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ABSTRACT

Multi-Modality Human Action

Recognition

Yu Zhu

Human action recognition is very useful in many applications in various areas, e.g. video

surveillance, HCI (Human computer interaction), video retrieval, gaming and security.

Recently, human action recognition becomes an active research topic in computer vision

and pattern recognition. A number of action recognition approaches have been proposed.

However, most of the approaches are designed on the RGB images sequences, where the

action data was collected by RGB/intensity camera. Thus the recognition performance

is usually related to various occlusion, background, and lighting conditions of the image

sequences. If more information can be provided along with the image sequences, more

data sources other than the RGB video can be utilized, human actions could be better

represented and recognized by the designed computer vision system.

In this dissertation, the multi-modality human action recognition is studied. On one

hand, we introduce the study of multi-spectral action recognition, which involves the

information from different spectrum beyond visible, e.g. infrared and near infrared.

Action recognition in individual spectra is explored and new methods are proposed.

Then the cross-spectral action recognition is also investigated and novel approaches are

proposed in our work. On the other hand, since the depth imaging technology has made

a significant progress recently, where depth information can be captured simultaneously

with the RGB videos. The depth-based human action recognition is also investigated.

I first propose a method combining different type of depth data to recognize human

actions. Then a thorough evaluation is conducted on spatiotemporal interest point

(STIP) based features for depth-based action recognition. Finally, I advocate the study

of fusing different features for depth-based action analysis. Moreover, human depression

recognition is studied by combining facial appearance model as well as facial dynamic

model.
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Chapter 1

Introduction

Human action recognition aims at automatically recognizing ongoing actions performed

by humans, from unknown videos or still images. Human action recognition has many

important potential applications in various areas, e.g. video surveillance, HCI (Human

computer interaction), video retrieval, gaming and security. Recently, human action

recognition becomes an active research topic in computer vision and pattern recognition.

Although automatic human action recognition is an important technique involved in

many real-world applications, and many methods have been proposed, it is still a very

challenging problem. Action recognition involves with so many challenging tasks and

fields including signal processing, machine learning and photography, how to recognize

human actions effectively still remains an open problem.

Among various problems related to human action recognition, such as gesture recogni-

tion [3], facial expression recognition[ [4], and movement behavior recognition [5], in this

dissertation, we firstly put our focus on the full-body actions, which often consists dif-

ferent motions and required considerations of head, hand, body and feet actions. Then

we explore a special action problem: depression recognition. Depression recognition can

be considered as a facial action analysis problem which is related to facial movement,

facial expression, and upper body movements. Among different categorizations of action

recognition problem, one way of classifying different action recognition problems is the

different level of the human actions. We adopt the hierarchy structure proposed in Moes-

lund et al. [6], where they have divided human actions into: action primitive, action

and activity. An action primitive is an atomic movement such as ’head turn around’ and

’leg up’; and an action is considered consists of action primitives and describe a more

complex movement, e.g. ’walking’, and ’running’; activity contain a number of actions,

give a more complex high level meaning of human movement that is performed. For

1
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example, ’pickup’, and ’writing on board’. We focus on actions that mainly performed

by single subject, and full body movement, which excludes the gesture recognition.

In the recent decades, there are a number of research works on action recognition, and

a number of approaches have been proposed to solve the human action recognition on

video/images sequences [7] [8] [6] [9] [10] [11]. However, most of the approaches are

focusing on the RGB images sequences, which can be viewed as given a sequence of

images or videos, design a system that can automatically recognize what action is being

performed. The data was collected by a single camera and the video sequence is the

regular RGB image sequence. In such scenario, the system performance is highly related

to the different occlusion, background, viewpoint, and even light conditions of the image

sequences. These variations are commonly occurred in real life. Therefore, if more

information can be provided along with the image sequences, more data modalities other

than the single RGB video data can be utilized, one can better represent and recognize

human actions than only utilizing the single model (RGB videos). For example, multi-

view action recognition [12], used a number of cameras to collect human actions from

different views. Several algorithms are also designed to use the information from different

views to improve the performance of recognition system. Motion capture data [6], which

is commonly used for animation and video games, where sparse movement information

is extracted from the markers on human body by the optical system. Thus the temporal

information can be provided more precisely through the positions of markers which can

represent human skeleton in the videos. More recently, action recognition on RGB-D

data is popular. RGB-D data collection, e.g. using the Kinect sensor [13], can provide

the depth information other than the only RGB image sequences, and from the depth a

human skeleton tracking algorithm is proposed to extract the skeleton joints positions

[13]. Thus for the Kinect RGB-D data, three modalities (RGB, depth, and skeleton

joints) can be utilized for the study of action recognition tasks.

Although a great progress has been made in human action recognition [7], [14], there

are limitations in current practice. For instance, current action recognition studies are

mainly in the visible spectrum, which constrains the application to the daytime or with

sufficient illumination, since humans and human actions cannot be captured in the dark

or evening using the visible spectrum. In application scenarios such as visual surveil-

lance and HCI under weak illumination or in the dark, the visible light based action

recognition cannot function any more. To deal with the limitations of visible spectrum

and advance human action recognition to a new level, we introduce multi-spectra ac-

tion recognition. Multi-spectra action recognition is a multi-modality action recognition

problem, which uses the information from different spectrum, combines the different

modalities, e.g. visible and infrared, and designs the algorithm to better utilizing the
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properties of each modality for action recognition. In our work, not only action recog-

nition can be performed on visible spectrum, but also the investigation of infrared/near

infrared action recognition is meaningful. To the best of our knowledge, human action

recognition in infrared and near infrared has not been well studied yet. Therefore in our

work, we aim to explore novel methods dealing with this new problem and improving

the action recognition performance in individual spectra, e.g. infrared and near infrared.

Because different modalities contain different information and with different properties,

which can always complement each other for human action recognition, so we also put

our focus on how to combine the different modalities and design the system to improve

the final recognition performance.

Recently, human action recognition using the depth data captured by the emerging RGB-

D sensors has shown a great potential in action analysis, compared to the traditional

color video-based approaches. Several features and/or algorithms have been proposed

for depth-based action recognition. To have a better understanding of depth videos for

action recognition, we advocate the study of fusing different features for depth-based

action analysis. Although data fusion has shown great success in many areas, such as

multimedia analysis and biometrics, it has not been well studied yet on whether the

fusion is helpful or not for depth-based action recognition, or how to do the fusion

properly. In this work, we study different fusion schemes comprehensively, using diverse

features for action characterization in depth videos.

Moreover, we have studied a new problem of facial action analysis for estimating human

depression diagnosis scores given the video clips. This study is related facial movement

analysis, such as facial expression recognition, emotion recognition, which is also a special

category in human action recognition. Recent study investigators have focused on the

more challenging problem of analyzing facial action unit in psychopathology assessment.

Researchers have used automatic facial action analysis to help the diagnosis of depression

disorder. However, the performance of the accurately predicting depression disorder

is still not very good. Therefore, we study to utilizing the deep learning methods, to

automatically predict the depression values given the facial action videos. This is the first

time that deep learning approach are proposed to the depression recognition problem,

to the best of our knowledge. We propose a two stream deep learning network with joint

tuning layers, and experimental results shown significant improvement compare to the

previous approaches on two large databases.

This dissertation is organized as follows: A literature review of the human action recog-

nition is firstly conducted in Chapter II, we introduce our new multi-spectral action

database in this chapter. Then, Chapter III, Chapter IV, and Chapter V, are the sec-

ond part of the dissertation, which is mainly focusing on multi-spectral human action
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recognition. In Chapter III, a method based on adaptive SVM is proposed to deal with

the visible to infrared action recognition problem. In Chapter IV, a new heterogeneous

approach is proposed by utilizing correlation mapping and information theory for the

newly defined action problem: heterogeneous action recognition. In Chapter V, a new

method based on the histogram of sparse codes is proposed for action recognition in

infrared spectra. Next, in Chapter VI, and Chapter VII is the third part of the disserta-

tion, where the RGB-D action recognition is studied and new approaches are presented.

In chapter VI, an evaluations based on spatiotemporal interest point features on several

depth-based action databases are presented. In chapter VII, we study the data fusion

methods for depth-based action recognition. Moreover, in Chapter VIII, we further the

new action recognition problem, visual based facial depression recognition, where deep

learning method is proposed dealing with the facial action unit in order to predict the

depression value of the subject. Finally, summaries and conclusions are drawn in chapter

IX.



Chapter 2

Literature review

2.1 Abstract

Recently, human action recognition becomes a very active and important topic in com-

puter vision. However, most of the works that have been done to recognize human actions

are based on visible spectrum, e.g. RGB videos. In this chapter, we first take a brief

literature review of the research on human action recognition, then we propose a new

problem for human action recognition called multi-modality human action recognition.

We have collected a new action database which captured human actions in three differ-

ent spectra, i.e. visible, near infrared, and infrared. This database not only provides

a benchmark for new methods on action recognition beyond visible, but also intriguers

other interesting research problems on the multi-modality human action recognition.

2.2 Introduction

Human action recognition, which has a wide range of applications, attracts great research

attentions in computer vision and pattern recognition. Human action recognition is to

recognize actions performed by humans from unknown videos or still images. Human

action recognition is very useful in many applications in various areas, e.g. video surveil-

lance, HCI (Human computer interaction), video retrieval and game playing. Although

many methods have been proposed, it is still a very challenging problem. Involved with

so many challenging tasks and fields including signal processing, machine learning and

photography, how to recognize human actions effectively still remains an open problem.

Among various problems related to human action recognition, such as gesture recognition

[3], facial expression recognition [4], and movement behavior recognition [5], in this work,

5
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we put our focus on the full-body actions, which often consists different motions and

required considerations of facial, hand, body and feet actions. Another way of classifying

different action recognition problems is the different level of the human actions. We

adopt the hierarchy proposed in Moeslund et al. [6] they have divided human actions

into: action primitive, action and activity. An action primitive is an atomic movement

such as ’head turn around’ and ’leg up’; and an action is considered consists of action

primitives and describe a more complex movement, e.g. ’walking’, and ’running’; activity

contain a number of actions, give a more complex high level meaning of human movement

that is performed. For example, ’pickup’, and ’writing on board’. We focus on actions

that mainly performed by single subject, and full body movement, which excludes the

gesture recognition.

In the recent decades, there are a number of works on action recognition, and a bunch

of methods have been proposed to solve the human action recognition on video/images

sequences [7] [8] [6] [9] [10] [11]. However, most of the approaches are focused on the

RGB images sequences, which can be viewed as given a sequence of images or videos,

design a system that can automatically recognize what action is being performed. The

data was collected by a single camera and the video sequence is the regular RGB image

sequence. In such way, the system performance is highly related to the different occlu-

sion, background, viewpoint, and even light condition of the image sequences, which is

commonly occurred in real life. Thus, if more information can be provided along with

the image sequences, more data models other than the single RGB video data can be

utilized, so that one can better represent and recognize human actions than only use

the single model (RGB videos). For example, multi-view action recognition [12], use

a number of cameras to collect human actions from different views. And algorithms

are designed to use the information from different views to improve the performance

of recognition system. Motion capture data [6], which is commonly used for animation

and video games, where sparse movement information is extracted from the markers on

human body by the optical system. Thus the temporal information can be provided

more precisely through the positions of markers which can represent human skeleton

in the videos. And more recently, action recognition on 3D data is popular. 3D data

collection, e.g. using the Kinect sensor [13], can provide the depth information other

than the only RGB image sequences, and from the depth a human skeleton tracking

algorithm is proposed to extract the skeleton joints positions [13]. Thus for the Kinect

3D data, three modalities (RGB, depth, and skeleton joints) can be utilized for action

recognition tasks.

Although a great progress has been made in human action recognition [7], [14], there

are limitations in current practice. For instance, current action recognition studies are

mainly in the visible spectrum, which constrains the application to the daytime or with
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sufficient illumination, since humans and human actions cannot be captured in the dark

or evening using the visible spectrum. In application scenarios such as visual surveil-

lance and HCI under weak illumination or in the dark, the visible light based action

recognition cannot function any more. To deal with the limitations of visible spectrum

and advance human action recognition to a new level, we introduce multi-spectra ac-

tion recognition. Multi-spectra action recognition is a multi-modality action recognition

problem, which uses the information from different spectrum, combines the different

modalities, e.g. visible and infrared, and designs the algorithm to better utilizing the

properties of each modality for action recognition. Because different modalities contain

different information and with different properties, which can always complement each

other for human action recognition, so we put our focus on how to combine the different

modalities and design the system to improve the final recognition performance.

2.3 Literature review

In the literature, several survey papers have been proposed recently for the area of human

action recognition and human motion analysis [7] [8] [6] [9] [10] [11] [14]. In this section,

we first present a general overview of different methods on action recognition. Secondly,

several commonly used human action datasets are presented. Then we reviewed several

spatiotemporal approaches. Finally, some recent work on depth based action recognition

is presented.

There are several surveys for action recognition and human motion analysis. For hu-

man action recognition, in the early survey [15] by Bobick, a taxonomy of movement

recognition, activity recognition and action recognition is used. Latter in Aggrawal and

Cai’s [16] work, three categories: body structure analysis, tracking and recognition are

used. Gavrila [8] uses a taxonomy of 3D approaches, 3D approaches and recognition.

Moeslund and Granum [17] use a taxonomy based on subsequent phases in the pose

estimation. In the survey by Turaga el al., they focus on the higher-level recognition

of human activity [9]. In Liang Wang’s work [11], they uses similar taxonomy like [16],

detection, tracking, and understanding for human action analysis. In Ronald Poppe’s

survey [7], action recognition methods are divided into model-based and model free

categories, where model-based is generative and model-free discriminative approaches,

respectively. More recently, Daniel Weinland in [10] reviewed vision based methods in

three parts, action representation, segmentation and recognition. There are also some

surveys focus on different problems in human motion analysis and action recognition,

e.g. in [3], they review the gesture methods, in [6] a survey is conducted for the motion
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Table 2.1: Statistics of different human action datasets.

Datasets # Actions # Subjects # S./A. # Videos

KTH [19] 6 25 25 2391

Weizmann [20] 10 9 9 90

UCF Sports Action [21] 9 N/A N/A 200

Hollywood2 Actions [22] 12 N/A N/A 2517

IXMAS [12] 13 12 12 36

MSRAction3D [23] 20 10 10 576

UCF50 [24] 50 N/A N/A 6618

HMDB51 [25] 51 N/A N/A 6849

Sports-1M [26] 487 N/A N/A 1M

capture systems, and recently in [18], the reviews the works on human motion analysis

on depth imagery.

Following Turaga el al.’s work [9], a generic action recognition system can be viewed as

proceeding from sequences of images to a higher-level interpretation in a series of steps.

The major steps involved are: (1) Input the video or images sequences. (2) Extract low

level feature (3) Action description from low-level features (4) Semantic interpretation

or action classification.

2.3.1 Representative Action Databases

There are many public available human action datasets for action recognition and anal-

ysis, which allows for the comparison of different approaches and gives more comprehen-

sive insight of different methods. In this subsection, we introduce and describe several

most widely used datasets for action recognition. Table 1 shows some statistics of these

datasets.

2.3.1.1 KTH human action dataset

The KTH human action dataset [19] has six actions collected in this dataset. There are

totally 25 different subjects performed each action in four different scenarios. The six

actions are: walking, jogging, running, boxing, hand waving and hand clapping. Four

different scenarios are: outdoors, indoors, outdoors with zooming, and outdoors with

different clothing.
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2.3.1.2 Weizmann human action dataset

The Weizmann human action dataset [20] recorded 10 different actions (walk, run, jump,

gallop, sideways, bend, one-hand wave, two-hands wave, jump in place, jump jack and

skip). Each action is performed by 10 subjects. In this dataset, the foreground silhou-

ettes are also provided.

2.3.1.3 UCF Sports Action dataset

In the UCF sports action dataset collected by [21], 9 actions are collected and there are

totally 150 video sequences. And the bounding boxes of the human are also provided.

The 9 actions are: diving, golf swinging, kicking, weightlifting, horseback riding, and

running, skating, swinging a baseball bat and walking.

2.3.1.4 Hollywood 2 human action dataset

There are 12 classes of actions and 10 classes of scenes in over 3669 video clips in the

Hollywood2 human action dataset [22]. The video clips are collected from 69 movies

and the aim is to provide human actions in realistic and challenging settings. There

is a huge variety of performance of the actions, and also there are occlusions, camera

movements, and background changes make this dataset more challenging.

2.3.1.5 IXMAS multi-view dataset

IXMAX multi-view dataset [12] is for view-invariant human action recognition. There

are 5 cameras installed to acquire the actions from 5 different views (one top view and

4 side views). There are 13 daily-live action performed each 3 time in this dataset. The

number of subjects is 11 and they can choose freely positions and orientations when

performing actions. Also they provide the silhouettes with the images sequences.

