transparency tests showed that the device is compatible with

the natural motion at the four thumb joints. The experiments for evaluation

of the workspace showed that the device provides a large workspace with the

thumb (retains on average 85% of the thumb workspace). Finally, the Bowden

cable based actuation mechanism with the use of SLS for manufacturing the

prototype makes the design light in weight (∼136 g), while also allowing for

free motion of the hand with minimal resistance.

During the kinematic transparency tests, even though the subjects were

asked to keep there wrist joint stationary, some observable motion was present,

especially for motions where the CMC joint movement is involved as it was

difficult for subjects to absolutely limit motion at the wrist joint in a timed

trial. Any movement of the wrist joint would increase the range of motion

as the ground coordinate frame is determined using the markers on the wrist.

This motion was more constrained with the exoskeleton as an elastic band

surrounded their wrist to keep the wireform structure in place. This might have

also contributed to the slight reduction in the joint angles at the various joints

during these experiments. The reduced range of motion with the exoskeleton

in some regions is also partly due to the attachment interface that connects

the exoskeleton to the thumb. The wireform structure though provides a good

way to transfer the forces to the thumb metacarpal, restricts the motion at

the CMC joint toward the palm to some extent. The velcro straps at the

middle and distal phalanx are close to each other and therefore, reduces the
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range of motion at the distal joint. Also, the velcro strap which connects the

exoskeleton base to the hand reduces the abduction-adduction range of motion

to some extent.

The torque control experiments showed that the device is able to control

the torque even under significant external disturbance. Some reduction in

range of motion was also observed due to the deformation of the flesh over the

metacarpal on the palmar side with the application of force on the wireform

structure. Overall, the subjects reported that the interaction with the device

felt comfortable and it was effective in exercising their thumb. The variation

in torque between the subjects was partly due to the inherent differences in

the requirement of torque for their thumbs and partly because the device was

fitted to their hand at slightly shifted locations based on their hand contour.

2.4 Hand Exoskeleton: Maestro

We named the hand exoskeleton as Maestro. The final design consists

of identical index and middle finger modules and a thumb module to actively

assist the three digits of the hand (Figure 2.41). There are total 8 actuators

to actively assist the MCP and PIP joints of the index and middle finger and

CMC, MCP and IP joints of the thumb. We target the rehabilitation of these

digits as amputation of either index or middle finger is considered to result in

a 20% loss of hand function, whereas the loss of ring or little finger reduces the

functional capacity of the hand by only 10% [149]. Furthermore, there is an

estimated 40% loss in the functional capacity of hand with the amputation of
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Figure 2.41: Hand exoskeleton prototype donned by a subject for experimen-
tation.

thumb. These percentages agree with the observation that most manual tasks

can be accomplished with three or four digits, provided that one of these digits

is the thumb [74]. [80] evaluated the percentage contribution of static grip

force to total grip force for the index, middle, ring and little fingers to be 42%,

27.4%, 17.6% and 12.9%, respectively. Furthermore, they reported that these

percentages remained relatively constant as the weight of an object increased

from 200 to 800 g. This suggests that the heavier the weight being lifted, the

larger the contributions of the index and middle finger to grip force. As the grip
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mode changed from five to four to three fingers, the total grip force increased,

but the contribution of the index finger remained fairly constant at around

43% and so the force produced by the little and ring finger are generated by

the middle finger. Considering all these facts, we focus on the rehabilitation

of the index and middle fingers and thumb using our hand exoskeleton.
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Chapter 3

Advanced Control

In this chapter, we present two different types of controllers that are

based on learning subject-specific models of the exoskeleton joint torques re-

quired to control the device.

3.1 Learned Force-field Control

The goal of this controller is to assist the subject in flexion-extension

motion of the index finger with a coordinated motion at the finger MCP and

PIP joints. Force-field control creates a tunnel like force-field around the target

path, which guides the limb motion along the desired joint angle trajectory

[23, 71]. One important aspect of this controller is that the reference trajectory

and therefore, the control input torque is only a function of the current state

of the system and not of time explicitly. In this work, we propose the use of

neural network to learn the assistance along the path and then use the trained

network to provide the assistance needed at any location in the joint angle

space (Fig. 3.1). Such a controller accurately learns the specific needs of a

subject and reproduces accurate torque while assisting the subject.
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Figure 3.1: Overview of the learned force-field control implemented on the
index finger exoskeleton.

3.1.1 Subject-specific Data

To obtain the exoskeleton joint torques variation with respect to the

exoskeleton joint angles needed for a specific subject (Fig. 3.2(e)), we con-

trol the exoskeleton using impedance control [2], with the goal of executing

sinusoidal motion at the finger joints, which closely represents the finger joint

motion during different tasks [78], by gradually increasing impedance. The ex-

oskeleton torque varies in a closed contour as the exoskeleton joint angle varies,

both at the exoskeleton MCP and PIP joints (Fig. 3.2(c)). This is because the

finger joint torque shows hysteresis due to viscous and frictional dissipation

[46]. Also, the target trajectory in joint angle space is a line segment for the

sinusoidal motion at the finger joints (Fig. 3.2(d)).
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Figure 3.2: Results from the impedance control of the index finger exoskeleton
with sinusoidal desired trajectories at the exoskeleton MCP and PIP joints.
(a) Exoskeleton MCP joint relative angle tracking, (b) exoskeleton PIP joint
relative angle tracking, (c) exoskeleton joint torque variation with respect to
the respective exoskeleton joint angle at the MCP and PIP joints and (d)
exoskeleton MCP joint angle variation with respect to the exoskeleton PIP
joint angle.

3.1.2 Learning System Dynamics

A neural network with one hidden layer having three perceptrons is used

to learn the required applied torques at the two actuated exoskeleton joints
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Figure 3.3: The single hidden layer neural network having three perceptrons
for predicting the exoskeleton joint torques given the exoskeleton joint angles
for learned force-field control.

given the angular position of the two exoskeleton joints (Fig. 3.3). Since, the

torque-angle trajectory is a closed curve, two different networks are learned,

one for flexion and the other for extension motion. We use linear transfer

function for the input and output layers and a hyperbolic tangent sigmoid

transfer function for the perceptrons in the hidden layer. We use hyperbolic

tangent sigmoid as the transfer function, as some studies have shown that the

networks with these functions are more generalizable [169] and perform better

than the networks with other types of transfer functions [77, 108].

3.1.3 Force-field Control

The high level force-field controller generates a torque vector (τ) that

has a normal (τn) and a tangential (τt) torque component. The torque vector

(τ) contains the torques applied at the exoskeleton MCP and PIP joints (Eq.

(3.1)). The normal component is responsible for pushing the finger towards the
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desired trajectory and the tangential component assists in tracking the desired

trajectory. We learn the gain for the tangential component of the force field

assistance (Kt(Θ)) using the neural network to guide the finger motion along

the desired joint angle trajectory.

τ = τn + τt (3.1)

‖τn‖ = Kn

1− e
−

2‖Θe‖2

σn


‖τt‖ = Kt(Θ)e

−
2‖Θe‖2

σt

(3.2)

where Kn and Kt(Θ) are the gain vectors for the normal and tangential force

field assistance, respectively and Θ is the current angular joint position vector

of the exoskeleton joints. ||Θe|| is the distance between the current exoskeleton

joints position and the closest point on the desired joint space trajectory. Two

force field tunnels with diameters σn and σt are created around the desired

trajectory in the joint angle space by Eq. (3.2). The magnitude of the normal

component increases to Kn outside of the tunnel and gradually reduces to zero

as one approaches the desired trajectory inside the tunnel. The magnitude of

the tangential component, on the other hand, is close to zero outside the tunnel

and gradually increases to Kt(Θ) as one approaches the desired trajectory

inside the tunnel. An analytical expression is obtained for Θe by projecting

the current exoskeleton joint angle state on the desired line segment contour

(C) (Eq. (3.3)).
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‖Θe‖ = min
Θd∈C

‖Θ−Θd‖ (3.3)

Since, two different networks are learned for flexion and extension mo-

tion, a switching between the two networks is performed based on whether the

upper (Θub) or lower (Θlb) exoskeleton joint angle limit is crossed (Eq. (3.4)).

Kt(Θ) =

Ktf (Θ), if Θ ≤ Θlb

Kte(Θ), if Θ ≥ Θub

(3.4)

where Ktf (Θ) and Kte(Θ) are the gain vectors for the tangential component

of the force field assistance for the flexion and extension motion, respectively,

as learned using neural network.

One major limitation of the learned force-field control is that the NN

mapping is static. Torque requirement is not updated with changes in the

trajectory motion frequency or inherent changes in the required finger torque

due to the increased assistance provided by the subject with improvement in

motor capabilities or changes in finger passive properties. So, next we imple-

ment an assist-as-needed controller, which is adaptive in nature and modifies

the feed-forward assistance based on the trajectory tracking error.

