6 research outputs found

    Descriptive temporal template features for visual motion recognition

    Get PDF
    In this paper, a human action recognition system is proposed. The system is based on new, descriptive `temporal template' features in order to achieve high-speed recognition in real-time, embedded applications. The limitations of the well known `Motion History Image' (MHI) temporal template are addressed and a new `Motion History Histogram' (MHH) feature is proposed to capture more motion information in the video. MHH not only provides rich motion information, but also remains computationally inexpensive. To further improve classification performance, we combine both MHI and MHH into a low dimensional feature vector which is processed by a support vector machine (SVM). Experimental results show that our new representation can achieve a significant improvement in the performance of human action recognition over existing comparable methods, which use 2D temporal template based representations

    Automatic emotional state detection using facial expression dynamic in videos

    Get PDF
    In this paper, an automatic emotion detection system is built for a computer or machine to detect the emotional state from facial expressions in human computer communication. Firstly, dynamic motion features are extracted from facial expression videos and then advanced machine learning methods for classification and regression are used to predict the emotional states. The system is evaluated on two publicly available datasets, i.e. GEMEP_FERA and AVEC2013, and satisfied performances are achieved in comparison with the baseline results provided. With this emotional state detection capability, a machine can read the facial expression of its user automatically. This technique can be integrated into applications such as smart robots, interactive games and smart surveillance systems

    Social Touch Gesture Recognition using Random Forest and Boosting on Distinct Feature Sets

    Get PDF
    Touch is a primary nonverbal communication channel used to communicate emotions or other social messages. Despite its importance, this channel is still very little explored in the affective computing field, as much more focus has been placed on visual and aural channels. In this paper, we investigate the possibility to automatically discriminate between different social touch types. We propose five distinct feature sets for describing touch behaviours captured by a grid of pressure sensors. These features are then combined together by using the Random Forest and Boosting methods for categorizing the touch gesture type. The proposed methods were evaluated on both the HAART (7 gesture types over different surfaces) and the CoST (14 gesture types over the same surface) datasets made available by the Social Touch Gesture Challenge 2015. Well above chance level performances were achieved with a 67% accuracy for the HAART and 59% for the CoST testing datasets respectively

    Emotion Recognition by Two View SVM_2K Classifier on Dynamic Facial Expression Features

    Get PDF
    A novel emotion recognition system has been proposed for classifying facial expression in videos. Firstly, two types of basic facial appearance descriptors were extracted. The first type of descriptor, called Motion History Histogram (MHH), was used to detect temporal changes of each pixels of the face. The second type of descriptor, called Histogram of Local Binary Patterns (LBP), was applied to each frame of the video and was used to capture local textural patterns. Secondly, based on these two basic types of descriptors, two new dynamic facial expression features called MHH_EOH and LBP_MCF were proposed. These two features incorporate both dynamic and local information. Finally, the Two View SVK_2K classifier was built to integrate these two dynamic features in an efficient way. The experimental results showed that this method outperformed the baseline results set by the FERA'11 challenge

    Human activity recognition for the use in intelligent spaces

    Get PDF
    The aim of this Graduation Project is to develop a generic biological inspired activity recognition system for the use in intelligent spaces. Intelligent spaces form the context for this project. The goal is to develop a working prototype that can learn and recognize human activities from a limited training set in all kinds of spaces and situations. For testing purposes, the office environment is chosen as subject for the intelligent space. The purpose of the intelligent space, in this case the office, is left out of the scope of the project. The scope is limited to the perceptive system of the intelligent space. The notion is that the prototype should not be bound to a specific space, but it should be a generic perceptive system able to cope in any given space within the build environment. The fact that no space is the same, developing a prototype without any domain knowledge in which it can learn and recognize activities, is the main challenge of this project. In al layers of the prototype, the data processing is kept as abstract and low level as possible to keep it as generic as possible. This is done by using local features, scale invariant descriptors and by using hidden Markov models for pattern recognition. The novel approach of the prototype is that it combines structure as well as motion features in one system making it able to train and recognize a variety of activities in a variety of situations. From rhythmic expressive actions with a simple cyclic pattern to activities where the movement is subtle and complex like typing and reading, can all be trained and recognized. The prototype has been tested on two very different data sets. The first set in which the videos are shot in a controlled environment in which simple actions were performed. The second set in which videos are shot in a normal office where daily office activities are captured and categorized afterwards. The prototype has given some promising results proving it can cope with very different spaces, actions and activities. The aim of this Graduation Project is to develop a generic biological inspired activity recognition system for the use in intelligent spaces. Intelligent spaces form the context for this project. The goal is to develop a working prototype that can learn and recognize human activities from a limited training set in all kinds of spaces and situations. For testing purposes, the office environment is chosen as subject for the intelligent space. The purpose of the intelligent space, in this case the office, is left out of the scope of the project. The scope is limited to the perceptive system of the intelligent space. The notion is that the prototype should not be bound to a specific space, but it should be a generic perceptive system able to cope in any given space within the build environment. The fact that no space is the same, developing a prototype without any domain knowledge in which it can learn and recognize activities, is the main challenge of this project. In al layers of the prototype, the data processing is kept as abstract and low level as possible to keep it as generic as possible. This is done by using local features, scale invariant descriptors and by using hidden Markov models for pattern recognition. The novel approach of the prototype is that it combines structure as well as motion features in one system making it able to train and recognize a variety of activities in a variety of situations. From rhythmic expressive actions with a simple cyclic pattern to activities where the movement is subtle and complex like typing and reading, can all be trained and recognized. The prototype has been tested on two very different data sets. The first set in which the videos are shot in a controlled environment in which simple actions were performed. The second set in which videos are shot in a normal office where daily office activities are captured and categorized afterwards. The prototype has given some promising results proving it can cope with very different spaces, actions and activities

    Multi-Modality Human Action Recognition

    Get PDF
    Human action recognition is very useful in many applications in various areas, e.g. video surveillance, HCI (Human computer interaction), video retrieval, gaming and security. Recently, human action recognition becomes an active research topic in computer vision and pattern recognition. A number of action recognition approaches have been proposed. However, most of the approaches are designed on the RGB images sequences, where the action data was collected by RGB/intensity camera. Thus the recognition performance is usually related to various occlusion, background, and lighting conditions of the image sequences. If more information can be provided along with the image sequences, more data sources other than the RGB video can be utilized, human actions could be better represented and recognized by the designed computer vision system.;In this dissertation, the multi-modality human action recognition is studied. On one hand, we introduce the study of multi-spectral action recognition, which involves the information from different spectrum beyond visible, e.g. infrared and near infrared. Action recognition in individual spectra is explored and new methods are proposed. Then the cross-spectral action recognition is also investigated and novel approaches are proposed in our work. On the other hand, since the depth imaging technology has made a significant progress recently, where depth information can be captured simultaneously with the RGB videos. The depth-based human action recognition is also investigated. I first propose a method combining different type of depth data to recognize human actions. Then a thorough evaluation is conducted on spatiotemporal interest point (STIP) based features for depth-based action recognition. Finally, I advocate the study of fusing different features for depth-based action analysis. Moreover, human depression recognition is studied by combining facial appearance model as well as facial dynamic model
    corecore