2.3.1.6 MSRAction3D dataset

The Action3D dataset [23] is collected by a depth sensor, which contains 20 action types

and 10 subjects. Each subject performed each action 2 or 3 times. The 20 action types

are: high arm wave, horizontal arm wave, hammer, hand catch, forward punch , high

throw, draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend,

forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick up & throw.

Those actions were chosen to cover various movements of arms, legs, torso and their
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combinations. There are totally 567 depth sequences in this dataset. And this dataset

also has a skeleton sequence file for each depth sequence.

2.3.1.7 UCF 50 dataset

UCF50 action dataset [24] is collected from YouTube videos for action recognition with

50 different action categories. UCF50 dataset is an extension of UCF11 which has

11 action categories. Totally there are 6618 video clips. The dataset is challenging

with camera motion, object appearance and pose, scale, viewpoint, and illumination

conditions, etc. The 50 action categories collected in UCF50 dataset are: Baseball

Pitch, Basketball Shooting, Bench Press, Biking, Biking, Billiards Shot,Breaststroke,

Clean and Jerk, Diving, Drumming, Fencing, Golf Swing, Playing Guitar, High Jump,

Horse Race, Horse Riding, Hula Hoop, Javelin Throw, Juggling Balls, Jump Rope,

Jumping Jack, Kayaking, Lunges, Military Parade, Mixing Batter, Nun chucks, Playing

Piano, Pizza Tossing, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rock

Climbing Indoor, Rope Climbing, Rowing, Salsa Spins, Skate Boarding, Skiing, Skijet,

Soccer Juggling, Swing, Playing Tabla, TaiChi, Tennis Swing, Trampoline Jumping,

Playing Violin, Volleyball Spiking, Walking with a dog, and Yo Yo.

2.3.1.8 HMDB51 dataset

HMDB51 dataset [25] is collected mostly from movies and a small portion from other

public databases like YouTube and Google Videos. The total number of video clips in

this dataset is 6849, which are divided into 51 actions classes. Those action categories

contain different action type, such as facial actions, body movements, body movements

with object interaction or human interaction. The 51 actions are: smile, laugh, chew,

talk, smoke, eat, drink, cartwheel, clap hands, climb, climb stairs, dive, fall on the floor,

backhand flip, handstand, jump, pull up, push up, run, sit down, sit up, somersault,

stand up, turn, walk, wave, brush hair, catch, draw sword, dribble, golf, hit something,

kick ball, pick, pour, push something, ride bike, ride horse, shoot ball, shoot bow, shoot

gun, swing baseball bat, sword exercise, throw, fencing, hug, kick someone, kiss, punch,

shake hands, and sword fight.

2.3.1.9 Sports-1M dataset

More recently, a more larger databases for action analysis is proposed in [26] called

Sports-1M dataset. This dataset contains 1 million videos belonging to 487 different

action classes. There are about 1000-3000 videos per class and approximately 5% of
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the video are annotated with more than one class. The classes are generally becomes

fine-grained by the leaf level from internal nodes, such as Aquatic Sports, Team Sports,

Winter, Sports, Ball Sports, Combat Sports, and Sports with Animals.

2.3.2 Methods: Feature extraction and description

In the research of action recognition, it is arguably that the feature extraction and

description are the most important steps. Feature extraction and description aims to

extract a certain type of pattern, from the input data, which is used to represent the

characteristics of the data and can be used for the classification task. We follow the [6]’s

work, usually the features extracted from the data can be divided into two categories:

global representations and local representations. The global representations encode the

video sequence as a whole. Specifically, human subject in the video sequence are first

localized by detection or tracking, then the region of interest is encoded as a whole as a

descriptor. Local representations describe the video sequence as a set of patches. Firstly

the spatiotemporal interest points are detected in the video. Then the local patches

around these interest points are considered for the feature description. Finally, the

features from all the local patches are used representing the human actions. We briefly

discuss the representative works on the global representation and give more details on

the local representations.

2.3.2.1 Global representations

In Bobick and Davis’s work [27], they extract silhouettes from a single view and aggregate

differences between subsequent frames of an action sequence. This results in a binary

motion energy image (MEI) which indicates the motion occurs.

Also latter a motion history image (MHI) is constructed where the pixel intensities are

a recency function of the silhouette motion. In the matching phase, they adopt the Hu

moments [28] which are known to yield shape discrimination in a translation and scale

invariant manner.

Blank et al. [20] have proposed an estimation method for motion flows from a 3-D

space-time volume to recognize human actions. They first stack silhouettes over a video

sequence to form a space-time volume. Then a Poisson equation is used to derive local

space-time saliency and orientation features. Each local feature gives a local match

score during the matching step. By aggregating these scores over all the local patches,

the overall correlation between the templates is computed. Their system can recognize

various types of human actions.
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In the work proposed by Shechtman and Irani [29], motions from 3-D space-time volumes

are used to recognize human actions. They have computed a 3-D space-time video

template, and utilized the correlation to measure the similarity between an observed

video volume and the template volumes.

Ke et al. [30] modeled human activities using segmented spatiotemporal volumes. They

proposed to apply a hierarchical meanshift to cluster similarly colored voxels, and obtains

several segmented volumes. The motivation is to represent the actor volume segments

automatically, and measure their similarity to the action model.

Rodriguez et al. [21] have analysis space-time volumes by synthesizing filters: The

adopted the maximum average correlation height (MACH) filters, to solve the action

recognition problem. A synthesized filter is generated for each action class, and action

classification is performed by applying the synthesized MACH filter and analyzing the

response on the new action sequence.

Recent work has shown that dense sampling can help improve the action recognition

result over sparse interest points. Wang et al. [31] in their work proposed dense trajec-

tories and motion boundary descriptors for action recognition. Their idea is to obtain

the feature trajectories by tracking the points in video through a dense grid in each

frame. So that the quality of trajectories is increased. Specifically, the features points

are firstly sampled on a grid for each spatial scale. Then tracking is applied frames by

frame in a dens optical flow field. The trajectory shape is then represented by relative

point coordinates. Finally, three different descriptors are computed along the trajectory

cells.

2.3.2.2 Local representations

Space-time trajectories. Trajectory-based approaches interpret an action as a set of

space-time trajectories. A subject is generally represented as a set of points correspond-

ing to the skeleton joints positions. And the joints positions are recoded as the human

performing the action, constructing a 3D or 4D representation of the action. In the

literature there are several approaches used the space-time trajectories to represent and

recognize actions. In Sheikh et al. [32]’s work, they proposed to represent human ac-

tions by utilizing a set of 13 joint, and the trajectories are computed in a 4-dimensional

space. A projection is used to obtain normalized trajectories of an action, so that the

view-invariant similarity between two sets of trajectories can be measured. In Yilmaz

and Shah [33]’s work, a methodology to compare action videos obtained from moving

cameras is proposed, they used the multi-view geometry between two actions, and the

set of joint trajectories in the 4 dimensional space are used for the action recognition.
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Spatiotemporal features. Among various methods on action recognition for RGB video

sequences, STIPs (Spatiotemporal Interest Points) features have shown promising per-

formance on many action datasets [14]. In this section, we summarize the commonly

used spatial-temporal interest point detectors as well as the feature descriptors.

Interest points detectors. Harris3D detector was proposed on [34]. It locates the spatial-

temporal volumes where have large variations along not only space but also temporal

directions in video sequence. A spatial temporal second-moment matrix is used to model

video sequence f ,

µ = g
(
·;σ2i , τ2i

)
∗


L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

,

where g(·) is a Gaussian weight function and L is the convolution of f with a spatiotem-

poral Gaussian kernel. The interest point locations are determined by computing the

local maxima of the response function:

H = det(µ)− k · trace3(µ).

Cuboids [5] detector computes the interest points location by the local maxima of the

response function R. R is defined as: R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2, where g is the

2D Gaussian smoothing kernel, hev and hod are a quadrature pair of 1D Gabor filter,

which are defined as hev = − cos(2πtω)e−t
2/τ2 and hev = − sin(2πtω)e−t

2/τ2 .

Willems et al. [35] proposed Hessian detector which measures the strength of each

interest point using a Hessian matrix. The response function is defined as S = |det(H)|
where H is a Hessian matrix,

L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

,which is similar to the Harris3D detector.

2.3.2.3 Local feature descriptors

Given a set of interest point locations, various feature descriptors can be used to represent

the local space-time content. Given the spatial scale σ and temporal scale τ at each

interest point location, a local volume is then extracted and employed to create the

feature vector.

Klaser et al. extends the HOG to 3D and proposed the HOG3D descriptor in [36].

It computes the histogram of 3D gradient orientations. They used integral videos to
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efficiently compute the gradients and combined both shape and motion information at

the same time.

HOG/HOF descriptor is proposed by Laptev et al. [37], they use the combination of the

histogram of gradient (HOG) and histogram of optical flow (HOF) accumulated from

the local volume, as the feature vector.

Cuboids descriptor is proposed by [5] along with the Cuboids detector. For each given

STIP point (x; y; t;σ; τ) a feature descriptor is computed as a 3D patch centered at

(x; y; t). The gradient at each spatiotemporal location is computed in each cuboid and

the histogram is used as the feature vector. Also PCA can be applied to reduce the

dimensionality.

The extended SURF (ESURF) descriptor [35], is proposed with the Hessian detector,

which is an extension of SURF [38]. For each local volume, the feature vector is com-

puted by storing the sum of uniformly sampled responses of Haar-waveletes along three

directions.

2.3.3 Action classification

When an action is represented as feature vectors for a single frame or a video sequence,

human action recognition becomes a classification problem. In many cases, feature

vector are high-dimensional, to reduce the computational complexity, dimensionality

reduction can be applied before classification. PCA [39] is common linear dimensionality

reduction approach. For classification stage, k-Nearest Neighbor classifier [40] use the

distance between the feature vector of testing set and those in the training set. The test

label is determined by the most common label among the k closest training samples of

the testing sample. Support Vector Machines (SVMs), is considered as a discriminative

classifier which focus on separating data rather than modeling them [41]. SVM learn

a hyper-plane in the feature space that described by a number support vectors. SVM

has been widely used for action recognition, especially with local representation, such

as histogram of bag-of-words. When the feature is represented according to certain

moments in time, the action recognition can be viewed as temporal state-space models.

Dynamic time warping (DTW) [42], Hidden Markov Model (HMM) [43] and Conditional

random fields (CRF) [44] are the representative approaches dealing with these problems.

2.3.4 Deep learning method

With the success that deep learning approaches have shown promising performance on

many areas in computer vision and pattern recognition, very recently, deep learning
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methods are introduced and employed to human action analysis. In [26] , deep con-

volutional neural network is proposed to classify large action data which contains 1

million video clips from 487 action classes. In their work, they proposed to utilize the

AlexNet and modified the architecture to handle the temporal information within the

action videos. Besides, they also proposed a multi-resolution architecture with a two

stream manner. Experimental result on the Sport-1M dataset shown their deep learning

approach obtained promising performance.

2.4 A New Multi-Spectra Action Databases

We collected a new human action dataset for the multi-model human action recognition,

called Multi Spectra Human Action (MSA) dataset. The dataset contains two different

modalities, visible light and thermal infrared. Our dataset contains 1800 video clips, 30

different actions performed by 30 different persons and sampled in 2 different spectrums.

In this experiment, whole dataset is sub-sampled the first 4 seconds of each video clip,

with original resolution (frame width x height: 320× 240 ) and frame rate (30 fps). The

30 actions collected in our dataset are: boxing, checkingwatch, drinking, exercisejump-

ing, fixinghair, handclapping, handwaving, helpsignaling, horizontalstretching, kicking,

knockingondoor, marching, movingbox, openingdoor, organizingtable, pickingup, read-

ing, running, sittingstanding, squating, telephoning, typing, usingmicrowave, usingre-

motecontrol, verticaljumping, walking, wipingboard, wipingtable, writing, and writin-

gonboard. Figure showed some example images of the actions in this dataset. Figure

?? shows some example images of this action dataset.

Human action recognition has been widely explored using RGB videos or images. Among

various approaches, space-time based methods such as space-time volumes, spatiotem-

poral features and trajectories are popular. In this section, we evaluate the performance

of various spatiotemporal features on our multi-model dataset, to provide a better un-

derstanding that how the spatiotemporal features perform on the data other than visible

light.

2.5 Research Problems

Our MSA database is unique. Many research problems can be studied and explored on

the MSA database, which may not be possible on some previous action databases. To

promote and advance the research on human behavior analysis both broader (multiple

modalities) and deeper (with a large number of actions), we captured the MSA database
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Figure 2.1: Examples of the actions in the dataset, and the interest point locations
detected are also showed (yellow dots). From the images one can see that the STIPs
detector can detect interest point in the infrared images but the locations are very

different from visible spectrum.

and provide it to researchers for further study. The variety of spatiotemporal features

will be provided too. Our benchmark studies of single spectrum and cross-spectral

action recognitions build a basis, and may inspire new research explorations. To make it

explicit, we propose several potential research directions that are worthy of investigation

based on the MSA database.

2.5.1 Statistical Analysis for Action Recognition

Since the MSA database has a relatively large number of actions and thirty people

per action, it can be used to do some statistical analysis for action recognition. For
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instance, one can use the MSA database to study: How does the number of training

examples (persons) influence the recognition performance? Can a method perform action

recognition with a small number of learning examples? How many examples are needed

to learn an action? How to determine a good number of training examples for a specific

algorithm? Which methods perform better for a small number of actions and which

methods perform better for a large number of actions? Is it possible to share ”common”

features among different actions?

2.5.2 Thermal Infrared Action Recognition

The MSA database can be used for action recognition in the thermal IR spectrum. In

our evaluation, the recognition performance in IR is comparable to the visible light. But

the recognition accuracy is still not high when all 30 actions are used. One can develop

new methods for action recognition in IR and evaluate on the MSA database.

2.5.3 Cross-Spectral Action Recognition

Based on our benchmark study in Section IV, the cross spectral action recognition has

extremely low performance. It is demanding to explore advanced methods to improve

the performance of cross-spectral action recognition.

2.5.4 Multispectral Data Fusion

All three spectra are available in the MSA database. It is possible to use the MSA

database to study multispectral data fusion for action recognition. For example, it is

interesting to investigate if the action recognition performance can be improved when

all spectra are fused together, and how much the improvement could be. Data fusion is

usually a useful scheme to improve decision making, but it is not clear yet on how useful

the multispectral data fusion could be in human action recognition.

2.5.5 Human Object Interaction

In the MSA database, there are about half of the actions containing human object

interactions. For instance, ”moving box” or ”opening door” has the human interacting

with different objects. While most previous databases have actions performed by the

humans only, such as walking, jogging, waving, boxing, etc. studying human object

interaction may be helpful to improve the action recognition performance, and also

improve the human detection and object detection accuracies [8], [20].
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2.5.6 Cross-Domain Action Recognition

Our MSA database has a large number of actions. It may serve as a kind of ”dictionary”

of typical actions. Consequently, those typical actions can be learned on the MSA,

and then applied to other scenarios for either action recognition or detection [45]. For

example, apply to action analysis in videos from the Internet [6] or movies [11]. Since the

actions in our MSA database are captured in a laboratory scenario, which is different

from the acquisition conditions for those actions in the Internet or movies, we call it

cross-domain action recognition.

First a brief literature review of human action recognition in video sequences is pre-

sented. Then a novel multispectral database is introduced to human action analysis.

Comparing to the previous action databases, the database is broader (multiple modali-

ties: VIS and IR), and larger (30 actions). It can serve as a common database to evaluate

action recognition methods and promote new research. Finally, we have presented some

interesting research directions that can be explored based on the multi-spectra action

database. Our work will inspire new research efforts and advance for action recognition.

In the next chapters, we focus on developing more powerful methods recognize human

actions from the infrared spectrum and explore the cross-spectral action recognition

problem.



Chapter 3

A Study on Visible to Infrared

Action Recognition

3.1 Abstract

Human action recognition is important in image and video processing with many ap-

plications. With the development of sensor technology, different cameras can be used

for action acquisition, e.g., infrared cameras. Is it possible to adapt the visible light ac-

tion recognizers to a new modality or domain? In this chapter, we study the feasibility

to adapt the action recognizer learned from visible light spectrum to infrared. A pre-

liminary result is obtained on a large database based on an adaptive learning method,

demonstrating the potential to perform cross-spectral action recognition.