3.2 Adaptive-assistance-based Control

Adaptive assist-as-needed control learns a dynamic model of the cou-

pled finger-exoskeleton system and patient’s ability and effort in real-time for

a specific subject [172] (Fig. 3.4).
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Figure 3.4: Overview of the adaptive-assistance-based control implemented on
the index finger exoskeleton.

3.2.1 Adaptive Controller for Learning Coupled System Dynamics

The coupled dynamics of the finger exoskeleton system can be expressed

as in Eq. (3.5).

I(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + G(Θ) = τj + τh (3.5)

where Θ is the 2×1 vector of exoskeleton MCP and PIP joint angular position,

I(Θ) is the inertia matrix, C(Θ, Θ̇) is the matrix representing Coriolis and

centrifugal terms, G is the vector representing gravitational terms, τj is the

2×1 vector representing the torques applied by the actuated exoskeleton MCP

and PIP joints and τh is the 2×1 vector representing the torques applied by

the human subject at the exoskeleton MCP and PIP joints.

For the joint angle tracking, a sliding surface (s) can be defined as in

Eq. (3.6).

s = ˙̃Θ + ΛΘ̃ = (Θ̇− Θ̇d) + Λ(Θ−Θd) (3.6)
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where Θ̃ = Θ(t)−Θd(t) is the tracking error with Θd(t) as the desired joint

angle trajectory. Λ is a 2×2 constant, positive definite and symmetric matrix.

Since, for the finger-exoskeleton system the contribution of inertial ef-

fects is small, we only consider the position-dependent terms in the system

dynamics Eq. (3.5) and define a position-dependent regressor matrix. Since,

the system dynamics is linear in terms of the system parameters, the esti-

mated system dynamics can be expressed as a product of the unknown system

parameters (â) and the regressor matrix (Y(Θ)) (Eq. (3.7)).

Ĝ(Θ)− τ̂h = Y(Θ)â (3.7)

The torque control law for the system is then given by Eq. (3.8)

τj = Y(Θ)â−Kps (3.8)

where Kp is a symmetric positive definite feedback gain matrix.

We approximate the arbitrary torque surface with respect to the ex-

oskeleton joint angles using radial basis function (RBF) defined in Eq. (3.9).

φn = e
−
‖Θ− µn‖2

2σ2 (3.9)

We use 25 RBFs to approximate the torque-angle relationship throughout the

workspace by partitioning the rotational DOF into five equally spaced intervals

at both the MCP and PIP joints of the exoskeleton. The regressor matrix is

then given by Eq. (3.10).

Y2×50 =

[
ΦT 0
0 ΦT

]
(3.10)
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where Φ = [φ1 φ2 . . . φ25]. The regressor matrix takes into account both the

joint angles to determine the torque at each joint. The parameter update law

is given by Eq. (3.11) and it can be shown using Lyapunov stability analysis

that the controller is uniformly ultimately bounded with this update law [117].

˙̂a = −Γ−1YT s (3.11)

3.2.2 Assist-as-needed Controller Modification

Experiments have shown that subjects slack when full assistance is

provided through the controller, which inhibits rehabilitation [172]. To account

for this effect, the parameter update law is modified as in Eqs. (3.12) and (3.13)

to decay the applied torques when errors are small as proposed in [172].

∂

∂t
(Yâ) = Y˙̂a = −1

τ
Yâ (3.12)

˙̂a = −Γ−1YT s− 1

τ
YT

(
YYT

)−1
Yâ (3.13)

where τ is the time constant for the parameter decay.

3.3 Experiments

Index finger flexion-extension motion experiments were carried out to

validate the developed controllers and to understand the advantages and dis-

advantages of the two. A healthy subject (male, age 29 years) participated in

the study. While carrying out these experiments, the motion of the subject’s

finger is occasionally impeded to assess the reaction of the controller and how

safe is the device with each.
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3.3.1 Learned Force-field Control

In this experiment, a subject’s torque-angle relationship is learned using

the developed neural network and the trained subject-specific network is then

used for force-field control of the index finger with the desired target trajectory

in the joint angle space. The subject is asked to keep the finger passive while

the torque data is collected for training the neural network. Once, the model

is learned, the subject is asked to follow the motion, while the controller is

assisting the subject with the applied force-field.

3.3.2 Adaptive-assistance-based Control

In this experiment, the performance of the controller in terms of adapt-

ing to the requirement of the subject and thereby, resulting in improved joint

angle trajectory tracking performance is assessed. Sinusoidal joint angle tra-

jectory is used as the desired motion at the two joints.

3.3.2.1 Healthy Subject Experiments

First, two experiments with the unaltered index finger module are car-

ried out to understand if the system adapts as per the needs of the subject.

For the first experiment, the subject is asked to keep the finger passive and the

controller adapted to the joint torque requirement of the subject. For the sec-

ond experiment, the subject was asked to impede the motion of the exoskeleton

to assess how quickly the controller reacted to the changed torque requirement.
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3.3.2.2 Stiffened Exoskeleton Subject Experiments

Stiffening of the finger PIP joint is a common phenomenon observed

in several hand impairments [57, 61, 84]. To validate the effectiveness of the

adaption algorithm, an exoskeleton stiffened at the PIP joint with rubber

bands is used for the experiment. For this experiment, the subject was asked

to keep the finger passive and an assessment of whether the controller is able

to adapt to the changed system configuration is carried out.

3.4 Results

In this section, we present the neural network fitting statistics and the

performance of the two controllers as assessed through the experiments.

3.4.1 Learned Force-field Control

The controller performance for the learned force-field control depends

on how closely the neural network is able to predict the required exoskeleton

joint torques given the exoskeleton joint angles.

3.4.1.1 Neural Network Fitting Results

The fitting results show that the mean squared error for the trained network

is of the order of 10−6 for both flexion and extenion networks under training,

validation and testing (Table 3.1). The neural network fitting shows that

the neural network is able to predict the exoskeleton joint torques given the

exoskeleton joint angles accurately (Fig. 3.5).
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Table 3.1: Model fitting statistics (mean squared error) for the neural networks
learned to represent the torque-angle relationship for the flexion and extension
motions.

Motion Training
(×10−6)

Validation
(×10−6)

Testing
(×10−6)

Overall
(×10−6)

Flexion 3.64 3.87 3.47 3.65

Extension 5.88 8.90 4.38 6.11
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Figure 3.5: Comparison of the learned neural-network-based predicted ex-
oskeleton joint torques with those estimated by the series elastic actuator
controller in real-time (labeled as measured). (Best viewed in color)

3.4.1.2 Hand Exoskeleton Control

Results show that the system is able to trace the desired trajectory in

the exoskeleton joint space with low error (Fig. 3.6(e)). The large deviation in

few trials from the theoretical desired trajectory is due to external blocking of

the finger motion to assess how the controller reacts to external disturbance,

which may be present due to the nature of finger impairment (Section 1.2.3).
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Figure 3.6: Results from force-field control of the index finger exoskeleton
with a linear relationship between MCP and PIP joint angles as the desired
trajectory (a) Exoskeleton MCP joint relative angle tracking, (b) exoskeleton
PIP joint relative angle tracking, (c) exoskeleton joint torque with respect to
the respective relative joint angle and (d) exoskeleton relative PIP joint angle
with respect to relative MCP joint angle.
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Also, force-field control does not apply excessive torques when the motion is

stalled at time 22 sec and 31 sec (Figs. 3.6(a),(b) and (c). However, the velocity

with which the trajectory is traced is not accurately controlled (Figs. 3.6(a)

and (b)). Force-field control allows for coordinating between joints and is good

for training for the tasks that only need joint angle coordination, while not

reacting to any uncertain external torques that might act on the system.

3.4.2 Adaptive-assistance-based Control

Both the healthy subject and stiffened exoskeleton experiments demon-

strate the effectiveness of adaptive-assistance-based control.

3.4.2.1 Healthy Subject Experiments

For the first experiment, results show that the system is able to adapt

to the torque requirement of the subject. The feed-forward component of

the torque increases gradually, while the feedback component reduces both at

the MCP and the PIP joints (Figs. 3.7(a) and (b)). The variation of unknown

learned parameters show that the parameters tend to converge to their desired

values (Figs. 3.7(c) and (d)). The root mean square (RMS) tracking error for

the initial and final 10 seconds show that the error reduced from 5◦ to 3◦ at the

MCP joint and from 3.5◦ to under 2◦ at the PIP joint showing that the learned

model assisted in improving the tracking performance (Figs. 3.7(g) and (h)).

