38 research outputs found

    Modeling and Simulation of Metallurgical Processes in Ironmaking and Steelmaking

    Get PDF
    In recent years, improving the sustainability of the steel industry and reducing its CO2 emissions has become a global focus. To achieve this goal, further process optimization in terms of energy and resource efficiency and the development of new processes and process routes are necessary. Modeling and simulation have established themselves as invaluable sources of information for otherwise unknown process parameters and as an alternative to plant trials that involves lower costs, risks, and time. Models also open up new possibilities for model-based control of metallurgical processes. This Special Issue focuses on recent advances in the modeling and simulation of unit processes in iron and steelmaking. It includes reviews on the fundamentals of modeling and simulation of metallurgical processes, as well as contributions from the areas of iron reduction/ironmaking, steelmaking via the primary and secondary route, and continuous casting

    Book of abstracts of the 16th International Symposium of Croatian Metallurgical Society - SHMD \u272023, Materials and metallurgy

    Get PDF
    Book of abstracts of the 16th International Symposium of Croatian Metallurgical Society - SHMD \u272023, Materials and metallurgy, Zagreb, Croatia, April 20-21, 2023. Abstracts are organized into five sections: Anniversaries of Croatian Metallurgy, Materials - Section A; Process Metallurgy - Section B; Plastic Processing - Section C and Metallurgy and Related Topics - Section D

    Electromagnetic measurements of steel phase transformations

    Get PDF
    This thesis describes the development of electromagnetic sensors to measure the phase transformation in steel as it cools from the hot austenite phase to colder ferritic based phases. The work initially involved investigating a variety of sensing configurations including ac excited coils, C-core arrangements and the adaptation of commercial eddy current proximity sensors. Finally, two prototype designs were built and tested on a hot strip mill. The first of these, the T-meter was based on a C-shaped permanent magnet with a Gaussmeter measuring the magnetic field at the pole ends. Laboratory tests indicated that it could reliably detect the onset of transformation. However, the sensor was sensitive to both the steel properties and the position of the steel. To overcome this, an eddy current sensor was incorporated into the final measurement head. The instrument gave results which were consistent with material property variations, provided the lift off variations were below 3Hz. The results indicated that for a grade 1916 carbon- manganese steel, the signal variation was reduced from 37% to 2%, and the resulting output was related to the steel property variations. The second of these prototypes was based on a dc electromagnetic E-core, with Hall probes in each of the three poles. 'Cold' calibration tests were used to decouple the steel and the lift-off. The results indicated that there was an error of 3-4% ferrite/mm at high ferrite fractions. At lower fractions the error was higher due to the instrument’s insensitivity to lift-off. The resulting output again showed a relationship with varying steel strip properties. ft was also shown that a finite element model could be calibrated to experimental results for a simple C-core geometry such that the output was sensitive to 0.2% of the range. This is required to simulate the sensor to resolve to 10% ferrite

    PhD students´day FMST 2023

    Get PDF
    The authors gave oral presentations of their work online as part of a Doctoral Students’ Day held on 15 June 2023, and they reflect the challenging work done by the students and their supervisors in the fields of metallurgy, materials engineering and management. There are 82 contributions in total, covering a range of areas – metallurgical technology, thermal engineering and fuels in industry, chemical metallurgy, nanotechnology, materials science and engineering, and industrial systems management. This represents a cross-section of the diverse topics investigated by doctoral students at the faculty, and it will provide a guide for Master’s graduates in these or similar disciplines who are interested in pursuing their scientific careers further, whether they are from the faculty here in Ostrava or engineering faculties elsewhere in the Czech Republic. The quality of the contributions varies: some are of average quality, but many reach a standard comparable with research articles published in established journals focusing on disciplines of materials technology. The diversity of topics, and in some cases the excellence of the contributions, with logical structure and clearly formulated conclusions, reflect the high standard of the doctoral programme at the faculty.Ostrav

    Environmental Sustainability of Current Waste Management Practices

    Get PDF
    Environmentally sustainable and economic waste management is of significant importance to various fields, including the healthcare, mining, industrial, metal-processing, municipal and commercial sectors. This book provides a global perspective and covers a wide range of state-of-the-art topics on waste management, recycling, material and energy recovery, industrial waste, etc. Information in the form of in-depth reviews and research articles will be a valuable resource for academics, professionals and regional as well as international organizations

    Advances in Organic Corrosion Inhibitors and Protective Coatings

    Get PDF
    The interaction of metal with its environment that results in its chemical alteration is called metallic corrosion. According to the literature, corrosion is classified to two types: uniform and localized corrosion. Intervention in either in the alloy environment or in the alloy structure can provide the corrosion protection of metallic materials. Furthermore, the interference in the metal alloy environment can be conducted with the utilization of cathodic or anodic protection via the corresponding inhibitors. Therefore, the most common categorization is cathodic, anodic, and mixed-type inhibitors, taking into account which half-reaction they suppress during corrosion phenomena. The majority of the organic inhibitors are of mixed type and perform through chemisorption. In order to update the field of the corrosion protection of metal and metal alloys with the use of organic inhibitors, a Special Issue entitled "Advances in Organic Corrosion Inhibitors and Protective Coatings" is introduced. This book gathers and reviews a collection of ten contributions (nine articles and one review), from authors from Europe, Asia, and Africa, that were accepted for publication in this Special Issue of Applied Sciences

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    Welding, brazing, and thermal cutting.

    Get PDF
    "This document examines the occupational health risks associated with welding, brazing, and thermal cutting, and it provides criteria for eliminating or minimizing the risks encountered by workers in these occupations. The main health concerns are increased risks of lung cancer and acute or chronic respiratory disease. The data in this document indicate that welders have a 40% increase in relative risk of developing lung cancer as a result of their work experience. The basis for this excess risk is difficult to determine because of uncertainties about smoking habits, possible interactions among the various components of welding emissions, and possible exposures to other occupational carcinogens. However, the risk of lung cancer for workers who weld on stainless steel appears to be associated with exposure to fumes that contain nickel and chromium. The severity and prevalence of noncarcinogenic respiratory conditions are not well characterized among welders, but they have been observed in both smoking and nonsmoking workers in occupations associated with welding. Excesses in morbidity and mortality among welders exist even when reported exposures are below current Occupational Safety and Health Administration (OSHA) permissible exposure limits (PELs) for the many individual components of welding emissions. An exposure limit for total welding emissions cannot be established because the composition of welding fumes and gases varies for different welding processes and because the various components of a welding emission may interact to produce adverse health effects. Some of these include alkali metals, alkaline earths, aluminum, beryllium, cadmium, chromium, fluorides, iron, lead, manganese, nickel, silica, titanium, zinc, carbon monoxide, nitrogen oxides, and ozone. NIOSH therefore recommends that exposures to all welding emissions be reduced to the lowest feasible concentrations using state-of-the-art engineering controls and work practices. Exposure limits for individual chemical or physical agents are to be considered upper boundaries of exposure." - NIOSHTIC-2CurrentPrevention and ControlEnvironmental Healt
    corecore