3.2 Introduction

Human action recognition is important for image and video processing and understand-

ing [7] [46]. Action recognition has many applications, e.g., video surveillance, video

retrieval, and human-computer interaction (HCI) [7] [46]. As a pattern recognition

problem, a typical approach to action recognition contains two major steps: feature

extraction and classification [7]. In feature extraction, there are a number of methods

to obtain space-time representation of the action videos. Among various space-time

features, the spatiotemporal interest point (STIP) based methods usually perform well

for visible light action recognition [14]. The STIP features can reduce the redundancy

of raw video data significantly to derive a concise representation. In developing action

classifiers, the support vector machines (SVM) [47] are usually adopted because of the

good performance compared with other classifiers.

19
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Significant progress has been made recently in action recognition [46], however, the state-

of-the-art approaches to action recognition are mainly in the visible light spectrum. On

the other hand, with the sensor technology and hardware development, human actions

can be acquired by other sensors different from the visible light cameras. For example,

the thermal infrared cameras can be used to capture human actions. Actually the in-

frared spectrum has been used for face recognition [48], but seldom for action recognition

[49]. A nice property of the infrared spectrum is that it can capture humans in the dark,

which is very useful for night surveillance or HCI under dim light.

It could be interesting to study the difference between the actions captured by different

sensors. More importantly, if the actions captured in the visible light can be “trans-

ferred” to other domains or modalities for recognition, it will have great impact in

practice, since a number of existing action videos in the visible light spectrum could be

utilized to learn action recognizers and then work on a different domain. As a result,

there may be no need to collect a large training set using the new sensor. Instead, the

adapted classifiers can still be used for action recognition with the new sensor. It could

be too costly to manually collect a large number of action examples and build separate

recognizers for every sensor modality or domain. Actually, transfer learning has become

an active research topic in machine learning [50], but it has seldom been exploited for

action recognition with different modalities.

In this chapter, we study the problem of action recognition from visible to infrared.

Our goal is to understand the feasibility of using the training examples in visible light

spectrum to help action recognition in infrared. We study empirically the difference

between the extracted features from the same actions but in two different spectra, and

then develop methods to build relations between actions in the two different spectra.

In the following, we introduce our methods for visible to infrared action recognition,

which is based on classifier adaptation. Then we briefly describe the spatiotemporal

features for action representation in both spectra in Section 3.4. The experiments are

conducted on a large database, and finally, we draw conclusions.

3.3 Adapting the SVM to Infrared Action Recognition

To study the feasibility of executing action recognition from visible to infrared, we

investigate the method based on learning the difference between the classifiers in the

two different spectra using A-SVM. Based on this exploitation, we can understand how

well it can be performed for the novel task: visible to infrared action recognition.
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Suppose we have a training set of features extracted from visible light action videos, and

the corresponding labels, denoted by DV = {(xVk , yVk )}mk=1. We first train a standard

SVM for the visible light action classification with the following optimization problem

[47],

min
w

1

2
‖ w ‖2 +C

m∑
i=1

ξk (3.1)

s.t. ξk ≥ 0, yVk wTφ(xVk ) ≥ 1− ξk

where ξk are the slack variables to deal with non-separable examples in training, and∑
k ξk measures the total classification error. T is the transpose, and φ(x) is the feature

mapping to a high dimensional space with the kernel function K(x,x′) = 〈φ(x), φ(x′)〉.
The weight vector w is the solution of the SVM to determine the decision boundary

between two classes. C is a parameter to balance the two items in the objective function.

The above SVM classification is for a two-class problem. For our multi-class action

recognition, we use pair-wise comparisons to combine the binary classification results to

get the final decision.

After learning the visible light action classifier fV (x) = wTφ(x) based on the opti-

mization given in (3.1), now we consider how to adapt the classifier fV (x) to deal with

infrared action recognition.

To adapt the visible light action classifier to an infrared action classifier, f(x), we need to

have a small number of labeled action examples in the infrared spectrum, (xi, yi) ∈ DIR,

for i = 1, 2, · · · , n. The adaption of the SVM classifier fV (x) to f(x) is based on learning

a delta function [51], which can model the difference between the two classification

functions, i.e.,

f(x) = fV (x) + δf(x) = fV (x) + wTφ(x) (3.2)

where w are to be estimated to determine the delta function. Now, the objective function

to optimize for the adaptive SVM (or A-SVM) [51] becomes

min
w

1

2
‖ w ‖2 +C

n∑
i=1

ξi (3.3)

s.t. ξi ≥ 0, yif
V (xi) + yiw

Tφ(xi) ≥ 1− ξi

Note that the objective function is similar to the standard SVM, but the weight vector

w has a different meaning, because it determines the function δf(x) rather than f(x).
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Therefore, the objective function in Eq. (3.3) seeks a decision boundary that is close to

the boundary of the visible action classifier in the feature space, and also separates the

action features extracted from the infrared spectrum. The parameter C balances the

two items, i.e., the visible action classifier and the training examples in infrared. When

C is larger, the influence of the visible action classifiers will be smaller.

The objective function in Eq. (3.3) can be written as the Lagrangian function,

LP = 1
2 ‖ w ‖2 +C

∑n
i=1 ξi −

∑n
i=1 riξi (3.4)

−
∑n

i=1 αi
(
yif

V (xi) + yiw
Tφ(xi)− (1− ξi)

)
where αi ≥ 0, ri ≥ 0 are Lagrange multipliers. To minimize the function LP , one can

compute the derivative with respect to w and ξ and set the derivatives to zero. Then

the results are

w =

n∑
i=1

αiyiφ(xi) (3.5)

αi = C − ri

The Lagrange dual objective function of Eq. (3.4) is given by

LD =
n∑
i=1

(1− λi)αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj) (3.6)

where λi = yif
V (xi). The solutions α can be computed by maximizing LD under the

constraints 0 ≤ αi ≤ C. It can be solved by a quadratic programming (QP) problem

solver [47]. Given the solution α̂, the new decision function can be obtained,

f(x) = fV (x) +
n∑
i=1

α̂iyiK(x,xi) (3.7)

where (xi, yi) ∈ DIR. The adapted classifier f(x) can be considered as augmented from

the visible light action classifier fV (x) with support vectors from the subset of infrared

actions.

3.3.1 Correlation between Visible and Infrared Actions

The canonical correlation analysis (CCA) is a standard method to learn the correlation

between two modalities. Here we verify if the CCA method can be used for our visible to

infrared action recognition and compared with the A-SVM method represented by Eq.

(3.7). CCA is to describe the linear relation between two multidimensional variables as
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the problem of finding basis vectors for each set such that the projections of the two

variables on their respective basis vectors are maximally correlated [52] [53].

Let p-dimensional x and q-dimensional y denote the two sets of real-valued zero-mean

random variables (i.e., x ∈ Rp and y ∈ Rq). Let p×N matrix X be the data matrix of the

first set, and q ×N matrix Y be the data matrix of the second set. The CCA method

computes two projection vectors, wx ∈ Rp and wy ∈ Rq, such that the correlation

coefficient

ρ =
wTxXY

Twy√
(wTxXX

Twx)(wTy Y Y
Twy)

(3.8)

is maximized [52] [53]. Since ρ is invariant to the scaling of wx and wy, CCA can be

formulated equivalently as

max
wx,wy

wTxXY
Twy, (3.9)

subject to wTxXX
Twx = 1, and wTy Y Y

Twy = 1.

It can be shown [53] that wx can be obtained by solving the following generalized eigen-

value problem,

XY T (Y Y T )−1Y XTwx = λXXTwx, (3.10)

where λ is the eigenvalue corresponds to the eigenvector wx. It has also been shown [53]

that multiple projection vectors under certain orthonormality constraints consist of the

top l eigenvectors of the generalized eigenvalue problem in (3.10). The corresponding

wy can be found [53] using wy = (Y Y T )−1Y XTwx√
λ

.

In our study, X represents the data matrix, and Y represents the label space. After the

dimension of data X is reduced, we use a least square fitting to build the relation between

the dimension reduced feature and label Y . Then the prediction of Y for the test data

is based on the least square fitting result. This simple least square fitting method can

work well, and is also applied to other CCA extensions, which will be introduced in this

section later.

The CCA method has shown its success in some image processing problems, e.g., image

annotation [53], action classification [54], and face recognition [55][56]. However, it is

unknown whether the CCA method can be used for cross-spectral action recognition or

not. Here we exploit the CCA method to measure the correlations between visible and

infrared actions, and compare the CCA based method with the A-SVM method in our

task of visible to infrared action recognition.
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3.4 Spatiotemporal Features

In action recognition, the space-time features are usually extracted rather than using

raw videos [7]. The learning methods introduced in Section 3.3 are based on extracted

features. In visible light action recognition, it is very popular to use the space-time

interest point (STIP) based representations [14]. Among various STIP features, the

cuboid detector and descriptor proposed by Dollár et al. [5] can work well for visible

light action representation. In our study, we use the cuboid detector and descriptor

for both visible light and infrared actions, and we measure how different the extracted

features will be from the same actions using the same method.

The cuboid detector [5] computes a response function R = (I ∗g∗heven)2+(I ∗g∗hodd)2,
where I is the image frame, g is a 2D spatial Gaussian function for smoothing, and

heven and hodd are a quadrature pair of 1D Gabor filter for temporal filtering. Interest

points are detected by the local maxima of the response function R. Given the detected

locations, the cuboid descriptor can characterize the local space-time content. The

detector and descriptor can be combined together to characterize the actions locally in

each video. The cuboid descriptor [5] is based on the local spatiotemporal response R

with given space-time parameters. The gradients computed at each pixel within the

space-time patch can be concatenated into a vector to describe the local content. To

reduce the dimensionality, the principal component analysis (PCA) can be used on the

descriptions.

After feature detection and description, we perform a clustering of the spatiotemporal

features into a limited number of clusters, e.g., 250, for the training action videos in

each spectrum. These cluster centers are used as the “keywords” for actions [14] in

each spectrum. Histogram features are then extracted for each action video based on

counting the number of keywords appeared in each action video. The SVM is used as

the classifier for action recognition.

3.5 Experiments

To study the visible to infrared action recognition experimentally, a large database is

used. We extract features and investigate different methods for action recognition.

3.5.1 Database

To study the new problem called cross-spectral action recognition, we use a large database

with two spectra, the visible light and thermal infrared. Action videos are captured by
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Figure 3.1: Some examples in our action database. The two rows are the visible and
infrared actions: running, drinking and kicking.

two cameras, the Logitech Quickcam Pro 5000 and the Thermal-Eye 300D, for the two

spectra. The two cameras are close to each other so that each action can appear in

both cameras’ field of view (FOV). The database has 30 actions of 30 people captured

by the two cameras. In total, there are 1,800 (=30×30×2) videos in the database. The

number of action categories 30 is large, even compared to some existing visible action

databases. For instance, the popular KTH database [19] contains six actions, and the

Weizmann database [20] has 10 actions only. In the database, there are 30 actions:

fixinghair, handclapping, horizontalstretching, marching, squating, usingmicrowave, us-

ingremotecontrol, wipingtable, boxing, kicking, movingbox, pickingup, running, open-

ingdoor, organizingtable, walking, exercisejumping, wipingboard, knockingondoor, verti-

caljumping, drinking, handwaving, helpsignaling, reading, telephoning, typing, writing,

sittingstanding, writingonboard, and checkingwatch. The captured videos have different

lengths, each has about 21 seconds in average. Some example pairs are shown in Fig.

3.1. We plan to make the database available to other researchers in order to advance

the field of research on action recognition.

3.5.2 Action Recognition Results

Because of the randomness of selecting subjects and the K-means clustering, the exper-

iments are conducted 10 times to obtain the final accuracies by taking average. Five

individuals were randomly selected with all the 30 actions for learning, and the remaining

25 persons for testing.
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Figure 3.2: Spatiotemporal interest points detected in the same actions but from two
spectra - Left: visible light; Right: infrared.

First, we study the difference between the features extracted from actions performed

by the same persons and captured at the same time but from two different spectra:

visible light and infrared. The feature extraction methods are the same, based on the

cuboid detector and descriptor. We found that the detected interest point locations are

different in the two spectra, as one example shown in Fig. 3.2, where the STIP locations

are displayed. We use the actions in the visible spectrum to train the action classifier,

and then apply to the infrared actions for testing. The accuracy is 5.2%, which is very

low, although it is higher than a random guess (about 3.3% accuracy). For comparison,

a bar graph of the accuracy is shown (as the baseline result) in Fig. 3.4. This result

demonstrates that the spatiotemporal features extracted from the two spectra are very

different, although the motions are almost the same performed by the same individuals.

The difference in spatial appearance influences action feature extraction. Thus a direct

matching between the two spectra cannot get a satisfactory result.

Second, we exploit the CCA method to measure the correlations between visible and

infrared actions, and compare the CCA based method with the A-SVM method in our

task of visible to infrared action recognition. The canonical correlation analysis (CCA)

[52][53] is a standard method to learn the correlation between two modalities. The CCA
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Table 3.1: Accuracies for different number of training samples. (±) means The
standard deviation of accuracy.

5 Subjects 10 Subjects 20 Subjects

Baseline 5.2% (±1.5%) 5.0% (±1.1%) 4.0% (±0.8%)

CCA 27.8% (±1.8%) 31.2% (±3.1%) 47.2% (±9.2%)

A-SVM 50.4% (±1.7%) 54.6% (±1.6%) 61.2% (±1.1%)

VIS Only 53.5% (±1.6%) 57.6% (±1.8%) 65.7% (±2.8%)

IR Only 37.7% (±1.4%) 42.8% (±1.4%) 46.7% (±1.9%)

can learn two sets of bases for action features extracted from the two spectra of the same

individuals. Then the two sets of bases are used to project the features in each spectrum,

respectively. About 50 basis vectors are used for each set of bases. The transformed

features are used to train the SVM (with RBF kernel) for action recognition. Using

the transformed features of the same testing data as used for the baseline, we get an

accuracy of 27.8%, which is higher than the baseline result, as shown in Fig. 3.4.

Third, we investigate the adaptive SVM method for action recognition from visible to

infrared. We want to validate if the adaptive SVM method can really adapt the classifiers

learned from the visible light features to the infrared. The standard SVMs are leaned

in the visible light training actions, and then adapted to the infrared actions based on

the learning examples in infrared. Then the test examples in the infrared spectrum

are used for recognition. In A-SVM, RBF kernel is used and cross-validation scheme

is applied for parameter selection. In specific, the parameters used are: γ = 0.004,

cost = 1, γ = 0.002, cost = 1.4, and γ = 0.004, cost = 0.6 for the 5, 10 and 20 subjects

group. The accuracy for 5 subjects group obtained 50.4% based on the A-SVM method,

which is significantly higher than the correlation-based methods using CCA, as shown

in Fig. 3.4. The confusion matrix is shown in Fig 3.3. One can see misclassification

for similar actions impacted the overall recognition rate, e.g, ”writing” was recognized

incorrectly to the action ”reading” and ”typing”, which actions have similar motion and

ambiguous to the system. But the accuracies are improved comparing to IR only, e.g.

typing 14%(IR) to 25%(Cross), reading 14%(IR) to 23%(Cross).

In order to get a better comparison, experiments with different number of training

samples were conducted. The training data from visible and infrared are balanced, which

means same number of training samples from both spectra are used. The experimental

results are shown in Table 3.1. From the results one can see that, the recognition rate

increases when more samples are used for training. Also the A-SVM method performs

consistently well when different number of training and testing sample are used.

In summary, the spatiotemporal features extracted from the two spectra are quite dif-

ferent, therefore the direct matching cannot work for VIS to IR action recognition. The
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Figure 3.3: The confusion matrix shows the recognition result from visible to infrared,
when using the A-SVM method and 5 subjects are used for training.

correlation learning via CCA can improve the accuracy over the baseline, but its per-

formance is still significantly lower than the A-SVM. The higher accuracy of A-SVM

shows that the classifiers learned from the visible actions can be adjusted to recognize

actions in infrared spectrum. On the other hand, the accuracy is still not very high. Al-

though the cross-spectral recognition accuracy by the A-SVM is higher than the pure IR

(37.7%), but is lower than the pure visible action recognition (53.5%) in our experiment.

Note that our problem is different from the traditional action recognition [14]. There

are 30 actions in our study, and we use a small number of training examples under the

transfer learning framework, while there are more training examples and less actions in

traditional action recognition [14].
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Figure 3.4: The action recognition results. The baseline result is based on a direct
matching (concatenating VIS and IR features in training). The CCA method can
learn the correlation between VIS and IR and improves the result, while the A-SVM is
significantly better than the CCA. Single-Spectrum used the same 5 subjects training,

25 subjects testing only from one spectrum.