For the second experiment, the results show that when the finger mo-

tion is impeded by the subject, the controller reacted by increasing the applied
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Figure 3.7: Results from adaptive assist-as-needed control experiments of the
index finger exoskeleton with a healthy subject. (a) Exoskeleton MCP joint
feed-forward and feedback torque component, (b) exoskeleton PIP joint feed-
forward and feedback torque component, (c) parameter adaptation results for
5 out of 25 parameters (µn = [µ(n) − 70◦]T ) that contributed to the MCP
joint torque (d) parameter adaptation results for 5 out of 25 parameters (µn =
[−30◦ µ(n)]T ) that contributed to the PIP joint torque, (e) exoskeleton joint
torque variation with respect to the joint angles, (f) exoskeleton MCP angle
with respect to the PIP joint angle, (g) MCP joint tracking error for the initial
and final 10 seconds and (h) PIP joint tracking error for the initial and final
10 seconds. (Best viewed in color)

torque (at time 66 sec and 86 sec in Fig. 3.8). Also, as soon as the externally

applied torque is removed the controller torque returned to the original value

demonstrating that the controller is quite reactive and can quickly adapt to
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Figure 3.7: Results from adaptive assist-as-needed control experiments of the
index finger exoskeleton with a healthy subject. (a) Exoskeleton MCP joint
feed-forward and feedback torque component, (b) exoskeleton PIP joint feed-
forward and feedback torque component, (c) parameter adaptation results for
5 out of 25 parameters (µn = [µ(n) − 70◦]T ) that contributed to the MCP
joint torque (d) parameter adaptation results for 5 out of 25 parameters (µn =
[−30◦ µ(n)]T ) that contributed to the PIP joint torque, (e) exoskeleton joint
torque variation with respect to the joint angles, (f) exoskeleton MCP angle
with respect to the PIP joint angle, (g) MCP joint tracking error for the initial
and final 10 seconds and (h) PIP joint tracking error for the initial and final
10 seconds. (Best viewed in color) (contd.)

the changing requirements of a subject. However, when the finger motion is

impeded using an external disturbance the system exhibited increased magni-
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Figure 3.8: Adaptive assist-as-needed control experiment with impeded finger
motion at time 66 sec and 86 sec. (a) MCP and PIP exoskeleton joint angle
with respect to time and (b) MCP and PIP joint torques with respect to time.
The joint torque magnitude increases when the finger motion is impeded.

tude of torques both at the MCP and PIP joints, which might not be safe in

case of accidental locking of a joint.

3.4.2.2 Stiffened Exoskeleton Subject Experiments

Experiments with the stiffened exoskeleton also showed similar results

(Figs. 3.9). An altered and increased magnitude of the required torque is

observed at the MCP and PIP joint, respectively, due to stiffening of the
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Figure 3.9: Results from adaptive assist-as-needed control experiments of the
index finger exoskeleton with stiffened exoskeleton joints. (a) Exoskeleton
MCP joint feed-forward and feedback torque component, (b) exoskeleton PIP
joint feed-forward and feedback torque component, (c) parameter adaptation
results for 5 out of 25 parameters (µn = [µ(n) − 70◦]T ) that contributed to the
MCP joint torque (d) parameter adaptation results for 5 out of 25 parameters
(µn = [−30◦ µ(n)]T ) that contributed to the PIP joint torque, (e) exoskeleton
joint torque variation with respect to the joint angles, (f) exoskeleton MCP
angle with respect to the PIP joint angle, (g) MCP joint tracking error for the
initial and final 10 seconds and (h) PIP joint tracking error for the initial and
final 10 seconds. (Best viewed in color)

exoskeleton PIP joint showing that the system adapted to the changed con-

figuration (Figs. 3.9(a) and (b)). RMS error for this case reduced from 5◦
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Figure 3.9: Results from adaptive assist-as-needed control experiments of the
index finger exoskeleton with stiffened exoskeleton joints. (a) Exoskeleton
MCP joint feed-forward and feedback torque component, (b) exoskeleton PIP
joint feed-forward and feedback torque component, (c) parameter adaptation
results for 5 out of 25 parameters (µn = [µ(n) − 70◦]T ) that contributed to the
MCP joint torque (d) parameter adaptation results for 5 out of 25 parameters
(µn = [−30◦ µ(n)]T ) that contributed to the PIP joint torque, (e) exoskeleton
joint torque variation with respect to the joint angles, (f) exoskeleton MCP
angle with respect to the PIP joint angle, (g) MCP joint tracking error for the
initial and final 10 seconds and (h) PIP joint tracking error for the initial and
final 10 seconds. (Best viewed in color) (contd.)
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to under 3◦ for the MCP joint and from over 4◦ to 2.5◦ for the PIP joint

(Figs. 3.9(g) and (h)).
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Chapter 4

Development of a Framework for

Rehabilitation

Stroke often leads to a persistent impairment of the upper or lower limbs

or both for a majority of the survivors [111]. Over 82% of the stroke survivors

are left severely impaired as conventional therapies for stroke rehabilitation

could only provide limited recovery. Robotic devices have been developed to

aid in stroke rehabilitation, however, robotic therapy have so far shown similar

outcomes [29]. This is because current robot-assisted therapy makes limited

use of the general motor learning and neuro-rehabilitation principles, which

have been experimentally verified over the years. An understanding of what

type of task, robot control algorithm and feedback would result in maximum

recovery could benefit robot-assisted rehabilitation.

Our idea is to first understand the key factors that affect motor learn-

ing and neuromuscular rehabilitation and then incorporate those in the robot

control algorithm to give rise to a rehabilitation environment that is optimized

for each subject and is adaptively tailored based on his or her performance and

needs. Challenge Point Hypothesis and also related experiments suggest that

optimal learning occurs when the challenge is matched with the skill level of
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Figure 4.1: An overview of the proposed framework for robot-assisted motor
(re)-learning.

the performer [55]. So far challenge in robotic rehabilitation has been modu-

lated by only adjusting the amount of assistance provided by the robot during

therapy. Experiments with this approach show that results are promising but

there is limited success as just adjusting assistance may not be sufficient to

affect true recovery. Task variability and augmented feedback have also been

shown to affect motor learning and therefore can be used to modulate challenge
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[106, 130].

We present a framework for performance-based modulation of chal-

lenge in this multi-dimensional space (task, assistance and feedback) on motor

learning and re-learning during rehabilitation (Fig. 4.1). The framework is

designed around the idea of providing an optimum rehabilitation environment

to each subject by adapting the environment variables to provide a challenge

level commensurate with the level of the skill of the subject. The rehabili-

tation environment consists of a human subject performing a functional task

with a robotic device, while the framework provides some form of feedback

(e.g. verbal, visual, or auditory). The performance on the task is assessed

using measures that estimate the level of skill of the subject. The framework

consists of continuous adaptation along the following three dimensions based

on the performance of the subject on a functional task: (i) task adaptation

to introduce sufficient variability in the task for keeping the task optimally

challenging based on the skill level of the subject, (ii) assistance adaptation to

provide a haptic guidance or an error augmentation training while smoothly

transiting between the two based on the subject’s skill level, and (iii) feedback

adaptation to provide just the right amount of feedback to avoid reliance on

feedback and instead encourage motor adaptation and learning.

One of the challenges in providing efficacious rehabilitation using robotic

devices after a neuromuscular injury such as stroke is that how motor (re)-

learning is affected by the various factors is currently unknown. To gain a

better understanding of motor (re)-learning, we address the question of how
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simultaneous adaptations along the three different dimensions affect motor

learning using the framework. We carry out human subject experiments using

the hand exoskeleton to test if simultaneous adaptation of task, assistance and

feedback can modulate challenge and affect motor learning.

4.1 Limitations of Existing Control Strategies for Re-
habilitation

Several robot control strategies have been developed for rehabilitation

of both the upper and the lower limbs, including assistive, challenge-based,

haptic simulation and coaching [102]. A majority of the work has been done on

implementing assistive strategies, including impedance-, force-field- and EMG-

based controllers. Some adaptive control techniques (e.g. adaptive assist-as-

needed) have also been developed that provide subject-specific assistance by

modifying the control parameters [3, 172]. However, clinical studies carried out

on stroke subjects using these control strategies have shown only very limited

to no improvement over conventional therapy [29]. We believe that one of the

reasons for the limited effectiveness of the existing control strategies is that so

far these are primarily focused on only one of the aspects of what constitutes a

rehabilitation environment, i.e., assistance. We first seek to understand all the

important factors that affect motor learning and neuromuscular rehabilitation

and incorporate those in the robot control algorithm to give rise to an optimum

rehabilitation environment that is subject-specific and is adaptively tailored

based on his or her performance and needs. Next, we review the factors that
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have been shown to affect motor learning and neuromuscular rehabilitation.

4.2 Factors Affecting Motor Learning and Neuromus-
cular Rehabilitation

There are three important factors that have been shown to affect motor

learning and neuromuscular rehabilitation. This includes the type and vari-

ability of task, level and nature of assistance, and frequency and modality of

feedback. Practice variability hypothesis states that motor learning is better

when a skill is performed in a variety of ways or contexts rather than one way

[43, 65, 130, 142, 162, 177]. Even though practice variability produces more er-

ror during practice and learning, several studies have shown that introducing

task variability in the acquisition session improves performance in subsequent

sessions [83, 140]. This is because a constant task becomes monotonous and

discourages motor learning by leading to memorization of the time sequence of

muscle forces rather than actual learning of the skill. Also, some studies have

shown that task-related functional training leads to long-lasting and better

outcomes [14, 50, 66, 87].