3.6 Conclusions

We have studied the problem of visible to infrared action recognition. The study is per-

formed on a large database with 30 actions of 1,800 videos in two spectra, which makes

our study statistically meaningful. We have shown that the spatiotemporal features

extracted from the two spectra are quite different, thus a direct matching cannot per-

form well. A correlation based approach with the CCA can improve the accuracy over

the direct matching, while the adaptive SVM method can perform significantly better.

Therefore, our preliminary study demonstrates the potential that the action classifier

can be learned from the visible light actions and adapted to the infrared for action recog-

nition. In future research, we will explore other adaptation methods to further improve

the performance.



Chapter 4

Heterogeneous Action

Recognition: From Visible to

Thermal Infrared

4.1 Abstract

Human action recognition is a very active research topic in computer vision and pattern

recognition. A number of methods have been proposed for action recognition based on

visible light imagery. However, visible light cameras cannot capture human subjects or

their motion under dark illumination conditions. The performance of action recognition

may also degrade due to complex background or illumination variations. In contrast,

thermal infrared (IR) offers a different source of information. It has advantages over

the visible light, since the IR is insensitive to illumination changes, and can work in

either day or night. We propose to study heterogeneous action recognition (HAR)

from visible to thermal infrared imagery. The aim is to learn the spectral relations

that can maximize the mutual information between the two spectra. Two schemes

are investigated, one is based on spectral correlation mapping, and the other is based

on learning the transitions on manifold to represent the connections between the two

spectra. And discriminative learning technique is used to further improve the correlated

features. In HAR, our aim is to utilize the visible light action patterns to help improve

the infrared action recognition. Comprehensive experiments are conducted on a multi-

spectral action database and promising results are obtained, showing the feasibility of

HAR.

30
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Figure 4.1: Example images of visible (top) and infrared (bottom) of different ac-
tions. The actions shown are: hand clapping, wiping board, opening door, and using

microwave.

4.2 Introduction

In recent years, human action recognition has become a very active research topic in

computer vision and pattern recognition. By recognizing ongoing actions performed by

human subjects from videos or images, applications in various domains can be developed

with practical usage, e.g., advanced user interfaces, video surveillance, gaming, and

security [57]. A number of approaches have been proposed for action recognition [57]

[9] [46]. Various human action databases have also been collected and used to validate

action recognition performance [58] [46].

However, current action recognition focuses mainly on the visible light or the RGB/in-

tensity imagery. The visible light cameras may not work in dark illumination, resulting

in degradation of the action recognition performance. Also, the developed methods for

visible action recognition might not be optimal for the case that the illumination varies

or the background is noisy. The fact that thermal infrared cameras can capture human

subjects in poor light or dark conditions, can overcome the drawbacks of the light-

sensitive visible cameras. Thermal infrared cameras can sense temperature emissions

from human, which is an intrinsic property and independent of illumination conditions.

Thus thermal infrared imagery offers a different source of information, which can work

on either day or night. In several areas of computer vision, infrared imagery has been

studied and shown promising results, e.g., face recognition [48] [59] [60], facial expression

recognition [61], human detection and tracking [62], and human gait analysis [49], [63].

In this paper, we propose to study the heterogeneous human action recognition problem.

Motivated by the heterogeneous face recognition problems [64] [65] [66], in particular,

we study the scenario that is recognizing the human actions in the infrared spectrum,

by utilizing the actions from the visible light. The proposed visible to infrared action
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recognition has many practical applications, e.g., surveillance and night vision systems.

But the problem has not been well studied, to the best of our knowledge. In our opinion,

the exploration of heterogeneous human action recognition, could enrich the research on

action recognition and provide a new perspective for human action analysis.

The most challenging issue in visible to infrared action recognition lies in the fact that

actions are captured from different devices (visible and thermal infrared cameras), with

a large disparity. Different from heterogeneous face recognition problems, e.g., in [66]

and [65], where the target is to match facial images of the same subjects from different

modalities (e.g., visible, NIR, or sketch), the spatial-temporal action data are more chal-

lenging because the same action may be performed by different subjects with different

appearance and moving speed. To bridge the inter-modality gap, we first explored an

approach by adapting the visible data to the infrared for action recognition [1], which has

two key steps: firstly two SVM classifiers are learned respectively on visible and infrared

data. Then a delta function is learned to model the difference between the two classi-

fiers. In this work, rather than reducing the modality gap at the classification stage, we

explore approaches in the feature level from an information theoretic perspective. The

idea is to learn the relationships between the visible light and infrared, maximizing the

mutual information [67] between the two different spectra of action patterns.

In order to maximize the mutual information and reduce the gap between the visible

light and thermal infrared modalities for the purpose of action recognition, we explore

two schemes. The first is based on learning the correlations between the two spectra of

spatiotemporal action patterns. The correlated features are further fed into a discrimi-

native learning method, such that the features that are mapped to a new space become

more separable. The second scheme is to learn the action transition from visible to

infrared, based on learning on a manifold. The action patterns from visible and infrared

are represented by the projections on a series of subspaces along the geodesic path, so

that the actions patterns from different spectra can be “connected” on the geodesic path,

resulting in a new action feature representation.

The organization of the paper is as follows: We address the HAR problem from an infor-

mation theoretical perspective in Section 4.3. Then we introduce the scheme of learning

the spectral correlations and the discriminative mapping in Section 4.4. The scheme

that learns the transitions from visible light to infrared on the manifold is presented

in Section 4.5. The experiments are conducted in Section 4.7. Finally, we draw some

conclusions.
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4.3 Heterogeneous Action Recognition from an informa-

tion theoretic perspective

In this paper, we propose to address the problem, called heterogeneous action recognition

(HAR). HAR is about recognizing human actions across different modalities, e.g., visible

light and infrared. The challenge of HAR is that the discrepancy of action patterns from

different modalities.

In HAR, the modality gap could be reduced by making the action patterns from different

modalities “closer”, so that the actions from one modality can be used to help the

recognition in another modality.

Specifically, denote the features extracted from the visible light and infrared actions as

F visand F ir. We first measure the modality gap between the action patterns in two

spectra, in a quantitative manner. By reducing this modality gap, the new action pat-

terns could represent the action better and is expected to be “transferred” more easily

from one modality to the other. To achieve this goal, we use mutual information to mea-

sure the relationships between different modalities. Maximizing the mutual information

means the reduction of the gap between two modalities.

In information theory, Mutual information (MI) [67] is a measure of the uncertainty of

X with the knowledge of Y. MI is a nonnegative symmetric measure, being equal to

zero if and only if X and Y are statistically independent. In other words, the statistical

correlation between two random variables X and Y can be measured by the MI. In our

case, the MI provides a quantitative measure of the strength of correlation between

different modalities, e.g., the higher MI indicates that the two modalities are more

related. In this way, by computing the MI before and after applying any learning

methods, one can tell the usefulness of the methods quantitatively, for heterogeneous

action recognition. That is, whether the MI is increased or not.

Entropy [67], denoted as H(X), quantifying the uncertainty of distribution of X, can be

defined as: H(X) = −Σx∈Xp(x) log p(x). Formally, mutual information can be written

as:

I (X; Y ) = H (X) +H(Y )−H (X,Y ) , (4.1)

where H(X) is the marginal entropy of X, and H (X,Y ) is the joint entropy.

Because the features extracted from action data are discrete (e.g., histogram features),

when compute the MI, we estimate the histogram distribution using a fixed number of

bins. The probability p(X = x) can be estimated by the frequency of occurrence of

X = x, divided by the total number of bins.
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In our problem, we want to lean a correlation through mapping, coding, or projection of

the features between two spectra, so that the mutual information between the correlated

features F̂ vis, F̂ ir can be increased. The mutual information is denoted as:

I
(
F̂ vis; F̂ ir

)
= H

(
F̂ vis

)
+H

(
F̂ ir
)
−H

(
F̂ vis, F̂ ir

)
. (4.2)

For example, we can measure the gap between action patterns extracted from visible

light and infrared using the MI, which obtained 0.41 bit (see more details in Sec. 4.7.3).

It is expected that by using the proposed schemes, the MI can be increased so that

the features from visible and infrared are “pulled closer”. In [66] and [65], CCA [53]

is derived as the solution of their optimization function, which is represented using the

MI and the KL-divergence [67] for heterogeneous face recognition. Here, we propose to

explore two schemes based on correlation and manifold learning, to maximize the MI for

our heterogeneous action recognition. It is new to investigate these kinds of methods for

heterogeneous action recognition. Our experimental results (see Section 4.7) show that,

CCA is not optimal for our HAR problem. The schemes we explore here achieve higher

mutual information and better recognition performance than the CCA formulation as

in [66] and [65].

Given the criteria of mutual information maximization, we will present two schemes for

HAR in the following sections.

4.4 Reducing the Modality Gap based on Spectral Corre-

lation

In order to maximize the mutual information and reduce the modality gap, our first

scheme is to learn correlations, between actions in two spectra. To learn the correlations,

we explore a specific method, called Partial Least Squares (PLS) [68], although other

methods may be used as well. Our new investigation is to examine if the PLS method can

increase the MI and improve the performance for HAR. After the correlation mapping,

a discriminative learning is applied to improve the recognition performance further.

4.4.1 Learning Correlation between Heterogeneous Action Patterns

The objective of learning correlation is to map the heterogeneous actions onto a common

subspace, where the modality gap is expected to be minimized. The Partial Least Square

(PLS) [68] method is investigated. The PLS can model relations between sets of observed
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variables with latent variables. It can also reduce the dimensionality and show success

in some computer vision problems such as face recognition[56], pedestrian detection[69]

[70], and age estimation [71]. It is a new investigation of the PLS for heterogeneous

action recognition. Our goal is to explore if the PLS technique can maximize the mutual

information between two action modalities.

Given two sets of variables, e.g., action patterns in the visible and infrared spectra, let

V denote the (n×N) zero-mean matrix of the first data set (e.g., visible features) and

F denote the (n×M) zero-mean matrix of second data set (e.g., infrared features). PLS

decomposes the two matrices in the following form:

V = TPT + Rv (4.3)

F = UQT + Rf (4.4)

where T and U are the (n× p) matrices of latent vectors, p is the number of extracted

latent vectors. Matrices P and Q having the size (N × p) and (M × p) are the matrices of

loadings, while matrices Rv and Rf of size (n×N) and (n×M) represent the matrices

of residual. The PLS method, which is in its classical form [72], finds the weight vector

w and c, such that:

[cov (t, u)]2 = [cov (V w, Fc)]2

= max|r|=|s|=1 [cov (V r, Fs)]2
(4.5)

where cov(t, u) = tTu/n, denotes the sample covariances between the score vectors t

and u. After extraction of the score vectors t and u, the matrix V and F are deflated

by subtracting their rank-one approximation based on t and u. This process iteratively

repeats until convergence, or achieves a desired number of extracted weight vectors.

The objective function of PLS can be rewritten as:

max[cov (t, u)]2 = maxvar (t) [corr(t, u)]2var (u) , (4.6)

where var (t) denotes the sample variance, corr(t, u) denotes the sample correlation,

which represents the criterion of maximizing correlation and the variance in both V and

F modalities. As a result, it is expected that by applying the PLS projection, the mutual

information which measures the statistical correlation between visible and infrared data

could be increased.

Note that in Eqn. (4.5), when F is a 1-dimensional vector representing the class label

of the data set V , PLS then only learns a set of projection vectors W = w1, w2, ..., wN ,

by maximizing the covariance between the data and corresponding class labels. In that
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case, the PLS acts as a dimension reduction method, which is similar to PCA and LDA.

In this paper we denote PLSd the case where PLS is applied to one single modality

for dimensionality reduction, where F is the set of class labels, and denote PLSc the

case where F is the action features of the visible or infrared, aiming at learning the

correlations between actions in two spectra.

After learning the PLS model, the feature vectors vi and fi from different data sets

(e.g., visible light and infrared) are projected with the learned weight vectors w and

c, respectively. The (1× p) latent vectors z1i and z2i can be obtained as the correlated

feature vectors. In this way, we can bring the visible data along with the infrared data

in the training stage, and it is expected to learn a better action classification model for

infrared action recognition.

By using a correlation-based learning approach, the learned projections can make the

same actions captured from different spectra “closer” to each other in the new feature

space. In order to represent heterogeneous actions better using discriminative mapping

and improve the separation between different actions, we explore the Lorentzian Dis-

criminant Projection (LDP) [73] method, which is based on Lorentzian geometry and

extended to the general relativity.

4.4.2 Increase the Discriminative Capability

Since the PLS method mainly focuses on the correlation between different modalities,

it may not separate heterogeneous actions well. It might be a good idea to perform

discriminative mapping to enhance the separation between different actions.

Several methods could be used for discriminative projection, e.g., Linear Discriminant

Analysis (LDA) [74], Marginal Fisher Analysis (MFA) [75], Maximum Margin Criterion

(MMC) [76], Locality Preserving Projection (LPP) [77], etc. The Lorentzian Discrim-

inant Projection [73] method is a relatively new method, and has not been explored

extensively. so it is interesting to examine the LDP method for the new problem of

HAR.

The main idea of LDP is to discover the intrinsic local discriminant and global geometric

structure of the data, by constructing a Lorentzian manifold and learning the metric

tensor on the manifold. Compared to other methods such as the MFA, the LDP does

not require many parameter settings, such as the graph weight matrix including the

number of inter-class and intra-class neighbors in MFA.

Let the input data set be Sx = {x1,x2 . . .xm} ,xi ∈ Rn, and Lx = {L1, L2, . . . Lm}
the class labels, m is the number of the samples. The goal of LDP is to transform the
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original high-dimensional space Rn into a low-dimension, i.e., Sz ⊂ Rd, where d � n.

The output of LDP is a new feature set Sz, with a projection matrix U.

First let set Szi , in which the elements share the same class label with the sample

zi, be Szi =
{
zi, z

i
1 . . . z

i
mi−1

}
, mi is the number of samples with the same class la-

bel as zi. Then the presentation of a mi -tuple point dyican be defined as: dyi =[
d
(
zi, z

i
1

)
, d
(
zi, z

i
2

)
, . . . d

(
zi, z

i
mi−1

)
, d (zi, z̄)

]T
where d (zi, zj) is the distance between

zi and zj , and z̄ = 1
mΣm

i=1zi , is the geometric centriod of Sz.

In such a way, dyican be viewed as points sampled from a manifold Lmi1 furnished with

a Lorentzian metric tensor gl:

gl (dyi ,dyi) = dTyiG
l
idyi

= tr
(

(ZiDi) Gl
i (ZiDi)

T
) (4.7)

where Zi =
[
zi, z

i
1 . . . z

i
mi−1, z̄

]
, Di = [emi ,−Imi×mi ]

T , and emi is an all-one column

vector of length mi, Imi×mi is an identity matrix of size mi ×mi.

The next step is to learn the Lorentzian metric matrices Gl
i. The metric Gl

i consists

of two parts: the positive-definite part, to measure the within-class similarity, and local

geometry, denoted as Λ̂i ; and the negative-definite part, to measure the global geometric

structure denoted as λ̂i. It can be computed by [73]:

Λ̂i (p, q) =


(D̂xi)

−1
emi−1

eTmi−1(D̂xi)
−1

emi−1

if p = q,

0 otherwise.

(4.8)

where D̂xi = diag
(
d
(
zi, z

i
1

)2
, . . . d

(
zi, z

i
mi−1

)2)
and λ̂i = Σmi−1

j=1 Λ̂i (j, j).

After computing the metric matrix Gl
i, the projection matrix U can be obtained by:

XLXTu = λu, (4.9)

where L is derived from the total Lorentzian metric tensor given by Eqn. (4.7). X =

[x1, x2 · · · , xm, x̄] and x̄ is the centriod of Sx. Data samples can thus be projected using

z = UTx. After the LDP projection, we expect that the separation of different actions

can be enhanced.
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4.5 Reducing the Modality Gap Based on Manifold Learn-

ing

To maximize the mutual information and reduce the discrepancy between heterogeneous

actions, our second scheme is to apply manifold learning techniques, which could be

viewed as learning the spectral transitions between the two spectra. It learns a path on

a manifold to connect actions in two different spectra (see Fig. 4.2). A bridge between

the two modalities is built to reduce the gap between them. In this way, by representing

the features using subspaces along the path on manifold, the two modalities is believed

to be closer to each other. In the following, firstly we introduce the fundamentals and

mathematical concepts of the manifold. Secondly the scheme based on manifold learning

is presented.

A manifold is a topological space that is locally similar to Euclidean space, which can

be thought intuitively as a smooth, curved surface embedded in higher dimensional

Euclidean spaces [78]. For differentiable manifolds, the tangent space is used to define

the derivatives of the curves on the manifold. The tangent space at a point is the plane

tangent to the manifold at that point. The minimum length curve connecting two points

on the manifold is called the geodesic, and the distance between two points is given by

the length of this curve called geodesic distance.

Grassmann manifold [79], which is a special class of Riemannian manifold, is defined as

quotient spaces of orthogonal group. A quotient space of a manifold can be viewed as the

result of “gluing together” certain points of the manifold [80]. A point in the Grassmann

manifold is a particular subset of the orthogonal matrices, and the Grassmann manifold

itself is the collection of all these subsets. Two points on a Grassmann manifold is

considered to be equivalent if one can be mapped into the other by an orthogonal matrix

[79].

To create the “transition” between the visible light and infrared actions, we use the

subspaces along the geodesic path on the Grassmann manifold. Fig. 4.2 shows the idea

of this approach intuitively.

Before the learning process conducted on the manifold, one needs to construct the or-

thogonal linear subspaces. The principal component analysis (PCA) can be applied to

obtain the subspaces.

Denote the set of feature vectors extracted from the visible light actions as Dvis = {si} ∈
RD, i = 1 . . . Nvis, and the set from infrared as Dir = {ti} ∈ RD, i = 1 . . . Nir. The

PCA is applied to Dvis and Dir, respectively, and the output bases Pvis ∈ RD×d and
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Figure 4.2: Learning the transitions between heterogeneous action patterns based on
the Grassmann manifold.

Pir ∈ RD×d are considered as the subspaces, where d is the number of top eigenvectors

of each covariance matrix.

The Grassmann manifold, G(d, D), is formed by the collection of all the subspaces of

d dimensions. The subspaces of the dataset in visible light and infrared spectra are

mapped to two points on a Grassmann manifold. We want to find the transition from

one point to the other, so that the visible actions can be smoothly connected to the

infrared. The key idea is to compute the geodesic path between two points, and then

utilize the intermediate subspaces to learn the new feature representations.

Specifically, let Rvis ∈ RD×(D−d) be the orthogonal complement of Pvis, i.e., RT
visPvis =

0. Then a geodesic flow is constructed through the canonical metric on the Grassmann

manifold, which is induced by the Frobenius norm on the tangent space [79]. The

geodesic flow Φ is thus parameterized as Φ (i) ∈ G (d,D) , i ∈ [0, 1], with the constraints
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Φ (0) = Pvis and Φ (1) = Pir. When i ∈ (0, 1), it has [81]:

Φ (i) = PvisU1Γi −RvisU2Σi (4.10)

where U1 ∈ Rd×d and U2 ∈ R(D−d)×d are orthogonal matrices. Γ and Σ are d ×
d diagonal matrices, in which the diagonal elements are sine and cosine value of the

principal angles [79] between Pvis and Pir. U1and U2 are computed by the following

SVDs (singular value decompositions):

PT
visPir = U1ΓVT , RT

visPir = −U2ΣVT (4.11)

More details on inferences on Grassmann manifold can be found in [82].

After the learning process, the constructed parameterized geodesic flow can characterize

the smooth changes between two modalities of action patterns. The subspaces lying

on the geodesic path are related to either the visible or the infrared actions depending

on the parameters. In other words, the geodesic path can be regarded as the shortest

to connect the visible and infrared action patterns on the Grassmann manifold. The

mutual information between the two spectra is expected to be maximized by projecting

the patterns using the subspaces on this geodesic path.

To represent the “transition” between the two modalities, i.e. visible and infrared in

our HAR, a series of subspaces Sn = [Φ (i1) ,Φ (i2) . . .Φ (in)] , i ∈ [0, 1] is computed.

Intuitively if i is close to 0, the subspace Φ (i) is more likely to one modality, while if i

is close to 1, the subspace Φ (i) is more likely from the other modality. We can compute

Φ (i)T x to project a feature vector x onto the subspace Φ (i). The action features from

both the visible and infrared are projected onto the n subspaces, and a concatenation

of all n projections is used to expand the original features. The new feature vector is of

length n × d. As a result, the action patterns from visible and infrared are changed to

a new representation, which is suppose to be insensitive to modality changes.

Because the new feature vector consists of a series of subspaces on the Grassmann

manifold, the dimensionality of the feature vector could be high. To deal with this,

we apply the feature dimension reduction and discriminative learning methods, i.e.,

PLSd, LDP , after the Grassmann learning procedure. The purpose is to improve the

recognition accuracy for HAR.
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4.6 Feature Representation for visible and infrared actions

Given the action data from visible and infrared modalities, we use spatiotemporal in-

terest points (STIP) for feature extraction and representation. Specifically, the Cuboid

detector with the Cuboid descriptor [83] is adopted to extract and represent the features

for both visible and infrared action videos. Then vector quantization is conducted using

the standard bag-of-words scheme by the K-means clustering method. In this way, each

action video is quantized and represented by histogram bins, counting the occurrences

of spatiotemporal features as different “key words”. Empirically, we set the number of

key words to 250. So, after the feature quantization, each action video is represented by

an 250-dimension feature vector.

4.7 Experiments

4.7.1 Database

The experiments are conducted on a multi-spectral action database [1]. In this database,

action videos are captured from two spectra by two synchronized cameras: a visible light

camera and a thermal infrared camera. Each action video is about 21 seconds in aver-

age, with a 320×240 resolution and 30 frames per second (fps). In total there are 30

action categories performed by 30 different subjects in this database. The number of

videos in this database is 1,800, all of which are used in our experiments. In specific,

the 30 actions in the database include: fixinghair, handclapping, horizontalstretching,

marching, squating, usingmicrowave, usingremotecontrol, wipingtable, boxing, kicking,

movingbox, pickingup, running, openingdoor, organizingtable, walking, exercisejump-

ing, wipingboard, knockingondoor, verticaljumping, drinking, handwaving, helpsignal-

ing, reading, telephoning, typing, writing, sittingstanding, writingonboard, and check-

ingwatch. Fig. 4.1 shows some example images in both visible and infrared spectra in

our database.

4.7.2 Experimental settings

First, the whole action database is divided into training and test sets. We use a cross-

subject testing, where 10 subjects with all 30 actions in infrared (IR) are randomly

selected from the database, which are used as the test set. The corresponding visible

(VIS) videos of the same 10 subjects are discarded. Then the remaining 20 subjects

with all 30 actions in both visible and infrared are used to construct the training set.
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In our experiments, we explore the case where a fixed number of infrared samples with

a different number of visible training samples for learning, to show the influence of the

visible data size to the classification accuracy for actions in infrared.

Given the training and test sets, the next step of the experiments is feature extraction

and representation. The spatiotemporal interest point based feature is used in our

experiment. Specifically the Cuboid detector with the Cuboid descriptor [83] are adopted

to extract and represent the features for both visible and infrared action videos. Then

vector quantization is conducted using the standard bag-of-words scheme by the K-

means clustering method. In this way, each action video is quantized and represented

into a histogram of bins, counting the occurrences of spatiotemporal features lie into

different “key words”. Empirically, we set the number of “key words” to 250. Because

of the randomness, K-means clustering is run 10 times to obtain the cluster centers. So,

after the feature quantization, action videos are represented by a set of 250-dimension

feature vectors.

For the first scheme based on correlations between visible and infrared, projection vectors

are learned by PLSc, using the features extracting from visible and infrared, respectively.

The parameter (dimension) of PLSc has been tried through 20 to 240 and finally set

to 120, which has shown good recognition performances in our experiments. For the

scheme that learns spectral transitions on Grassmann manifold, the PCA ratio is set

to 0.98 to obtain the bases. Subspaces with parameters [0.1 : 0.1 : 1] are used to obtain

10 subspaces with an interval of 0.1. For the discriminative learning method LDP , the

dimensionality is set to 30. In action classification stage, the Supporting Vector Machine

(SVM) with RBF kernel is used as the supervised learner. The RBF kernel is defined

as:

K
(
x, x′

)
= exp

(
γ‖x− x′‖22

)
, (4.12)

where x and x′ are the training samples, γ is a free parameter. In our experiments, the

fine-grid tuning is conducted to obtain the optimized parameters in SVM, γ and c. The

experimental results in different groups are presented in the following.

4.7.3 Information Theoretic Measure of Modality Disparity

We conduct experiments to validate the proposed approaches from the information the-

oretic perspective. The proposed approaches learn the projections or the transitions

between the visible light and infrared spectra. It is supposed that the modality gap

between visible and infrared can be reduced, therefore the mutual information between

visible and infrared features is increased. In the following, we conduct the experiments

and analyze the results.
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Figure 4.3: Mutual information computed between visible and infrared action pairs
using different approaches. Totally 300 action pairs from visible and infrared are ran-
domly selected from the dataset and average results are shown in the figure. “Raw”
denotes the raw features extracted from visible and infrared, respectively. “Grasm”

denotes the Grassmann manifold learning method.

From both visible and infrared data, 10 subjects with all the 30 actions are randomly

selected in this experiment. Denote an “action pair” as one sample from visible and

the corresponding one from infrared, these two action videos are of the same action

category and performed by the same subject. Thus in the experiment there are totally

300 action pairs. Using the experimental settings mentioned above, we compute the

Mutual Information(MI) between each action pairs and show the average results. The

MI is calculated by the log function with base 2, so the unit of measurement is “bits”.

Figure 4.3 shows the MI that are computed between visible and infrared action pairs

using different approaches. “Raw feature” means the MI is computed between the

features extracted from visible and infrared without any learning, which shows a very low

inherent dependence between the two spectra. On one hand, by applying the correlation

learning approach PLSc, the MI between the projected features are much higher than

the baseline “Raw feature”, resulting in the MI of 1.85 bits. We have also compare the

MI between PLSc and CCA, which shows that CCA is not good to increase the MI in

our HAR problem. On the other hand, when the Grassmann approach is applied, the

MI (1.15 bits) is also increased comparing to the baseline. It is higher than the CCA,

but lower than the PLSc. We observe that higher MI between the features show higher

similarity between the two spectra, which also implies a potentially higher recognition

accuracy, because the transformed features from the two spectra are getting “closer”

to each other. In the following, we validate our approaches experimentally from action

recognition aspect.
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Figure 4.4: Recognition rates using different approaches when 5 subjects from visible
data and 5 subjects from infrared data are used for training, 10 subjects from infrared
data are used for testing. “PLS(c)” denotes that PLS is used for correlation learning,
“PLS(d)” denotes PLS is used for dimension reduction. “Grasm” denotes the method

that learns spectral transitions based on Grassmann manifold.

4.7.4 Heterogeneous Action Recognition Results

We present the experimental results for action classification. Experiments are conducted

using different numbers of training samples, while the test set (10 subjects in IR) is kept

the same. Only a small number of infrared samples are selected and used for training. In

our experiments, the training set consists of two parts: (1) infrared data (one modality),

where 5 subjects are randomly selected out of 20 on infrared data; (2) visible data

(another modality), where the visible actions of 5, 10, 15, and 20 subjects, respectively,

chosen for training.

First of all, the experiments are conducted to test the performance of using 5 subjects

from infrared (no visible samples) for training, while the testing samples are fixed (10

subjects of infrared samples). This experiment on a single spectrum (infrared) can be

regarded as the baseline of the infrared action recognition. Using the experimental

settings presented above, the recognition rate achieves 51.3%. This demonstrates that

using the spatiotemporal interest point features, action recognition in infrared spectrum

can be performed, however the accuracy is not very high. In the next, experiments are

conducted by utilizing the visible data, to help improve the infrared action recognition.

Fig. 4.4 shows the recognition accuracies using 5 subjects visible and 5 subjects infrared

data for training, and tested on the fixed 10 subjects of infrared data. Totally 5 ap-

proaches are shown in the figure. The first 2 columns are correlation based approaches



Chapter 4. Heterogeneous Action Recognition: Visible to Thermal Infrared 45

(PLSc, and PLSc+LDP), the last 3 columns are manifold transition approaches (Grass-

mann, Grassmann+PLSd, and Grassmann+PLSd+LDP), respectively. From the re-

sults one can see that: (1) both correlation based and manifold learning approaches

can improve the recognition accuracy, which is better than the baseline recognition rate

(51.3%). The best result is 58.8%, obtained by Grassmann+PLSd+LDP, which is higher

than the best result based on correlation, PLSc+LDP (the accuracy is 57.7%). These

results show that the proposed approaches can learn from the visible spectrum, to help

recognize the actions in infrared and the recognition accuracy is improved. (2) The

recognition accuracy is 53.3% using Grassmann manifold method, which is higher than

the baseline but lower than other methods shown in the figure. One possible reason is

that the features after Grassmann manifold learning are not very discriminative. There-

fore, we propose to further create discriminative features by utilizing PLSd, or LDP.

Experimental results show the recognition rates are improved to 56.0% by using PLSd,

and achieves the highest accuracy 58.8% using LDP. (3) The modality transition learned

on Grassmann manifold performs slightly better than the correlation based approach.

It can be seen from the figure that, although the Grassmann manifold only obtains a

lower accuracy 53.3% than the PLSc, a much higher accuracy (58.8%) is achieved by

utilizing dimension reduction and discriminative learning ( Grassmann+PLSd+LDP).

This demonstrates that the usefulness of the proposed approach for modality transition

using Grassmann manifold for heterogeneous action recognition, while the discriminative

mapping is needed. Similar observations can also be seen in the following experiments,

where different numbers of visible samples are used.

4.7.5 HAR with Different Sizes of Training Data

To further investigate the performance of the proposed approaches, we conduct experi-

ments using different numbers of training samples from the visible spectrum. Specifically,

5, 10, 15, and 20 subjects from visible data are used in the training set, respectively,

along with 5 subjects from infrared data for training. The other parameter settings are

kept the same. Recognition results are shown in Table 4.1. One can see that, in correla-

tion based approaches, the PLSc+LDP outperforms the PLSc only method. The best

accuracy of 62.7% is obtained by PLSc+LDP when 20 subjects from visible samples

are used, resulting in 4% higher than the PLSc approach under the same settings. This

demonstrates that by conducting the discriminative mapping on the correlated features,

the recognition accuracy can be improved. On the other hand, in manifold learning

approaches, experimental results (see last 3 rows in Table 4.1) also show that the dis-

criminative mapping (e.g., LDP) applied with dimension reduction by PLSd can further

help improve the recognition accuracy. In particular, the accuracies increase 3% - 5%
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Table 4.1: Accuracies w.r.t. different numbers of training samples. “*” denotes the
schemes proposed in this paper. Note that in the training set, 5 subjects from infrared

are kept the same. In testing, the 10 subjects from infrared are also kept the same.

5 Subjects 10 Subjects 15 Subjects 20 Subjects

PLS 54.0% 55.0% 56.0% 58.7%

PLS+LDP * 57.7% 59.0% 60.7% 62.7%

Grassmann 53.3% 54.3% 55.7% 57.3%

Grassmann+PLS 56.0% 57.3% 60.0% 62.0%

Grassmann+PLS+LDP * 58.8% 60.5% 61.2% 63.7%

when PLSd is applied for all the experimental groups (5th and 6th row in the table).

The accuracies have a further 1% - 3% improvement, when LDP is applied after PLSd.

Finally, the highest accuracy is 63.7%, achieved by Grassmann+PLSd+LDP, when 20

subjects from visible spectrum are used for training.

From the experimental results, we also analyze how the number of training samples

from visible spectrum influences the infrared recognition results. Fig. 4.5 shows the

accuracies by using different numbers of visible samples in training. The “IR Only”

means that the training set contains only the 5 subjects’ infrared action videos, which

is considered as the baseline result (51.3%). This figure illustrates that the overall

recognition accuracy increases when the number of visible training samples is increased,

for all the proposed approaches. Note that the infrared training data are kept the

same with more visible samples utilized. The highest accuracy of 63.7%, is achieved

by Grassmann+PLSd+LDP, when 20 subjects from visible samples are used, which is

much higher than the baseline result 51.3%, where no visible data is used. This further

validates the usefulness of heterogeneous action recognition, where the knowledge learned

from visible action videos can be utilized to help recognize actions in infrared, and the

recognition accuracy can be increased significantly.

Finally, we compare our approaches to others. Note that similar experimental settings

are used in our previous work [1]. Particularly, 10 subjects from visible and 10 sub-

jects infrared are used for training, 20 subjects from infrared are used for testing. The

experiments run 10 times, the mean accuracies and standard deviations are computed.

The experimental results are shown in Table 4.2. It can be seen that the recogni-

tion accuracies are significantly improved compared to the previous ones in [1]. For

the discriminative learning, in comparison to the MFA (64.0%), our scheme that uses

the LDP achieves a slightly higher accuracy (64.8%). The best result is obtained by

Grassmann+PLSd+LDP (67.3%(±1.7%)), which is about 12% higher than the accu-

racy achieved by A-SVM (adaptive-SVM) in [1].

The confusion matrix of using the Grassmann+PLSd+LDP approach is shown in Fig.