Another important factor that influences motor learning is error aug-

mentation or haptic guidance. Guidance refers to a variety of techniques in-

cluding assisting the learner by providing appropriate amounts of forces or

torques or preventing incorrect movements by means of physical limitations

on the apparatus [133]. Error augmentation, on the other hand, refers to artifi-

cially increasing movement error during practice. It has been shown in the lit-
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erature that many forms of learning, including motor learning, are error-driven

processes [139, 153]. Milot et al. carried out a comparison study to understand

whether error augmentation or haptic guidance leads to better motor learn-

ing for a timing-based task with healthy subjects [105]. Their study showed

that error augmentation training was more beneficial for the skilled subjects

whereas haptic guidance training was more effective for the less skilled sub-

jects. Patton et al. also carried out a study to understand motor adaptation in

chronic stroke survivors during the execution of planar multi-joint movements

that are disturbed by a force-field [114]. Their study showed that enhancing

trajectory errors by the use of force fields induced better learning compared

to reducing trajectory errors or providing no force field in individuals with

stroke. This shows that there is a need to develop robot control algorithms

that provide the right type of training based on the skill level of the subject

for the task at hand and adapt as the skill level of the subject changes. This

conclusion is also in line with the challenge point hypothesis, which speculates

that when optimal challenge is offered to the individuals based on their skill

level, greater learning is achieved [55].

Augmented feedback has also been shown to play a significant role

in motor learning in several studies [69, 106, 107, 143]. This type of feedback

can be provided in the form of knowledge of results (outcome), knowledge of

performance (e.g. quality or type of movement) or visual information (e.g.

current and desired trajectory) about performance on the task. Some studies

have shown that uncertainty in visual feedback determines the speed of motor
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adaptation and that noisy visual feedback reduces the rate of adaptation [146,

168]. Furthermore, guidance hypothesis predicts that augmented feedback is

beneficial for motor learning when used to reduce error, but detrimental when

relied upon [131]. A heavily guiding form of feedback might be detrimental for

learning. Also, practice with a high relative frequency of augmented feedback

would be detrimental for learning. Thus, there is a need to provide augmented

feedback that adapts based on the subject-specific performance on the task and

becomes easy or difficult to interpret to encourage motor learning [171].

4.3 Need for a Torque-based Task

Force-control based strategies (e.g. impedance, admittance, assist-

as-needed [23]) can be more effective for rehabilitation of both the upper

[16, 33, 118] and lower limbs [102] than pure position-based control [58]. How-

ever, even though force-controlled devices have been developed for both the

upper and lower limbs, these devices have so far focused on training for ac-

curacy of movement and correlating position tracking accuracy with degree

of rehabilitation [76, 172]. Studies have shown that the ability to dynamically

control fingertip force is critical for dexterous manipulation [21, 158, 159]. Since

manipulation relies heavily on applying appropriate interaction forces on the

concerned object, a training paradigm that deals with training for forces or

torques could be more effective in improving the manipulation skill. There ex-

ists a few studies where the subjects deal with an isometric manipulation task

[51, 86, 115]. However, a training paradigm that provides subjects an opportu-

156



nity to dynamically regulate finger joint torque or force could be more effective

in developing the skill for dexterous manipulation. Thus, training to achieve

desired torques at finger joints and assessing performance based on accuracy

of torque tracking could be more effective to develop and assess manipulation

skill.

4.4 Framework for Robot-assisted Motor (Re)-learning

We present a novel rehabilitation framework that combines aforemen-

tioned factors to provide an optimum rehabilitation environment with a chal-

lenge level commensurate with the level of the skill of the subject. This frame-

work consists of a rehabilitation environment with a robotic device using which

a task is performed by the subject, while the framework provides some form

of feedback (Fig. 4.1). The performance on the task is measured using per-

formance measures, which determine the level of skill of the subject. These

performance measures are then used to carry out the three forms of adaption

mentioned above. The role of adaptation at the task level is to introduce suffi-

cient variability in the task to keep the task challenging based on the skill level

of the subject. Adaptation in assistance is carried out to smoothly transition

from a haptic guidance training to an error augmentation training based on

the performance on the task. Finally, adaptation in feedback is carried out to

provide just the right amount of feedback to avoid reliance on feedback and

instead promote motor adaptation and learning. Different types of adaptation

algorithms can be incorporated in this framework for each component. We
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implement the following three types of adaptations for our experiments.

4.4.1 Task Adaptation

To model variability in task, we model a functional task using a machine

learning algorithm that learns and generates arbitrarily complex movement

patterns that are rhythmic and require multi-joint coordination using nonlinear

dynamical systems [68]. This approach uses a canonical limit cycle oscillator

with well-defined stability properties and modifies the attractor landscape of

the canonical system using statistical learning methods to embed arbitrary

smooth target patterns without loosing the stability properties. This learned

pattern generator is an autonomous dynamical system, which can robustly

deal with external perturbations that disrupt the time dependent flow of the

original motion pattern. Another important aspect of this approach is that it

allows for on-line modifications of the target trajectory. The variability in the

learned task can be then introduced by changing the frequency and amplitude

parameters of the non-linear dynamical system based on performance. This

approach allows us to model any periodic task in the form of a time based

trajectory (e.g. position or torque trajectory).

4.4.1.1 Modeling Task

We use a nonlinear oscillator (4.1) to create a rhythmic phase variable

(φ) that governs the desired output trajectory (4.2) using a learned nonlinear
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function (4.3).

ẋ1 = − µ
r0

(r − r0)x1 − k2x2

ẋ2 =
x1

(1 + κx2(y − yd)T (y − yd))

(4.1)

ẏ = f + β(ym − yd) + κy(y − yd) (4.2)

f = Ψ(φ)w
√
r0 (4.3)

where x1 and x2 are the states of the oscillator, parameter k corresponds to

the frequency of the oscillator, r0 corresponds to the desired total energy and

determines the amplitude of the oscillation, µ determines the convergence rate

to the limit cycle and β is a positive constant. ym is a parameter which

determines the mean around which y oscillates. y and yd are the measured

and the desired output, respectively. κx2 and κy are the output feedback gains

for x2 and ẏ, respectively. Ψ is the matrix with Gaussian kernel function given

in (4.4).

ψi = e
−(φ− ci)2

σ2
i (4.4)

φ = tan−1

(
x1

kx2

)
(4.5)

The non-linear oscillator has a stable limit cycle characterized by the closed

trajectories as in (4.6)

x2
1

2
+
k2x2

2

2
= r0 (4.6)

and energy at any state (x1, x2) as

r(x1, x2) =
x2

1

2
+
k2x2

2

2
(4.7)
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To learn the nonlinear function f from a given desired trajectory (yd),

we solve a nonlinear function approximation problem to find the parameters w

in (4.3). Given the sampled trajectory data (yd), we obtain the target function

using (4.8)

ftarget = ẏd − β(ym − yd) (4.8)

We use an incremental radial basis function network to learn the target func-

tion, which has been shown to be more robust and generate compact networks

[175]. Such a learning algorithm can allocate resources as needed while dealing

with the bias-variance dilemma in a systematic way.

4.4.1.2 Incorporating Variability in Learned Task

We model the amplitude and frequency of the learned task as a function

of performance on the task as in (4.9). We consider the error over N time

steps to assess performance instead of instantaneous performance to take into

account the averaged performance, which gives a more accurate estimate of

the skill level of the subject.

Amplitude: r0 = e

−κr
1

N

N∑
i=1

(yi − yi,d)
T (yi − yi,d)

Frequency: k = k0e

−κk
1

N

N∑
i=1

(yi − yi,d)
T (yi − yi,d)

(4.9)

where κr and κk are the parameters associated with amplitude and frequency,

respectively. k0 is the maximum desired frequency and n refers to the number
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of output trajectories being tracked. yi and yi,d represent the actual and

the desired joint torque vector for ith. According to this model as the error

increases the relative amplitude of the motion reduces from one towards zero

and the frequency of the motion reduces from k0 towards zero.

4.4.2 Assistance Adaptation

Incorporating both performance-based error augmentation or haptic

guidance training requires a controller that could seamlessly transition from

haptic guidance regimen to an error-augmentation one. We incorporate performance-

based error augmentation or haptic guidance in the control algorithm using

adaptive impedance control as given by (4.10).