4.6. From the figure one can see that the actions like “writing on board” & “wiping
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Figure 4.5: Line graph of different approaches. The recognition accuracy increases
when the number of VIS training samples are increased. “PLS(c)” denotes that the PLS
is used for correlation learning, “PLS(d)” denotes PLS is used for dimension reduction,
“Grasm” denotes the manifold learning method. Note that in the training set, 5 subjects
from infrared are kept the same. In the test set, the 10 subjects from infrared are also

kept the same.

Table 4.2: Comparison with the approaches in [1], using the same experimental set-
tings. “*” denotes the schemes proposed in this paper. Both the mean accuracy and

the standard deviation are shown in the table.

Method Accuracy

IR Only [1] 42.8%(±1.4%)

CCA [1] 31.2%(±3.1%)

A-SVM [1] 54.6%(±1.6%)

PLSc 62.1%(±2.0%)

PLSc+MFA 64.0%(±1.3%)

PLSc+LDP * 64.8%(±1.4%)

Grassmann 61.7%(±1.3%)

Grassmann+PLSd 66.4%(±1.0%)

Grassmann+PLSd+LDP * 67.3%(±1.7%)

on board”; “writing” & “typing” & “reading”; and “knocking on door” & “opening

door”, are more likely misclassified to each other. That is because the appearance of

such actions are similar when performed by the subjects, or the differences between

these actions are mainly human-object interactions but not the motion, e.g., reading

and writing, thus more difficult to characterize.
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Figure 4.6: Confusion matrix of the approach, Grassmann + PLSd + LDP, with the
overall accuracy of 67.3%.

4.8 Conclusions

We have presented a relative new problem called heterogeneous action recognition (HAR).

To address the problem, we have proposed approaches under the framework of maxi-

mizing the mutual information between actions in different modalities. Two schemes

have been explored to address the HAR problem guided by the information theoretic

measures. The first scheme is based on learning the correlations, to increase the mutual

information between visible and infrared action patterns. The second scheme aims to

learn the transitions between visible light and infrared actions on Grassmann manifold.

The geodesic path on the manifold is considered as the “shortest” path connecting dif-

ferent modalities of actions. We have also shown that the discriminative mapping is

needed for both schemes, in order to improve the action recognition accuracies. Exper-

iments have been conducted on a relatively large database with 30 actions of different

modalities to show the usefulness of our approaches for addressing the challenging HAR

problem.
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Action Recognition in Thermal

Infrared using Histogram of

Spatiotemporal Sparse Codes

5.1 Abstract

Previous works on action recognition mainly focus on the use of visible light videos.

Thermal infrared (IR) captures the temperature providing some advantageous over vis-

ible light for action recognition. Human actions in IR are insensitive to illumination

changes, and can be captured at any time (day or night) and anywhere (indoor or out-

door). In this paper, we study recognizing human actions in IR. A new feature called

the histogram of spatiotemporal sparse codes (HSSC) is proposed to characterize the IR

action videos. The proposed method learns sparse representations directly from the IR

data, taking into account both spatial and temporal information. Further, a saliency

map is developed to incorporate spatial distribution of local features. From the ex-

periments on a relatively large IR action database, a promising recognition accuracy

is achieved. The proposed method is general and applicable to the traditional visible

light actions. The recognition accuracy on the popular KTH dataset outperforms the

state-of-the-art methods.

5.2 Introduction

Human action recognition as one of the important topics in computer vision, has gained

tremendous research interests for decades. Automated recognition of ongoing human

49
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Figure 5.1: Schematic diagram of thermal infrared action recognition using histogram
of spatiotemporal sparse codes.

actions has a wide range of applications, e.g., video analysis, intelligent surveillance,

human-computer interaction and security [17]. A number of approaches have been pro-

posed to extract representative features from the spatiotemporal action data. However,

most of the studies are based on color or intensity imagery in the visible light spectrum.

The action data are captured under good illumination conditions. Consequently, diffi-

culties will be encountered when the illumination conditions are poor or at dark, where

the visible light cameras cannot work well. Therefore the performance of action recogni-

tion would degrade dramatically. Recently action recognition on depth maps [23][84][2]

emerges, which extends action recognition into a new domain beyond the visible light.



Chapter 5. Action Recognition in Thermal Infrared using Histogram of Spatiotemporal
Sparse Codes 51

However, depth sensor still imposes some limitations which restrict its applications, e.g.,

the depth acquisition has a relatively small distance, with heavy noise, and is usually

just applicable for indoor environment. Thermal infrared (IR) camera, which detects

radiation in the range from 7-14µm, can capture human motion without the influence

of illumination conditions. It can be used anytime (day or night) and anywhere (indoor

or outdoor) for human motion acquisition. Thus IR has advantages over visible light or

depth-based sensing for human action/activity acquisition and recognition.

Actually, thermal imaging has shown success in some other computer vision problems,

e.g., face recognition [48][59][60], face expression analysis [61], human detection [62],

and human gait analysis [49][63], however, it has not been truly applied to human

action/activity analysis. Very recently, an approach was developed to utilize visible

data to help action recognition in IR [1], but it does not focus on IR itself. In contrast,

we study action recognition in pure IR without bothering the visible data.

To deal with infrared action recognition, we propose a novel feature called Histogram of

Spatiotemporal Sparse Codes (HSSC). Firstly, the IR videos are densely sampled into

local spatiotemporal volumes. Given the set of local volumes, sparse dictionaries are

learned spatially and temporally representing action appearances and motions. Rather

than using all pixels in each volume, three orthogonal planes are used to reduce the

computational complexity. Then we construct the histogram feature for each IR video

based on sparse codes similar to the bag-of-words scheme. In order to generate more

discriminative histogram features, a saliency map of the IR video is computed to incor-

porate the spatial distribution of salient regions, which is a novel scheme to incorporate

spatial information for histogram features, to the best of our knowledge. This step helps

overcome the drawback of histogram features that usually ignore the spatial information.

Our action recognition experiments are conducted on a relative large thermal infrared

action database with 30 actions [1]. Experimental results show significant improve-

ment comparing to various methods. Besides, experiments are also conducted on the

well-known visible light action dataset KTH [19]. Following the experimental protocols

described in [19], our method outperforms the state-of-the-art methods. This further

demonstrates that our method is general for human action recognition.

In the following, we introduce the related work in Section 5.3. The Histogram of Spa-

tiotemporal Sparse Codes (HSSC) feature is presented in Section 5.4. Experiments are

conducted and the experimental results are shown in Section 5.5. Finally, conclusions

are drawn in Section 5.6.
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5.3 Related Work

The space-time features which were originally developed for action recognition in visible

light spectrum may not work well in videos of other domains. One category of the

popular features is based on spatiotemporal interest points (STIP) [14]. Having detected

a set of interest points, the bag-of-words strategy [85] [86] is often used with various local

descriptors. One drawback of STIP features is that the detection is based on the local

maximum of gradient on visible data, while IR videos are often with heavy noise which

would have an impact on the interest point detection results. On the other hand, simply

assigning the feature in the bag-of-words without considering the spatial distribution

can lead to some loss of discriminative capability.

Sparse representation can capture the significant structure in the given signals. By

learning a set of overcomplete basis vectors as the dictionary, the essential information

of a signal can be efficiently represented using the linear combination of a small number

of non-zero entries in the dictionary. Sparse representation provides a generalized way to

learn the basis and potential patterns. In the literature, sparse coding has been shown

to produce promising performance in various areas, e.g., image compression [87], image

classification [88], object detection [89] and face recognition [90].

Recently, sparse coding has been explored for human action recognition in visible im-

agery. In [91], sparse representation is utilized on top of the spatiotemporal features. In

comparison to our method, their learning procedure is more expensive because repre-

senting the local volumes using the HOG3D descriptor is required at the first step. As

a consequence, their method brings not only high computational cost but also makes

the sparse representation highly rely on the performance of HOG3D feature. Besides,

comparing to the sparse coding, HOG3D feature is designed based on the gradient for

the visible light data, which may not be appropriate on the thermal infrared data.

Zhang et al. [92] proposed to use sparse coding as a vector quantization step upon

the feature in optical flow field. Their method may have the drift problem of optical

flow when extracting trajectory features. More importantly, because of the heavy noise,

methods based on optical flow may not work well in IR videos.

Our method is also different from the one proposed by Guha et al. [93]. In their

work, two categories of features are extracted from the visible light action data: the

spatiotemporal feature (Cuboids [5] with HOG descriptor) and local motion pattern

(LMP) feature. Then a sparse dictionary learning is applied on the feature vectors. In

contrast, our proposed method learns the sparse dictionary directly from the data in an

unsupervised manner, thus our method is more general and suitable for IR data, and

largely reduces the complexity in feature learning.
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More recently, Ren et al. [89] proposed to use a histogram of sparse code feature for

object detection in visible light images. They focus on comparing the sparse repre-

sentation with the gradient and the designed feature similar to HOG. Experiments for

object detection are conducted using the standard sliding window scheme. Different

from their work, our method focus on the IR action recognition in videos. We design

the spatiotemporal feature characterizing both action appearances and motions from

the IR video data. Further, our method incorporates the spatial distribution of salient

features based on a saliency map. Consequently, the developed histogram feature is

more discriminative.

5.4 Histogram of Spatiotemporal Sparse Codes

In this section, we introduce the sparse coding learning and dictionary representation

in Section 5.4.1. Then we propose the histogram of spatiotemporal sparse codes feature

in Section 5.4.2. The method for constructing the histogram feature using the saliency

map is presented in Section 5.4.3. Finally, the postprocessing for the histogram feature

is presented in Section 5.4.4.

5.4.1 Sparse Code Learning and Representation

Given a set of densely sampled local spatiotemporal volumes, the first step of our method

is to learn the sparse dictionaries and the corresponding sparse representation. K-SVD

[87] is a standard dictionary learning algorithm in an unsupervised manner similar to

the K-means [94]. In our method, the sparse dictionaries are directly learned from the

IR volumes, which contain a set of overcomplete basis representing the initial pattern of

the IR data.

Denote the learned overcomplete dictionary matrix as D ∈ Rn×K , where the columns

are the atom codewords. Given the local image patch or spatiotemporal volume x ∈ Rn,

it can be represented as a linear combination of the codewords in the dictionary and

the linear coefficients are sparse. Formally, given a set of spatiotemporal volumes X =

[x1, x2 · · · , xn], K-SVD learns a set of codewords (dictionary) D = [d1, d2 · · · dm] and the

sparse code matrix µ = [µ
1
, µ

2
, · · · , µ

m
]. Because the problem has infinite number of

solutions if n < K and D is a full-rank matrix, the constraint that each x contains K or

fewer nonzero elements is used. The sparse approximation problem can be written as:

µ̂ = arg min
µ
||X−Dµ||2F , subject to ||x||0 ≤ K, (5.1)
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where || · ||F is Frobenius norm, and || · ||0 is the `0 pseudo-norm that counts the number

of nonzero entries in a vector, K is called the sparsity level. According to [87], the

K-SVD algorithm has two major steps: sparse coding and dictionary update. One

of the efficient solution to this NP-hard problem is using the greedy algorithm called

Orthogonal Matching Pursuit (OMP). In [95], the dictionary update step of the K-SVD

is modified, speeding up the sparse coding process.

Briefly, the OMP algorithm takes the leaned dictionary D, the signal x and the sparsity

K as the input, outputs the sparse representation µ such that x ≈ Dµ. In every step, the

algorithm greedily selects the atom which has the highest correlation: â = arg maxa |d
′
ar|,

where r is the current residual initialized to x. Then the signal x is projected to the

selected basis vectors orthogonally:

µ
k

=
(
D
′
kDk

)−1
D
′
kx, (5.2)

after the projection, the residual is updated by r = x−Dkµk. These steps are executed

iteratively until convergence.

After learning the dictionaries from IR data, the OMP [96] algorithm with its batch

version [95] can be used to compute the pixel-level sparse code for each spatiotemporal

volume. This algorithm can handle a large set of data and effectively speed up the sparse

code learning process. Details of the OMP-Batch algorithm are referred to [95].

5.4.2 Histogram of Spatiotemporal Sparse Codes

A dense sampling scheme as described in [14] is used in our method for each video

sequence V (x, y, t), so that sufficient local information can be captured. A set of lo-

cal blocks of size nx × ny × nt are densely sampled across the spatiotemporal domain

throughout each video sequence. Each block centered at p(x, y, t) can be viewed as a

3D spatiotemporal local volume. This spatial and temporal sampling can be done either

with or without overlaps. In our experiment, both overlap and no overlap cases are

evaluated with different sizes of volumes (see Section 5.5.3).

In each local volume centered at p(x, y, t), three orthogonal planes that insect at the

center pixel are used to incorporate the information in both spatial and temporal domain.

Figure 5.1 shows an intuitive illustration of our scheme. Given a set of local volumes

from the training data, we use K-SVD to find the sparse dictionary on X-Y, X-T, and

Y-T planes. Three sets of dictionaries are obtained to characterize both the spatial and

temporal local patterns. After the dictionaries are learned, corresponding sparse codes

can be efficiently computed using the OMP algorithm.
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In each local volume of an IR video, the sparse codes of three planes are computed to

build the histogram. The size of the sparse codes for one plane is equal to the size of its

corresponding dictionary. For each nonzero entry of the sparse codes, two ways can be

used to fill the histogram bins: (1) use the absolute value [89]; (2) assign the occurrence

of each nonzero entry. We found that the later scheme works better in our experiments.

In this way three histograms are built for each video by counting the nonzero entries

for all the local volumes. One histogram (X-Y) represents the spatial and the other

two (X-T, Y-T) represent the temporal structures of data. L2 norm is then applied

individually, and the three histograms are concatenated into one histogram of sparse

code, which we call the Histogram of Spatiotemporal Sparse Codes (HSSC).

5.4.3 Histogram Binning using Saliency Map

Different from the standard techniques, e.g., spatial pyramid matching [97] and subse-

quences scheme [85], we propose to use the visual saliency map [98] [99] [100], taking

into account the spatial information for the local features. In our method, we use the

Graph-Based Visual Saliency (GBVS) algorithm proposed in [98]. GBVS is an effective

algorithm based on a graph structure incorporating intensity, orientation and motion

from the input data. The assumption of our method is that local volumes with higher

“saliencies” have higher contributions to the action, thus higher weights can be assigned

in building the histogram. Specifically, denote vol (x, y, t) as the local volume centered

at (x, y, t), where x, y are the spatial locations and t is the frame number. The saliency

weight of this volume w (x, y, t) is computed as:

w (x, y, t) = median (smap (x, y, t)) , (5.3)

where smap (x, y, t) represents the saliency measures within the volume centered at

(x, y, t) in the saliency map, with the same size as vol (x, y, t). The saliency map was

computed using the GBVS algorithm in [98]. Given the saliency weights, the histogram

is computed as follows:

Hk = Σx,y,tg (µk)w (x, y, t) , g (µi) =

0, µi = 0

1, µi 6= 0
(5.4)

where µk is the kth entry of the sparse codes for vol (x, y, t).
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Figure 5.2: Example images in the thermal infrared human action database. The
actions are: (top row) walking, help signaling, wiping table, hand waving and writing

on board; (bottom row) picking up, typing, opening door, kicking and writing.

5.4.4 Histogram Postprocessing

To make the extracted feature more discriminative, the power normalization and di-

mension reduction techniques are applied on the feature vector before the classification

stage. Power normalization (e.g., [101][102][89]) can improve the accuracy empirically.

For each histogram feature h, apply the power of each element as:

h = hθ, θ ∈ (0, 1]. (5.5)

Since the input is the video sequences, characterizing local patterns often results in a

large dimensionality of the feature vector, e.g., in our experiments, when dictionary

size is set to 2000, the HSSC feature is of 6000 dimensions. The standard Principal

Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are applied to

reduce the dimensionality. After the above steps, each IR action video sequence is

represented by a discriminative histogram of sparse codes, then can be fed into a multi-

class classifier for action recognition.

5.5 Experiments

In this section, the infrared action database is introduced in Section 5.5.1. The experi-

mental settings are presented in Section 5.5.2. In Section 5.5.3, the experimental results

on the IR dataset are presented. Finally, experimental results on the KTH dataset are

given to show the wide applicability of our method in Section 5.5.4.
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5.5.1 Thermal Infrared Action Database

We conduct experiments for IR action recognition on the dataset proposed in [1]. Rather

than cross-spectral action recognition [1], we focus on the thermal infrared spectrum only.