θm,j,ff = kj,ff
1

rm

(
yj,d

2kjrj

)
kj,ff = mtanh

(
1

N

N∑
i=1

(yj,i − yj,i,d)2

) (4.10)

where θm,j,ff represents the feed-forward motor position for the jth exoskeleton

joint, which is calculated using the desired joint torque (yj,d), exoskeleton SEA

joint stiffness (kj) and joint and motor pulley radii (rj and rm). kj,ff is the

gain for the jth joint that determines the amount of assistance provided by the

exoskeleton based on the torque tracking performance of the subject on the

task. yj,i and yj,i,d represent the actual and the desired torque of the jth joint

of the exoskeleton for ith sample, respectively. In this type of control both

gain and trajectory adaptations take place. The gain is adapted such that the

controller gain becomes negative (error augmentation training) as the error
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becomes very low and increases (haptic guidance) as the error becomes large.

We use modified hyperbolic tangent function for gain adaptation to realize

such an adaptation.

4.4.3 Visual Feedback Adaptation

We incorporate performance-based visual feedback by changing the

transparency of the visual feedback based on the performance on the task

as in (4.11).

tj,r = kj,t

1− e
−κj,t

N∑
i=1

(yj,i − yj,i,d)2

 (4.11)

where tj,r, kj,t and κj,t represent the degree of transparency, transparency

gain and the parameter governing the rate at which the transparency changes

with change in torque tracking error, respectively, corresponding to the jth

joint. The visual feedback becomes less transparent, i.e., less visible, as the

performance over the task improves, making the task more challenging for the

subject.

4.5 Experimentation

We carry out experimentation to evaluate first the functionality of the

framework and then use the framework to test a hypothesis on motor learning

of healthy subjects using our previously developed hand exoskeleton [4].
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4.5.1 Task Modeling

For the task to be learnable for healthy subjects, we chose the simul-

taneous tracking of torque trajectories at the two joints of index finger ex-

oskeleton as the task for our experiments. We limit the task to two joints

as a visual feedback is associated with the task and simultaneously observ-

ing more than two trajectories is very challenging for the subjects. In order

to develop a torque-based task that is closer to the natural finger motion, we

first run the index finger exoskeleton in zero-torque mode and perform a finger

flexion-extension task with a healthy subject. During this motion, we collect

the exoskeleton joint angle trajectories and learn a model using the approach

presented in Section 4.4.1.1. In order to generate the torque trajectory associ-

ated with this task, we then run the device in impedance control mode to track

the learned trajectories. The recorded exoskeleton joint torque trajectories are

then again learned using the learning from demonstration approach. Finally,

the torque task is generated using the learned dynamic model.

4.5.2 Task, Assistance and Visual Feedback Adaptation

The three adaptations presented in Section 4.4 are then introduced in

the modeled torque tracking task. We tested the functioning of the framework

by letting a subject perform the torque tracking task and observing the vari-

ation in task amplitude and frequency, joint impedance and transparency of

visual feedback.

163



4.5.3 Hypothesis Testing

There is a wide spectrum of training paradigms that could be designed

using our framework. The training paradigm could vary from one where no

adaptation takes place in task, assistance or feedback to the one where simul-

taneous adaptation of task, assistance and feedback takes place. As a first

step towards understanding of how these training paradigms could affect mo-

tor learning, we propose a hypothesis and carry out human subject studies to

examine the same.

We carry out a human subjects study with the goal of understanding:

(i) if the subjects could learn the task when trained in the presence of three

types of adaptations as incorporated in the framework and (ii) if the three

types of adaptations could modulate the level of challenge i.e. the three adap-

tations affect the motor learning rate as compared to a training where the

task, assistance and feedback do not adapt. 10 healthy subjects (seven male

and three female, ages 19-32) with no history of any neuromuscular injury, vol-

untarily participated in the experiments, after they provided their informed

consent. The subjects were randomly distributed among two groups, one is

trained with an adaptive training paradigm and the other with a non-adaptive

training. The study was approved by The University of Texas at Austin insti-

tutional review board.
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Figure 4.2: The index finger exoskeleton module and the graphical user inter-
face presented to the subject for the motor learning study.

4.5.3.1 Hypothesis

Training using simultaneous adaptation of task, assistance and feedback

based on performance can modulate challenge and affect motor learning of

healthy human subjects on a torque-based task.

4.5.3.2 Training Task

The torque tracking task was presented to the subject in the form of an

engaging game (Fig. 4.2). The graphical user interface for the game consists

of two torque tunnels corresponding to the two joints of the index finger. The

subjects are asked to build appropriate levels of torques at the two exoskeleton

joints such that they could travel in the two tunnels as far as possible without
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hitting the boundaries of either tunnel. The current torque level is shown

to the subject in the form of a visual feedback whose visual transparency is

governed based on the performance on the task. Rewards in the form of coins

are presented at the center of the tunnel, which corresponds to the desired

torque trajectory and the subjects are encouraged to collect as many coins

as possible while navigating the tunnels to score higher in the game. The

game becomes progressively more difficult as the width of each tunnel reduces

linearly as subjects travel farther in the tunnels. The total score consists of

the sum of how long a subject could survive in the game and how many coins

the subject collects on his or her way. A higher score in the game reflects a

subject’s capability to dynamically generate desired level of torque at the two

finger joints under uncertain visual feedback. Both the current and maximum

scores are also shown to encourage active participation of the subjects in the

task. For adaptive training, the task, assistance and feedback is varied as

described in Section 4.4. For non-adaptive training, the task, assistance and

feedback is kept constant during training.

4.5.3.3 Evaluation Task

To assess the skill level of the subject, an evaluation task was presented

to the subjects in the form of a challenging game. For the evaluation task,

the task frequency and amplitude (4.13), resistive feed-forward assistance gain

(4.14) and visual feedback transparency (4.15) were varied with three different

random variables (χk, k = {1, 2, 3}) uniformly distributed between 0 and 1
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(4.12). This ensures that the level of challenge for the evaluation task remains

consistent for each subject.

χk ∼ U([0, 1]), k = {1, 2, 3} (4.12)

Amplitude: r0 = e−κrχ1

Frequency: k = k0e
−κkχ1

(4.13)

kj,ff = mtanh (χ2) (4.14)

Transparency: tr = kj,t

(
1− e−κtχ3

)
(4.15)

where U([a, b]) represents a uniform distribution between a and b.

4.5.3.4 Protocol

The study consisted of five training and three evaluation sessions for

each training group. In each training session the subjects played the game with

the training task for at least 15 minutes. Each training session was conducted

on a separate day to ensure that subjects could learn and retain the task from

session to session. For evaluation, each subject was presented with 10 trials of

the evaluation task to assess the level of skill of the subject. Each subject was

evaluated before, in the middle of and after training to assess any improvement

in performance on the task. In the first session, each subject was tested on

the evaluation task to assess the pre-training performance. The subjects were

then trained for three sessions using the adaptive or non-adaptive training

task and the performance is assessed again using the evaluation task at the

end of third session. Finally, the subjects were trained for two sessions and

their performance was again assessed at the end of fifth training session. The
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post-, mid- and pre-training performance were then compared to understand

if statistically significant improvement in performance is observed. During

experiments the subjects were not informed whether they are being trained

or evaluated or which training paradigm they are being trained with. Since,

it is difficult to perform consistently in each trial, we consider top 5 scores

in 10 trials in each evaluation session for statistical analysis to assess the

performance of each subject.

4.6 Results

4.6.1 Task Modeling

Results show that the exoskeleton joint angle task trajectories are re-

produced by the learned dynamic model for both the joints (Fig. 4.3(c)). The

states and phase of the nonlinear oscillator which governs the generation of

the joint angle trajectory show periodic motion (Figs. 4.3(a) and (b)). Also,

the exoskeleton joint torques generated using the learned dynamic model re-

produce the torque trajectories measured from the device as obtained using

impedance control (Fig. 4.3(d)).

4.6.2 Task, Assistance and Visual Feedback Adaptation

Results show that the three types of performance-based adaptations are

captured by the framework and are reflected while performing the task. The

task amplitude reduces as the torque root mean square (RMS) error increases

and vice versa (Fig. 4.4(b)). The feed-forward assistance gain varies as per
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Figure 4.3: The finger flexion-extension task as modeled using the learning
from demonstration approach. (a) The states and (b) phase angle of the
nonlinear oscillator corresponding to the exoskeleton joint angle trajectories,
(c) measured and generated exoskeleton joint angle trajectories for the two
exoskeleton joints and (d) measured and generated exoskeleton joint torques.
(contd.)
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Figure 4.3: The finger flexion-extension task as modeled using the learning
from demonstration approach. (a) The states and (b) phase angle of the
nonlinear oscillator corresponding to the exoskeleton joint angle trajectories,
(c) measured and generated exoskeleton joint angle trajectories for the two
exoskeleton joints and (d) measured and generated exoskeleton joint torques.

(4.10) as the torque RMS error changes (Fig. 4.4(c)). The transparency of the

visual feedback decreases, i.e., the trajectory becomes less visible as the torque

tracking error reduces making the task more challenging. Thus, the three

adaptations ensure that the task is consistently challenging for the subject

even when the skill level of the subject changes.

4.6.3 Hypothesis Testing

4.6.3.1 Total Score

Results from the human subjects study showed that the performance of

4 out of 5 subjects and all 5 subjects improve in the evaluation session with the

adaptive and non-adaptive training paradigm, respectively (Fig. 4.5). Higher

scores were observed with non-adaptive training than with adaptive training.

A few different learning trends were also observed. Some subjects showed
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Figure 4.4: The three types of adaptations as implemented in the framework
for the torque tracking task. (a) Exoskeleton joint torque RMS error trajecto-
ries, (b) normalized task amplitude and frequency trajectories, (c) exoskeleton
feed-forward assistance gain trajectories and (d) visual feedback transparency
trajectories for the two exoskeleton joints. (contd.)
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Figure 4.4: The three types of adaptations as implemented in the framework
for the torque tracking task. (a) Exoskeleton joint torque RMS error trajecto-
ries, (b) normalized task amplitude and frequency trajectories, (c) exoskeleton
feed-forward assistance gain trajectories and (d) visual feedback transparency
trajectories for the two exoskeleton joints.

a steady improvement in performance from pre- to post-training evaluation.

While some form of saturation in performance was visible in the performance

of others. Only one subject showed an improvement from pre- to mid-training

session and a decline in performance from mid- to post-training evaluation with

adaptive training. Thus, training using adaptations does modulate challenge

and affects motor learning of the subjects.

4.6.3.2 Time- and Tracking-based Scores

Since the total score consists of time- and tracking-based scores, we

also analyze these scores individually. Time-based score indicates for how

long a subject could survive as they are trained. Tracking-based score at the

two exoskeleton is a measure of how well the subject could track the desired
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Figure 4.5: The box plot of the total score for subjects 1 and 4 in the evalu-
ation sessions conducted before, in the middle of and after training with and
without the adaptive training. The left side plots show training with all three
adaptations and the right side plots show training without the adaptations.
The central mark represents the median, the edges of the box are the 25th

and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers and the outliers are plotted individually.

torque trajectories. 4 out of 5 and all 5 subjects showed some improvement

in time- and tracking-based scores at both the MCP and PIP joints with the
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Figure 4.6: The box plot of the time-based score for subjects 1 and 4 in the
evaluation sessions conducted before, in the middle of and after training with
and without the adaptations. The left side plots show training with all three
adaptations and the right side plots show training without the adaptations.

adaptive and non-adaptive training, respectively (Figs. 4.6,4.7,4.8). However,

higher improvements in score were observed with non-adaptive training than

with adaptive training indicating that adaptations do influence motor learning.
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Figure 4.7: The box plot of the MCP torque-tracking-based score for subjects
1 and 4 in the evaluation sessions conducted before, in the middle of and after
training with and without the adaptations. The left side plots show training
with all three adaptations and the right side plots show training without any
adaptation.

4.6.3.3 Tracking Performance per unit Time

Another important way to assess the improvement in the skill of the

subjects is to determine how accurately a subject played as they could survive
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Figure 4.8: The box plot of the PIP torque-tracking-based score for subjects
1 and 4 in the evaluation sessions conducted before, in the middle of and after
training with and without the adaptations. The left side plots show training
with all three adaptations and the right side plots show training without any
adaptation.
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for a longer duration from session to session. We evaluated tracking perfor-

mance per unit time metric to assess this improvement in the skill. Since the

coins are located on the desired trajectory, the number of coins collected by a

subject indicates the tracking performance of the subject. Thus, coins collected

per unit time is a measure of the skill level of the subject. Results showed that

tracking performance per unit time improves for 4 out of 5 subjects and all 5

subjects with the adaptive and non-adaptive training, respectively (Fig. 4.9).

Thus, subjects not only could survive longer as they are trained, they also

get better at playing the game. Higher improvement in tracking performance

per unit time is observed in non-adaptive training than with adaptive training

suggesting adaptations do affect motor learning.

4.6.3.4 Smoothness

The normalized mean RMS torque tracking error which is an indicator

of the smoothness of the torque trajectory also improved from 41.57 % to

21.79% of peak torque at MCP joint and from 40.90% to 31.01% of peak

torque at PIP joint for Subject 1 with an adaptive training paradigm. For

a training paradigm with no adaptations, the normalized mean RMS torque

tracking error improved from 38.89 % to 15.43% of peak torque at MCP joint

and from 44.04% to 17.70% of peak torque at PIP joint for Subject 1. Thus,

both training paradigms improved the quality of movement of the subjects

with an adaptive training paradigm being more challenging for the subjects

for motor learning.
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Figure 4.9: The box plot of the coins collected per unit time for subjects
1 and 4 in evaluation sessions conducted before, in the middle of and after
training with and without the adaptations. The left side plots show training
with all three adaptations and the right side plots show training without any
adaptation.
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4.6.3.5 Statistical Analysis

Both the median and mean scores in the evaluation sessions improved

with training considering scores of all subjects for both the adaptive and non-

adaptive training (Figs. 4.10 (a) and (b). Higher increase in scores were ob-

served with non-adaptive training than with adaptive training. This shows

that a task with all three types of adaptations was more challenging for the

subjects than a non-adaptive task. However, the analysis showed that the

variance of score also increase with both types of training. Thus, as subjects

get better at playing the game they also become less consistent at achiev-

ing the same score. While a consistent increase in variance is observed with

an adaptive training, the variance tend to diminish with more training in a

non-adaptive paradigm (Figs. 4.10 (c) and (d)).

A paired-samples t-test was conducted to compare the evaluation scores

of all subjects before and after adaptive training. There was a significant

difference in scores before (M=22.0, SD=7.0) and after training (M=68.8,

SD=39.2); t(24)=-5.1, p<0.0001. A post hoc power analysis revealed that

on the basis of the mean, before and after comparison effect size observed in

the study with adaptive training, an n of approximately 3 would be needed

to obtain statistical power at the 0.99 level. Another paired-samples t-test

was conducted to compare the evaluation scores of all subjects before and af-

ter non-adaptive training. A significant difference in scores before (M=36.7,

SD=17.4) and after training (M=131.4, SD=31.9); t(24)=-6.2, p<0.0001 is

observed. Another post hoc power analysis revealed that on the basis of the
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Figure 4.10: Combined total score for all subjects in evaluation sessions con-
ducted before, in the middle of and after training with and without the adap-
tations. (a), (b) Box plot of the total score and (c), (d) Error bar plot of the
total score. The left side plots show training with all three adaptations and
the right side plots show training without any adaptation. The center in the
error bar represents mean and whiskers represent two standard deviation units
in length.

mean, before and after comparison effect size observed in the study with non-

adaptive training, an n of approximately 3 would be needed to obtain sta-

tistical power at the 0.98 level. These results support the hypothesis that
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Figure 4.11: The results from multiple comparison test, where the center circle
represents the group mean and the error bar represent the 95% confidence in-
terval of the mean. SB-WA and SB-WOA represent score group before training
with and without adaptations, respectively. SA-WA and SA-WOA represent
score group after training with and without adaptations, respectively.

training using both adaptive and non-adaptive paradigms positively affects

motor learning on a torque-based task.

To distinguish between the motor learning in the two training paradigms

a Tukey-Kramer multiple comparison test [155] was carried out to examine

whether the scores obtained after adaptive training (SA-WA) are statistically

different from those obtained after a non-adpative training (SA-WOA) and

whether these two are statistically different from their respective scores before

training (SB-WA and SB-WOA, respectively). Significance was set at p<0.05.

Results show that even when the scores of the subjects chosen for the two types
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Table 4.1: The results from the multiple comparison test. SB-WA and SB-
WOA represent score group before training with and without adaptations,
respectively. SA-WA and SA-WOA represent score group after training with
and without adaptations, respectively.

Comparison
Mean

Difference

95% Confidence
Interval of
Difference

Significant?
Adjusted p

value

SB-WA vs
SB-WOA

-14.68 -34.63 to 5.27 No 0.2250

SB-WA vs
SA-WA

-46.76 -66.71 to -26.81 Yes <0.0001

SB-WA vs
SA-WOA

-109.36 -129.31 to -89.41 Yes <0.0001

SB-WOA vs
SA-WA

-32.08 -52.03 to -12.13 Yes <0.0001

SB-WOA vs
SA-WOA

-94.68 -114.63 to -74.73 Yes <0.0001

SA-WA vs
SA-WOA

-62.60 -82.55 to -42.65 Yes <0.0001

of training in the beginning are not statistically different, the scores for the

two groups are statistically different after training (Fig. 4.11 and Table 4.1).