The actions in infrared are captured by a Thermal-Eye 300D camera, with a 25mm lens

and a pixel array of 320 by 240 for each image frame. The response wavelength of the

IR camera is 7-14µm. The average video length is about 21 seconds, with 30 frames per

second (fps). The total number of infrared videos is 900, including 30 action categories

performed by 30 persons in each action. The 30 actions in the database are: fixinghair,

handclapping, horizontalstretching, marching, squating, usingmicrowave, usingremote-

control, wipingtable, boxing, kicking, movingbox, pickingup, running, openingdoor, or-

ganizingtable, walking, exercisejumping, wipingboard, knockingondoor, verticaljumping,

drinking, handwaving, helpsignaling, reading, telephoning, typing, writing, sittingstand-

ing, writingonboard, and checkingwatch. In our experiments, we subsampled each video

into about 4 seconds and all the 900 infrared action videos are used with about the same

length. Figure 5.2 shows some example image frames from the thermal infrared videos.

5.5.2 Experimental Settings

The sparse code dictionaries are leaned using K-SVD [87] algorithm on the correspond-

ing three orthogonal planes ( X-Y, X-T and Y-T), individually. We randomly select

200,000 local volumes sampled from the training data. Histograms of sparse codes from

each plane are normalized and concatenated to represent each IR action. An expo-

nent around 0.3 power transform [101] is applied to the histogram feature, which shows

optimal performance in the experiments. Various dictionary sizes are tested in our ex-

periments, ranging from 500 to 2000. Principal Component Analysis (PCA) [39] and

Linear discriminant analysis (LDA) [103] are applied to reduce the feature dimension-

ality. In the classification stage, support vector machine (SVM) [41] with linear, RBF,

Chi-square [85], and intersection [104]) kernels are tested. From the results, intersection

kernel shows a higher accuracy comparing with others and all the results shown in the

following are based on this kernel. A standard three-fold cross validation is performed

where 20 subjects with all the 30 actions are used for training, the remaining 10 subjects

for testing. This process is repeated three times and the overall accuracy is obtained by

taking the average.
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5.5.3 Experimental Results

Figure 5.3 shows the example dictionaries learned from the IR action data. The dic-

tionaries for X-Y plane learned the rich patterns in the spatial domain, and X-T and

Y-T plane capture temporal structures which can better represents the dynamics and

motions of human action. This process of learning spatiotemporal dictionaries is simple

and effective, and it can be implemented in parallel.

Sparsity level and the dictionary size. Figure 5.4 shows the recognition accuracies

when the dictionary size and sparsity levels are changed. In this experiment, the local

spatiotemporal volume is of size 18 × 18 × 20, and sparsity level ranges from 1 to 4,

dictionary sizes are empirically selected from 500 to 2000 (with an interval of 500). The

saliency map is not used in this experiment. From the result we observe that, a small

dictionary size, e.g., 500, may not catch enough information so that a spatiotemporal

volume may not be represented well. A large dictionary, e.g., 2000, does not perform well

either since a large histogram with high dimensionality might overfit the data. Another

observation is that sparsity level 1 performs better when different dictionary sizes are

used, which is consistent with [89] in still image analysis. The best result is achieved

when dictionary size is 1500. In most of our following experiments, the sparsity level is

set to 1 and the dictionary size is 1500.

Spatiotemporal volume size and dictionary size. We further investigate the se-

lection of local volume size and the dictionary size. Table 5.1 shows the recognition

accuracies as the volume size and dictionary size are changed. We first use the vol-

ume size 18 × 18 × 20, which is a commonly used size for spatiotemporal features e.g.,

[14][91][34]. Smaller volume size might not catch rich enough local information while a

larger volume size can learn richer patterns to help the feature representation. In the

experiment, a larger volume size 36× 36× 20 is also tested. Both non-overlapping and

50% overlapping volume sampling schemes are evaluated. From the result one can see

that, the sampling with overlapping consistently performs better than non-overlapping,

and too large volume size might not perform well. When the patch size is 18× 18× 20

(with overlapping) and dictionary size is 1500, an optimal accuracy 81.3% is achieved.

Under the same settings, the best result 86.7% is obtained, by utilizing the saliency map

(described in Section 5.4), which suggests the advantage of our method incorporating

the spatial structure into histogram features.

Recognition results in each plane. Figure 5.5 presents the recognition results us-

ing our HSSC representation. Three curves (X-Y, X-T and Y-T) give the performance

using only one histogram from a single plane. The fourth curve shows the results ob-

tained using the concatenated histograms. From the figure we can see that features
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Figure 5.3: Spatiotemporal dictionaries learned through K-SVD for three orthogonal
planes. Spatiotemporal volume size (x,y,t) is 18× 18× 20. Complex patterns for both
spatial and temporal are learned directly from the thermal infrared data and represented

in the dictionary.
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Figure 5.4: Recognition accuracies based on different sparsity levels (K) and dic-
tionary sizes. When sparsity level is 1, the recognition works better, given different

dictionary sizes.

Table 5.1: Recognition accuracies using different dictionary sizes and schemes. Dic-
tionary size varies from 500 to 2000. In the first two rows, the local volumes are sampled
without overlap. In the next two rows, there are 50% overlap between local volumes.
In the last row, volumes are sampled with 50% overlapping, and the saliency map is

used to construct the histogram feature.

Vol size
Dictionary Size

500 1000 1500 2000

18x18x20 no 67.9% 68.4% 65.3% 63.8%

36x36x20 no 56.6% 56.6% 57.2% 59.0%

18x18x20 50% 78.9% 80.9% 81.3% 80.2%

36x36x20 50% 75.1% 77.1% 77.0% 76.7%

18x18x20 50% s 83.2% 83.8% 86.7% 83.3%
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Figure 5.5: Recognition accuracies using single planes, and the integration of all three
planes for our HSSC feature creation.

extracted from a single plane perform poorly, while combining the three planes brings

great improvement for IR action recognition. In our experiments, the combination of

three histograms is a direct concatenation, a weighted concatenation (e.g., [105]) could

also be applied as an extension for assigning the features.

Comparison with other methods on IR data. We also compare the proposed

HSSC representation with other features on our problem. In Table 5.2, four differ-

ent methods are applied using the same experimental settings. Firstly we applied the

Cuboids+Cuboids [5] feature. Then Harris3D+HOG3D [14] feature is used, to compare

our spatiotemporal histogram of sparse code (HSSC) feature to the histogram of 3D

gradient (HOG3D). Thirdly we compare our method to the LBP-TOP [105] feature,

which also combines features from three planes. The experimental results show that the

proposed HSSC feature is much better than the STIP or the LBP-TOP features, which

indicates the superiority of our HSSC representation that learns sparse features directly

from the IR data.

The confusion matrix in Figure 5.6 shows the best result (86.7%) using HSSC feature

with saliency map on IR data. From the confusion matrix one can see the detailed recog-

nition results, where most of the action categories are correctly classified and achieved

90% accuracy or above. A few actions are more difficult to recognize, e.g., ‘wiping
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Table 5.2: Comparison of thermal infrared action recognition accuracies between our
method and other typical methods originally developed for visible light actions.

Method Accuracy

Cuboid+Cuboid [5] 67.3%

Harris3D+HOG3D [14] 64.6%

LBP-TOP [105] 65.0%

Our Method (HSSC no saliency) 81.3%

Our Method (HSSC with saliency) 86.7%
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Figure 5.6: Confusion matrix of action recognition on a thermal infrared action
database with 30 actions. Experimental settings: the spatiotemporal volume is

18× 18× 20, dictionary size is 1500, and sparsity level is 1.

board’, ‘opening door’, ‘knocking on door’, and ‘reading’. Such difficulties might be

caused by the similarities of motions and appearances for these actions.

5.5.4 HSSC Feature on KTH Dataset

To measure how general the proposed HSSC feature could be, experiments are con-

ducted on the KTH action dataset [19], too. KTH dataset is the most popular database
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Table 5.3: Action recognition accuracies reported on KTH action dataset using vari-
ous methods, comparing to our method.

Methods Accuracy

Kellokumpu et al. [106] 93.80%

Mattivi et al. [107] 88.30%

Yeffet et al. [108] 90.17%

Harris3D + HOGHOF [34] 91.80%

Harrid3D + HOG3D [14] 89.00%

Cuboid + HOG3D [14] 90.00%

Niebles et al. [86] 81.50%

Jhuang et al. [109] split 91.70%

Fathi et al. [110] split 90.50%

Bregonzio et al. [111] 93.20%

Kovashka et al. [112] 94.50%

Ji et al. [113] 90.20%

Le et al. [114] 93.90%

Zhang et al. [92] 92.59%

Zhu et al. [91] 94.92%

Our Method 95.00%

for visible light action recognition. We provide an extensive comparison with various

existing methods. KTH action dataset is captured using a visible camera with 6 actions

performed by 25 subjects. Following the same settings as [19], all the 2391 video clips

are used in our experiment, and 16 subjects are used for training and other 9 subjects for

testing. HSSC feature (with saliency map) is applied to extract histograms representing

the action sequences. Then SVM with RBF kernel [41] is used for action classification.

Parameters for the HSSC feature: dictionary size is 1000, spatiotemporal volume size is

18× 18× 20, and the sparsity level is 3.

Through the experiment, our HSSC feature achieves the accuracy 95.00% on KTH

dataset. The reported recognition results of the state-of-the-art methods on this dataset

are presented in Table 5.3, using the same settings. We compare our results to various

category of methods, e.g., methods based on local binary patterns (LBP) (1-3 rows),

methods based on spatiotemporal interest points (STIP) (4-6 rows), methods using deep

learning (12-13 rows), methods using sparse coding (14-15 rows), and other state-of-the-

art methods. Note that the recently reported results are all very close, e.g., 93.90% in

[114], 94.50% in [112] and 94.92% in [91]. Using our HSSC feature, we still obtain the

highest accuracy 95.00%, comparing to all the reported results on KTH dataset. This

observation further demonstrates the generality and good performance of the proposed

method, even on the traditional visible light action database.
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5.6 Conclusion

We have investigated human action recognition in thermal infrared spectrum. A new

feature based on sparse coding is proposed. Our histogram of spatiotemporal sparse

codes (HSSC) feature learns the sparse dictionary from the thermal infrared data di-

rectly, using histogram representations. It has advantages to use HSSC feature for action

recognition in IR, comparing to some representative features originally developed for vis-

ible light actions. We proposed to construct the spatiotemporal histogram effectively

through three orthogonal planes, integrating both spatial and temporal structures of

the action videos. A saliency map is also computed to incorporate the spatial distribu-

tion of local features. Our studies have shown that richer sparse representations can be

learned to improve the performance using proper dictionary size and local spatiotempo-

ral volume. Experiments demonstrate the proposed HSSC feature can perform well on

IR action videos. Besides, on the popular visible light action dataset KTH, our HSSC

feature has also achieved the highest accuracy, compared to the state-of-the-art meth-

ods. Our work also suggests that learning features directly from data is very promising,

which can simplify the computation especially on a large video database.



Chapter 6

Evaluating Spatiotemporal

Interest Point Features for

Depth-based Action Recognition

6.1 Abstract

Human action recognition has lots of real-world applications, such as natural user in-

terface, virtual reality, intelligent surveillance, and gaming. However, it is still a very

challenging problem. In action recognition using the visible light videos, the spatiotem-

poral interest point (STIP) based features are widely used with good performance. Re-

cently, with the advance of depth imaging technology, a new modality has appeared

for human action recognition. It is important to assess the performance and useful-

ness of the STIP features for action analysis on the new modality of 3D depth map.

In this paper, we evaluate the spatiotemporal interest point (STIP) based features for

depth-based action recognition. Different interest point detectors and descriptors are

combined to form various STIP features. The bag-of-words representation and the SVM

classifiers are used for action learning. Our comprehensive evaluation is conducted on

four challenging 3D depth databases. Further, we use two schemes to refine the STIP

features, one is to detect the interest points in RGB videos and apply to the aligned

depth sequences, and the other is to use the human skeleton to remove irrelevant interest

points. These refinements can help us have a deeper understanding of the STIP features

on 3D depth data. Finally, we investigate a fusion of the best STIP features with the

prevalent skeleton features, to present a complementary use of the STIP features for

action recognition on 3D data. The fusion approach gives significantly higher accuracies

than many state-of-the-art results.

65
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6.2 Introduction

Human actions convey a significant amount of information for human interaction with

the environment, human-to-human communication and human-to-machine interaction.

Human action recognition is a very active research topic in computer vision, aiming

to automatically recognize and interpret ongoing human actions. The ability to recog-

nize complex human actions from videos enables the construction of several important

applications such as natural user interfaces, virtual reality, intelligent surveillance and

gaming [7, 8].

Although human action recognition is very important for many real-world applications,

it is still a challenging problem. A number of methods have been proposed to solve

the action recognition problem [7]. Among various methods, the spatiotemporal interest

point (STIP) based features have shown good performance for action recognition in RGB

videos [14].

Very recently, depth imaging technology has made a significant progress, which brings

a broader scope for human action recognition. Using a consumer depth sensor, e.g., the

Kinect [13], depth information can be captured simultaneously with the RGB videos.

Moreover, from the depth maps the geometric positions of skeleton points can also be

detected effectively [13]. As a result, the depth data provides a promising modality for

action recognition.

In traditional RGB video-based action recognition, several spatiotemporal features have

been proposed to characterize human actions using local motions in a space-time volume.

Local features possess many advantages, e.g., it can avoid possible problems caused by

inaccurate segmentation or partial occlusions. In the literature, many spatiotemporal

feature detectors [5, 34, 109, 115] and descriptors [35, 116–118] have been proposed and

shown promising performance for action recognition in RGB videos. However, it has not

been well studied yet on whether these spatiotemporal interest point (STIP) features

can be useful or not for depth-based action recognition.

In this paper, we perform a comprehensive evaluation of different spatiotemporal interest

point features for depth-based human action recognition. In particular, three interest

point detectors and six local descriptors are adopted, in total there are 14 different de-

tector/descriptor combinations adopted for the evaluation. Experiments are conducted

on four challenging depth action databases with the same experimental setup for each

feature. Besides, we also extend the capability of using spatiotemporal features by uti-

lizing the corresponding RGB videos, and the skeleton joints positions, in order to have

a deep understanding of the STIP features on depth data. Two different interest points
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refinement approaches are examined. Moreover, a feature-level fusion method is pre-

sented to combine the best spatiotemporal features on each database with the skeleton

joints features. From the experimental results and comparisons with the state-of-the-art

approaches for depth-based action recognition, we show the usefulness of spatiotemporal

features for action recognition in depth videos.

The rest of the paper is organized as follows: the related work on depth-based action

recognition is reviewed in Section 6.3. Different spatiotemporal interest point features

are introduced in Section 6.4. Four different depth action/activity databases are pre-

sented in Section 6.5. Experiments are conducted and presented in Section 6.6. Two

STIP refinement approaches are introduced and evaluated experimentally. A fusion of

the best STIP features with skeleton features is shown in Section 6.7. Finally, we draw

conclusions.

6.3 Related work on Depth-based Action Recognition

The depth sensors offer several advantages over traditional video cameras, e.g., working

in low light conditions, giving a real 3D measure invariant to surface color and texture,

resolving silhouette ambiguities in pose [13], etc. Depth sensors can significantly simplify

the task of background subtraction and human detection. Because of the advantages,

the depth sensors, e.g., the Kinect, have attracted researchers’ attentions from many

areas including 3D modeling, object recognition, gesture analysis, etc. Recently, action

analysis and recognition in depth videos have become a very active topic. In this quite

novel area, different approaches have been proposed. Here we give a brief overview of

the methods for depth-based action recognition.

Li et al. [23] proposed a sampling of 80 representative 3D points to describe a salient

posture. In order to select the representative points, each depth map was projected onto

three orthogonal Cartesian planes: xy, xz and zy, and then a specified number of 2D

points were sampled at equal distance along the contours of the projected depth data.

An action graph was used to model the dynamics of actions. Their method has smaller

error rates than using 2D silhouettes.

Xia et al. [119] proposed to use histograms of 3D joint locations (HOJ3D) for action

recognition. In order to be view invariant, they aligned the spherical coordinates with the

person’s specific direction. The hip center joint served as the center of the coordinate

system. By projecting the vector from left-hip center to the right-hip center to the

horizontal plane, the horizontal reference vector was obtained. The zenith reference

vector passes through the coordinate center and is perpendicular to the ground plane.
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According to different joint’s contribution to the body motion, they chose 9 joints to

compute the 3D spatial histogram by partitioning the 3D space into 84 bins. After that,

the LDA was performed to extract the dominant features, so that each frame will have

a n − 1 dimensional feature vector, where n is the number of classes. The K-means

clustering was performed to represent each posture as a visual word. A discrete HMM

was trained for action recognition.