This shows that the adaptive and non-adaptive training significantly affects

the rate at which motor learning takes place. These results support the hy-

pothesis that simultaneous adaptation of task, assistance and visual feedback

can modulate challenge and affect motor learning on a torque-based task.
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4.7 Discussion

Results showed that there are differences in the rate at which motor

learning takes place based on the type of task, assistance and visual feedback

provided during training. Subjects with an adaptive task, assistance and vi-

sual feedback training showed significantly different learning rates than those

trained under the non-adaptive paradigm. This shows that adaptations in the

space of task, assistance and visual feedback governs the rate of motor learn-

ing. We further speculate that several factors might be responsible for such

differences in learning rates, which we discuss next.

Firstly, an adaptive paradigm training is more challenging for a subject

to learn in. This is because as subjects learn to perform the task better,

the task also becomes correspondingly challenging making it difficult for the

subject to continue performing at the same level of performance. This could

influence the motivation of a subject in different ways, which we believe is

highly subject-specific. If the subject perceives the task to be too challenging

it can discourage the subject and they can loose the motivation to learn the

task.

Secondly, the rate of adaptation plays a crucial role in how the subjects

learn and determine the rate of motor adaptation [25]. Tasks that adapt too

fast may make it difficult for the motor system of the subjects to reach a

steady state and will therefore be perceived as very challenging or unintuitive.

There might exist a task with an optimum rate of adaptation that would result

in best learning rate. For example, a less skilled subject would learn better
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if the task is less challenging as his motor system could learn from such a

task. However, a highly skilled subject would continue to learn if the task is

more challenging. Thus, the rate of adaptation needs to be subject-specific for

maximum learning.

Thirdly, since three types of adaptations are carried out simultaneously,

it is difficult for the subjects to isolate the effect of each type of adaptation.

So, adaptive training with one of the factors being adapted at a time might

be better as compared to all the factors being adapted simultaneously as the

motor system of the subject could better interpret the adaptations and the

task becomes more intuitive for the subjects. There might even be an optimum

sequence in which the three adaptations should be introduced in the training

regimen for achieving the best possible rate of learning.

Fourthly, challenge even when adapted based on the level of skill of the

subject, might not always encourage learning, which is in contradiction with

challenge point hypothesis. Different types of adaptations could be present in

the environment (i.e. task, assistance and visual feedback) and each subject

could perceive these as different level of challenges and therefore, respond

differently to these adaptations. May be not all forms of challenge encourage

motor learning. Or may be it is not the challenge but how subjects perceive

challenge is what governs motor learning. Subjects who perceive challenge as

discouraging might not be benefited by a training paradigm that challenges

the subjects and vice versa.

There are also several limitations of the human subject experiments car-
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ried out to test the motor learning hypothesis. Firstly, though games played by

each subject adapted as per the needs of the subject, same rate of adaptations

were used for all the subjects. A subject-specific adaptation rate might result

in better learning. However, how to determine these adaptation rates for a

specific subject that maximizes learning is still an open question. Secondly,

the games were based on a torque-based task which is assumed to better re-

flect the needs of rehabilitation than a position-based task. Clinical testing

would be needed to ensure that a torque-based task is necessarily better than

a position-based task. Thirdly, it is assumed that the scores are a measure of

the motor learning of the subjects and reflect their true skill level. It might be

difficult to capture and measure all the nuances of motor learning with such a

performance measure.

4.8 Conclusion

The presented framework addresses the limitation of the existing con-

trol strategies in that it provides an evidence-based means to understand how

task, assistance and feedback affects motor learning. It incorporates these

three important factors and provides a subject-specific training environment

as per the skill level of the subject. We carried out human subject experiments

with a torque-based task to verify if training using simultaneous adaptation of

task, assistance and feedback could affect motor learning of healthy subjects.

Results showed that task, assistance and feedback adaptations could signifi-

cantly affect the rate at which motor adaptation takes place and can modulate
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challenge for the subjects. These results have implications for rehabilitation

as our framework could provide subject-specific therapy regimen based on the

understanding of what affects the rate of motor adaptation of a subject the

most and gear the therapy as per his or her needs.
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Chapter 5

Conclusions and Future Work

5.1 Summary

In this dissertation, we address the following three stated research goals:

(i) design, development and testing of a hand exoskeleton, (ii) development of

advanced controllers for the device and (iii) development of a framework for

rehabilitation and its implementation on the hand exoskeleton.

Towards the goal of designing and developing a hand exoskeleton, we

developed two miniature and compact Bowden-cable-based SEAs with linear

compression and torsion springs for bidirectional torque control of small-scale

robotic devices. Experiments using a SEA test rig showed that with a feed-

forward PID controller the desired torque was tracked with sufficient accuracy

(RMSE < 12 %) and fidelity (> 97 %) for both the actuators. Using one of the

developed SEAs, we developed a hand exoskeleton capable of controlling the

torques at the individual joints of the hand digits. The designed device assists

the index and middle fingers and thumb, while allowing for large range of mo-

tion of the hand digits. We also carried out several different tests with both the

index finger and thumb exoskeleton modules to characterize the performance

of the device.
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For advanced controls of the device, two subject-specific assist-as-needed

controllers were developed for the index finger module of the hand exoskeleton.

This is the first time that AAN controllers have been developed for a hand

exoskeleton. Experiments showed that the learned force-field control is able to

maintain the desired relation between the joint displacements for coordinated

motion. Also, the adaptive-assistance-based control is able to quickly adapt

to the changing requirements of a subject and track the desired joint angle

trajectory with small RMS errors. For rehabilitation therapy where the goal is

to train for time critical tasks with accurate tracking of the desired joint angle

trajectory in time, adaptive assist-as-needed control would be a better choice.

On the other hand, therapy where the coordination between the joints is im-

portant rather than the timeliness of the motion, learned force-field control

would be more helpful. Learned force-field control is safer than the adaptive

assist-as-needed control, as it does not apply increased torques if the motion

is accidentally stalled.

Finally, we presented a framework for robot-assisted motor (re)-learning

that incorporates subject-specific training. The framework allows for simulta-

neous adaptation of task, assistance and feedback based on the performance

of a subject on a task to keep the task sufficiently challenging for the subject.

As a part of the framework development, we presented a learning from demon-

stration approach to model a coordinated task to modulate the challenge level

of the task in an online manner. We also presented a torque-based task that

trains subject to dynamically regulate joint torques similar to that needed for
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dexterous manipulation. Finally, we conducted a study with the human sub-

jects and the results suggested that a training paradigm that simultaneously

adapts the task, assistance and feedback does modulate challenge and affect

motor learning of healthy humans subjects on a torque-based task.

5.2 Conclusions

This work has made several contributions to the area of stroke rehabil-

itation in general and hand rehabilitation more specifically. We developed a

device capable of providing therapeutic exercises to hand similar to a therapist.

The device could control torque applied at the individual joints of index and

middle fingers and thumb while assisting them through their range of motion.

The controllers developed for the device could be used to provide therapy for

various hand impairments that result from stroke or spinal cord injury. We

also realized during the experiments that each subject has their requirements

and a specific type of control would best serve their needs. Furthermore, we

developed a framework for robot-assisted rehabilitation that could help deter-

mine a subject-specific therapy regimen based on principles of motor learning.

We also provided an instantiation of the framework which could be used to

provide therapy to impaired subjects. Beyond the present application of the

developed device as a rehabilitation tool, it can also be used as a haptic device

for virtual reality applications. Furthermore, the proposed framework is more

general and could be applied to train impaired subjects using other robots in

a rehabilitation setting.
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5.3 Future Work

There are severals ways in which the design and control of the device

and the rehabilitation framework could be further improved:

1. One of the areas that still needs improvement before the device could

be used in a clinical setting is the interface of the device with the hand.

The current interface (especially the wireform strucutre in the thumb

exoskeleton) requires some subject-specific customization before it fits

to the hand of a subject at its natural position. The wearability of the

device could be improved by attaching it to a glove that could help in

quick doning and doffing of the device.

2. The structural design of the device including the actuator and control

boxes could be further optimized to make the overall device more com-

pact and portable.

3. Since both the learned force-field control and the adaptive assist-as-

needed control have their respective limitations, new controllers that

address the limitations of both the control techniques could be designed

for more efficacious rehabilitation.

4. Several different hypothesis could be tested using the proposed frame-

work to understand the role of each component and how rate of different

types of adaptations influence motor learning. Also the efficacy of this

multi-modal challenge modulation could be tested for different tasks.
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5. We also plan to carry out human subject studies with individuals that

exhibit hand pathologies to evaluate the efficacy of the device and the

rehabilitation framework.
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Appendix 1

Expression for Jacobian

The expression for Jacobian (J =
∂X

∂Θr

) is obtained symbolically using

MATLAB as expressed in (1.1).

J1,1 =
lBC lCD cos(θ1 − θ4)

x3

− lBC sin(θ1 − θ4)

J1,2 = 0

J2,1 =
lBC cos(θ1 − θ4)

x3

J2,2 = 0

J3,1 =
n3,1

d3,1

J3,2 = − lEF cos(θHFG + θ5 − θ8 + θ6r)

lEF cos(θHFG + θ5 − θ8 + θ6r)− lCE cos(θHFG + θ5 − θ8)

J4,1 =
n4,1

d4,1

J4,2 =
lCE lEF sin(θ6r)

lFH (lEF cos(θHFG + θ5 − θ8 + θ6r)− lCE cos(θHFG + θ5 − θ8))

(1.1)

where Ji,j represents the (i, j)th entry in the Jacobian and

n3,1 = −
5 lBC sin

(
θHFG + tan−1

(
lAH−x3
lCD

)
+ θ1 − θ8

)
x3

2

4
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−
lBC sin

(
tan−1

(
lAH−x3
lCD

)
− θHFG + θ1 + θ8

)
x3

2

4

+
lAH

2 lBC sin
(
θHFG + tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ8

)
2

+
lBC sin

(
θHFG + tan−1

(
lAH−x3
lCD

)
− θ1 − θ8

)
x3

2

4

+
lBC sin

(
tan−1

(
lAH−x3
lCD

)
− θHFG − θ1 + θ8

)
x3

2

4

+
lAH

2 lBC sin
(
θHFG + tan−1

(
lAH−x3
lCD

)
+ θ1 − θ8

)
2

−
lBC sin

(
θHFG + tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ8

)
x3

2

2

−
11 lBC lCD cos

(
θHFG + tan−1

(
lAH−x3
lCD

)
+ θ1 − θ8

)
x3

8

−
lBC lCD cos

(
tan−1

(
lAH−x3
lCD

)
− θHFG + θ1 + θ8

)
x3

8

−
7 lAH lBC sin

(
θHFG + tan−1

(
lAH−x3
lCD

)
+ θ1 − θ8

)
x3

4

+
lAH lBC sin

(
tan−1

(
lAH−x3
lCD

)
− θHFG + θ1 + θ8

)
x3

4

+ lAH lBC lCD cos

(
θHFG + tan−1

(
lAH − x3

lCD

)
−θ1 + 2 θ4 − θ8)

−
lBC lCD cos

(
θHFG + tan−1

(
lAH−x3
lCD

)
− θ1 − θ8

)
x3

8

+
lBC lCD cos

(
tan−1

(
lAH−x3
lCD

)
− θHFG − θ1 + θ8

)
x3

8
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−
lAH lBC sin

(
θHFG + tan−1

(
lAH−x3
lCD

)
− θ1 − θ8

)
x3

4

−
lAH lBC sin

(
tan−1

(
lAH−x3
lCD

)
− θHFG − θ1 + θ8

)
x3

4

+ lAH lBC lCD cos

(
θHFG + tan−1

(
lAH − x3

lCD

)
+ θ1 − θ8

)

−
lBC lCD cos

(
θHFG + tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ8

)
x3

2

+
lBC sin(θHFG + θ1 − θ8) x3

2

2
√

(lAH−x3)2

lCD
2 + 1

+
lBC sin(θ1 − θHFG + θ8) x3

2

2
√

(lAH−x3)2

lCD
2 + 1

− lBC lCD cos(θHFG + θ1 − θ8) x3

4
√

(lAH−x3)2

lCD
2 + 1

+
lBC lCD cos(θ1 − θHFG + θ8) x3

4
√

(lAH−x3)2

lCD
2 + 1

− lAH lBC sin(θHFG + θ1 − θ8) x3

2
√

(lAH−x3)2

lCD
2 + 1

− lAH lBC sin(θ1 − θHFG + θ8) x3

2
√

(lAH−x3)2

lCD
2 + 1

d3,1 = x3 (lEF cos(θHFG + θ5 − θ8 + θ6r)

−lCE cos(θHFG + θ5 − θ8))

n4,1 =
lBC lCE cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 + θ5

)
x3

2

4

−
lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ5 − θ6r

)
x3

2

2
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−
5 lBC lCE cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 − θ5

)
x3

2

4

−
lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 + θ5 + θ6r

)
x3

2

4

−
lAH

2 lBC lCE cos
(

tan−1
(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ5

)
2

+
5 lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 − θ5 − θ6r

)
x3

2

4

−
lBC lCE x3

2 cos
(

tan−1
(
lAH−x3
lCD

)
− θ1 − θ5

)
4

+
lAH

2 lBC lEF cos
(

tan−1
(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ5 − θ6r

)
2

−
lAH

2 lBC lCE cos
(

tan−1
(
lAH−x3
lCD

)
+ θ1 − θ5

)
2

+
lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 + θ5 + θ6r

)
x3

2

4

−
lBC lCE cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 + θ5

)
x3

2

4

+
lBC lCE cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ5

)
x3

2

2

+
lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 − θ5 − θ6r

)
x3

2

4

+
lAH

2 lBC lEF cos
(

tan−1
(
lAH−x3
lCD

)
+ θ1 − θ5 − θ6r

)
2

+
lAH lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 + θ5 + θ6r

)
x3

4

+
lBC lEF cos(θ1 − θ5 − θ6r) x3

2

2
√

(lAH−x3)2

lCD
2 + 1
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+
lBC lCD lEF sin

(
tan−1

(
lAH−x3
lCD

)
− θ1 + θ5 + θ6r

)
x3

8

+
lBC lCD lEF sin

(
tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ5 − θ6r

)
x3

2

+
7 lAH lBC lCE cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 − θ5

)
x3

4

−
lAH lBC lCE cos

(
tan−1

(
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− θ1 + θ5

)
x3

4

−
3 lBC lCD lCE sin

(
tan−1

(
lAH−x3
lCD

)
+ θ1 − θ5

)
x3

2

+ lAH lBC lCD lCE sin

(
tan−1

(
lAH − x3

lCD

)
− θ1 + 2 θ4 − θ5

)
− lBC lEF cos(θ1 + θ5 + θ6r) x3

2

2
√

(lAH−x3)2

lCD
2 + 1

−
7 lAH lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 − θ5 − θ6r

)
x3

4

+
lBC lCE cos(θ1 + θ5) x3

2

2
√

(lAH−x3)2

lCD
2 + 1

+
11 lBC lCD lEF x3 sin

(
tan−1

(
lAH−x3
lCD

)
+ θ1 − θ5 − θ6r

)
8

+
lAH lBC lCE x3 cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 − θ5

)
4

− lAH lBC lCD lEF sin

(
tan−1

(
lAH − x3

lCD

)
− θ1 + 2 θ4 − θ5 − θ6r

)

−
lAH lBC lEF cos

(
tan−1

(
lAH−x3
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)
+ θ1 + θ5 + θ6r

)
x3

4

+ lAH lBC lCD lCE sin

(
tan−1

(
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)
+ θ1 − θ5

)

197



−
lBC lCD lEF sin

(
tan−1

(
lAH−x3
lCD

)
+ θ1 + θ5 + θ6r

)
x3

8

+
lAH lBC lCE cos

(
tan−1

(
lAH−x3
lCD

)
+ θ1 + θ5

)
x3

4

−
lAH lBC lEF cos

(
tan−1

(
lAH−x3
lCD

)
− θ1 − θ5 − θ6r

)
x3

4

− lBC lCE x3
2 cos(θ1 − θ5)

2
√

(lAH−x3)2

lCD
2 + 1

−
lBC lCD lCE sin

(
tan−1

(
lAH−x3
lCD

)
− θ1 + 2 θ4 − θ5

)
x3

2

+
lBC lCD lEF sin

(
tan−1

(
lAH−x3
lCD

)
− θ1 − θ5 − θ6r

)
x3

8

− lAH lBC lCD lEF sin

(
tan−1

(
lAH − x3

lCD

)
+ θ1 − θ5 − θ6r

)
− lAH lBC lEF cos(θ1 − θ5 − θ6r) x3

2
√

(lAH−x3)2

lCD
2 + 1

+
lBC lCD lEF sin(θ1 − θ5 − θ6r) x3

4
√

(lAH−x3)2

lCD
2 + 1

+
lAH lBC lEF cos(θ1 + θ5 + θ6r) x3

2
√

(lAH−x3)2

lCD
2 + 1

+
lBC lCD lEF sin(θ1 + θ5 + θ6r) x3

4
√

(lAH−x3)2

lCD
2 + 1

− lAH lBC lCE cos(θ1 + θ5) x3

2
√

(lAH−x3)2

lCD
2 + 1

+
lAH lBC lCE x3 cos(θ1 − θ5)

2
√

(lAH−x3)2

lCD
2 + 1

d4,1 = lFH x3 (lEF cos(θHFG + θ5 − θ8 + θ6r)

−lCE cos(θHFG + θ5 − θ8))
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The derivative of the Jacobian is evaluated numerically using (1.2).

J̇(t) =
J(t)− J(t−∆t)

∆t
(1.2)
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