Vieira et al. [120] proposed the Space-Time Occupancy Patterns (STOP) to represent

sequences of depth maps. In their representation, the space and time axes were divided

into multiple segments so that each depth map sequence was embedded in multiple 4D

grids. They computed occupancy feature in each cell. After that, they employed a

Nearest Neighbor classifier based on the cosine distance for action recognition.

Yang and Tian [121] combined static posture, motion property, and overall dynamics to

form an action feature descriptor called EigenJoints. In order to remove noisy frames

and reduce computational cost, they performed informative frame selection based on

Accumulated Motion Energy (AME). A non-parametric Naive-Bayes-Nearest-Neighbor

(NBNN) classifier was used for action classification.

In order to make skeleton representation invariant to sensor orientation and global trans-

lation of the body, Miranda et al. [122] proposed a pose descriptor vector in a torso-based

coordinate system. A predefined key pose set was used to build SVM classifiers. Be-

cause each gesture can be viewed as a sequence of key poses, a decision forest was used to

search for key pose sequences. In recognition stage, the key pose classifiers can recognize

key poses performed by the user and then determine the corresponding gesture class.

Yang et al. [123] proposed to generate three 2D Depth Motion Maps (DMM) from each

3D depth frame according to front, side, and top views. The HOG feature is computed

from DMM to represent an action video. They used a linear SVM classifier to recognize

actions.

In [84], Wang et al. extracted two features, pairwise relative positions and Local

Occupancy Patterns at each joint. Each skeleton joint i has 3 coordinates Fi(t) =

(xi(t), yi(t), zi(t)) at frame t, the pairwise relative position features are extracted for

joint i as: pi = {pij |i 6= j} = {pi − pj |i 6= j}. In order to model the interaction between

human subject and objects, they computed the LOP feature based on the 3D point cloud

around a particular joint. After that, Fourier temporal pyramid was used to represent

the temporal dynamics of the frame-level features. In order to deal with the errors of

the skeleton tracking and better characterize the intra-class variations, they defined an

actionlet as a conjunction structure on base features. One base feature is the Fourier
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pyramid feature of each joint. A data mining algorithm was used to find discriminative

actionlets for action recognition.

In [124], Sung et al. used all three channels, i.e., RGB, depth and skeleton positions,

for human activity recognition. They extracted hand position information, body pose

features and motion from skeleton joints. For both RGB and depth images, they used

the Histogram of Oriented Gradients (HOG) feature in two settings. One is to compute

HOG in both the RGB and depth within the bounding box of the person. The other

is to get the bounding boxes for the head, torso, left arm, and right arm, based on

the skeleton locations, and compute the HOG in RGB and depth with each of the four

bounding boxes. A two-layered maximum-entropy Markov model was trained to capture

the hierarchies of human activities and transitions between sub-activities over time.

Wang et al. [125] proposed a semi-local feature called Random Occupancy Patterns

(ROP). A depth sequence is treated as a 4D volume. Given a subvolume, the ROP

feature was computed as: oxyz = δ(Σq∈binxyztIq), where Iq = 1 if the point cloud has a

point in the location q and Iq = 0 otherwise. δ(·) is a sigmoid normalization function:

δ(x) = 1
1+e−βx

. Because the sizes of the 4D subvolume are extremely large and the

features are highly redundant, a weighted sampling method was applied to reduce the

complexity and obtain the discriminative features. They also utilized a sparse coding

method to robustly encode those features. The SVM classifier was used for classification.

More recently, Oreifej et al. [126] represented the depth sequence using a histogram

capturing the distribution of the surface normal orientation in 4D space of time, depth,

and spatial coordinates (HON4D feature). A 600-cell polychoron with 120 vertices was

used to quantize the 4D space and represent possible directions of the 4D normals. The

SVM classifier was used for action classification.

Koppula et al. [127] proposed to jointly model the human activities and object affor-

dances as a Markov Random Field where the nodes represent objects and sub-activities,

and the edges represent the relationships between object affordances, their relations

with sub-activities, and their evolutions over time. In order to find atomic movements

in an activity, they also performed temporal segmentation of the frames. They used a

multi-class SVM classifier for action recognition.

Ni et al. [128] proposed the Depth-Layered Multi-Channel STIP (DLMC-STIP) and

Three-Dimensional Motion History Images (3D-MHIs). For DLMC-STIP, after getting

local feature descriptors in a video, they introduced a set of (M) depth layers Lz1 =

[zl1, z
u
1 ] , Lz2 = [zl2, z

u
2 ], . . . , LzM = [zlM , z

u
M ], with lower and upper boundaries denoted

as zlM and zuM for the m − th depth layer, so a detected spatio-temporal interest point

by Harris3D detector would be located in one specific layer. In this way they formed
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multi-channel histograms for feature description using the HOGHOF descriptor. The

3D-MHIs are motion history images (MHIs), including both forward-DMHIs (fDMHIs)

and backward-DMHIs (bDMHIs). The SVM classifiers were used for action recognition.

Zhao et al. [129] explored the combination of RGB channel and depth for action recog-

nition. They extracted interest points from RGB videos. They proposed local depth

pattern (LDP) to represent each local video volume at each interest point position ex-

tracted from visible light videos, and adopted to the corresponding depth videos. Given

an interest point p, its local region is partitioned into Nx×Ny spatial cells. Each cell is

of size (Sx, Sy) pixels. For each cell, they computed an average depth value and then the

difference of average depth values between every cell pair to form the LDP feature. For

each interest point p, which can be detected by the Harris3D detector on either RGB

video or depth sequence, the output feature vector can be denoted as Sp = (x, y, t, F ),

where (x, y, t) denote the coordinates and time of interest point, and action feature

F could be obtained either by HOGHOF descriptor or LDP. They explored different

combinations of RGB and depth map features and used the SVM classifiers.

Inspired by Dollar’s work on local features [5], Zhang et al. [130] developed a 4D local

spatio-temporal feature which combines both intensity and depth information. They first

applied separate filters along the 3D spatial dimensions and the temporal dimension to

detect interest point. Then they computed and concatenated the intensity and depth

gradients with a 4D hyper cuboid to obtain features for an action sequence. The Latent

Dirichlet Allocation with Gibbs sampling was used as the classifier.

Also inspired by Dollar’s local interest point detector [5], Xia and Aggarwal [2] proposed

a spatiotemporal interest point detector on depth map, which effectively eliminate the

noise (‘value jumps’ and ‘holes’) appear on depth maps. They extended the Cuboid

detector [5] to the fourth dimension. A depth cuboid similarity descriptor is proposed

to describe the local feature, based on the similarity between all pair of blocks in the

3D cuboid. Finally a feature selection process based on F-score is applied to generate

the feature vector, and then used for action classification.

From the overview of related works on depth-based action recognition, we show that

many of the approaches were motivated by the methods originally developed for RGB

action recognition, e.g., motion history and the spatiotemporal interest point features.

Although the STIP features prevail for analyzing color/intensity actions with good per-

formance, only very limited types of STIP features were applied to depth-based action

recognition. It has not been well studied yet on the performance of the typical STIP

features on 3D depth actions. Thus it is important to evaluate the representative STIP

features, so that a better understanding of the STIP features can be obtained for 3D
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depth-based action analysis. Our goal is to measure the usefulness of the STIP fea-

tures for 3D action recognition, and build benchmark results of these features on several

depth-based action databases.

In the following, we briefly introduce the STIP features that we used for the evaluation,

and then present the databases and the evaluation results.

6.4 Spatiotemporal Interest Point Features

Different Spatiotemporal Interest Point (STIP) features have been proposed for action

characterization in RGB videos with good performance [14]. For example, Laptev and

Lindeberg [37] used some effective methods to make STIP velocity-adaptive as well as

spatially and temporally invariant. Willems et al. [35] presented a method to detect

features under scale changes, in-plane rotations, video compression and camera motion,

the extended SURF descriptor was also proposed in this work. Dollar et al. [5] proposed

the cuboids detectors and descriptors for action analysis. Jhuang et al. [109] used

local descriptors with space-time gradients as well as optical flow. Klaser et al. [36]

compared space-time HOG3D descriptor with HOG and HOF descriptors [85]. Recently,

Wang et al. [14] conducted an evaluation of different detectors and descriptors on four

RGB/intensity action databases. Shabani et al. [131] evaluated the motion-based and

structured-based detectors for action recognition in color/intensity videos. However,

there is no evaluation of the STIP features on 3D depth videos.

In Wang et al.’s work [14], it was observed that although the spatiotemporal interest

point features perform differently on different databases, their performances are quite

similar on the same database. Our evaluation will show that the STIP features perform

quite differently on the same depth database (See Section 6.6). In the following, we

introduce the specific STIP features that are used in our evaluation.

6.4.1 Interest points detectors

The Harris3D detector was proposed in [34]. It locates the spatiotemporal volumes with

large variations along space and temporal directions in a video sequence. A spatiotem-

poral second-moment matrix is used to model a video sequence f ,

µ = g(·) ×


L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , where g(·) is a Gaussian function for weighting

and L is the convolution of f with a spatiotemporal Gaussian derivative kernel. The
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interest point locations are determined by computing the local maxima of the response

function H = det(µ)− k · trace3(µ).

The Cuboids [5] detector computes the interest point location by the local maxima of

the response function R, which is defined as: R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2, where

g is the 2D Gaussian smoothing kernel, hev and hod are a quadrature pair of 1D Gabor

filter, which are computed by hev = −cos(2πtω)e−t
2/τ2 and hev = −sin(2πtω)e−t

2/τ2 .

Willems et al. [35] proposed the Hessian detector, which measures the strength of

each interest point using the Hessian matrix. The response function is defined as S =

|det(H)|, where H is the Hessian matrix.

6.4.2 Local feature descriptors

Given a set of interest point locations, various feature descriptors can be applied to

characterize the local space-time content. Given the spatial scale σ and temporal scale

τ at each interest point location, a local volume is used to extract features.

Kläser et al. extended the histograms of oriented gradient (HOG) to HOG3D, which is

the histogram of 3D gradient orientations. Integral videos are computed for efficiency.

HOG/HOF descriptor was proposed by Laptev et al. [85], using the combination of

histogram of gradient (HoG) and histogram of optical flow (HoF) accumulated from the

local volume.

The Cuboids descriptor was proposed along with the Cuboids detector in [5]. For each

detected point (x, y, t, σ, τ), a feature descriptor is computed in a 3D patch centered at

(x, y, t). The gradient at each spatiotemporal location is computed within the cuboid

and the histogram is computed as the feature vector. The PCA can be applied to reduce

the dimensionality.

The extended SURF (ESURF) descriptor [35] was proposed with the Hessian detector,

which is an extension of the SURF [38]. For each local volume, the feature vector is

computed using the sum of uniformly sampled responses of Haar-waveletes along three

directions.

We will evaluate the above three interest point detectors and six local descriptors for 3D

action recognition. Although there exist some works using the STIP features for depth-

based action recognition [2, 129, 130], only very limited types of STIP features were

investigated. Through the evaluation of several representative STIP features on multiple

depth databases, we will not only provide the benchmark results of STIP features on
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Table 6.1: Depth-based action/activities databases. In the 4th column, RGB denotes
color images, DEP denotes depth maps, and SK denotes skeleton joints positions. The

5th column shows the average length of each video in the dataset.

Database # of act. # of subj. # of vid. # of channels Vid Len

MSR-Action3D 20 10 557 DEP, SK ˜1s
MSRDailyActivity3D 16 10 320 RGB, DEP,SK ˜6s
UTKinect-Action 10 10 200 RGB, DEP,SK ˜3s
CAD-60 12 4 60 RGB, DEP,SK ˜45s

Figure 6.1: Some samples from MSRAction3D Dataset. 7 depth images are showed.
The actions shown are (from left to right): side kick, bend, jog, high arm wave, golf

swing, pickup&throw and high throw.

depth data, but also find the best, appropriate STIP features that may help to improve

the accuracies significantly [132] for depth-based action recognition.

6.5 Databases

In order to perform a comprehensive evaluation, we conduct experiments on four different

depth databases, which were captured under different scenarios and/or environments.

The evaluation on these databases can provide a thorough test of various STIP features

on depth data. Table 6.1 shows a brief description of the four depth-based action/activity

databases. More details of these databases are given as follows.

6.5.1 MSR-Action3D Dataset

MSR-Action3D Dataset [23] was captured by a depth camera similar to the Kinect

sensor. This dataset contains 20 actions, and each action was performed by 10 subjects

three times. Two channels of data are provided: depth sequences at 15 frames per second

(fps) with resolution of 640 × 480, and skeleton joint positions in each frame. The 20

actions are: high arm wave, horizontal arm wave, hammer, hand catch, forward punch,

high throw, draw x, draw tick, draw circle, hand clap, two hand wave, sideboxing, bend,
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Table 6.2: Three subsets of actions used for the experiments on MSRAction3D
dataset.

AS1 AS2 AS3

Horizontal arm wave High arm wave Hight throw
Hammer Hand catch Forward kick

Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing

Pickup & throw Side boxing Pickup & throw

Figure 6.2: Sample depth images from MSRDailyActivity3D Dataset. Actions in the
top row (left to right): use laptop, use vacuum cleaner, cheer up, and lay down on sofa.

Action classes in the bottom row: toss paper, stand up, walk, and play guitar.

forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, and pick up &

throw (see Figure 6.1 for some example images).

6.5.2 MSRDailyActivity3D Dataset

This dataset was collected for human daily activities by a Kinect device [84]. In total

there are 16 activities in this dataset: drink, eat, read book, call cellphone, write on a

paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lay down

on sofa, walk, play guitar, stand up, and sit down. Each subject performed an activity

twice, one “sitting on sofa” and the other “standing”. The total number of videos is

320. Three channels of data, i.e., RGB, depth and skeleton joint positions are provided

in this dataset. See Figure 6.2 for some examples of depth images in this dataset.
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Figure 6.3: Sample images from UTKinect-Action Dataset. Action classes in the top
row: walk, wave hands, sit down, and throw. Action classes in the bottom row: pick

up, clap hands, carry and push.

6.5.3 UTKinect-Action Dataset

The action videos of the UTKinect-Action Dataset [119], were collected by a single

stationary Kinect with the distance ranges from 4 to 11 feet. There are totally 10 action

classes performed by 10 subjects. Each subject performed each action twice. The RGB,

depth and skeleton joint locations are synchronized and all three channels are provided.

Some examples of depth images are shown in Figure 6.3. The resolution of RGB images

is 640 × 480, the depth image resolution is 320 × 240. The 10 action classes are: walk,

sit down, stand up, pick up, carry, throw, push, pull, wave hands, and clap hands.

6.5.4 CAD-60 Dataset

Cornell Activity Dataset-60 (CAD-60) [124], contains 60 RGB-D videos collected by a

Kinect sensor with the distance ranges from 1.2m to 3.5m, the resolution of the depth

sequences is 640 × 480, and captured at 15 fps. There are 4 different subjects and 12

different actions. The action videos were captured in five different locations, with 3 to

4 common activities performed at each location. The five locations are: office, kitchen,

bedroom, bathroom and living room. Figure 6.4 shows some example depth images from

this dataset. All the RGB, depth and skeleton data are provided in this dataset.

6.6 Evaluations

We present the experimental settings in Section 6.6.1, the evaluation results for various

combinations of detectors and descriptors in Section 6.6.2, and two STIP refinement
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Figure 6.4: Examples depth images from the CAD-60 Dataset to illustrate the actions.

approaches along with the corresponding results in Section 6.6.3.

6.6.1 Experimental settings

The bag-of-words representation is used for the spatiotemporal interest points. First,

different STIP detectors are applied to the depth sequences. Given the detected loca-

tions, different local descriptors are used to characterize the space-time volume around

each interest point. These local features are then quantized into visual words, so that

a depth action sequence can be represented as a histogram of the visual words. In

our evaluation, vocabularies are constructed using the K-means clustering technique.

We empirically set the vocabulary size to be 200, 300, 850 and 1550, respectively,

for the MSRDailyActivity3D, MSRAction3D, CAD-60 dataset and UTKinect-Action

datasets, depending on the database size and empirical performance. After quantiza-

tion, the histograms of visual words are used as the features for action classification.

The multi-class support vector machines (SVMs) are used for action learning, with a

linear kernel for the CAD-60 dataset and χ2-kernel for the other three datasets, based

on our empirical comparisons between different kernels. The χ2-kernel is defined by:
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K(Hi, Hj) = exp

(
− 1

2A
ΣV
n=1

(hin − hjn)2

hin + hjn

)
, where Hi = {hin} and Hj = {hjn} are the

frequency histograms of the visual word occurrences, and V is the vocabulary size. A is

the mean value of distances between all training samples.

For different feature representations, we utilize the implementations or source code pro-

vided by the authors, mostly with the default parameter settings, since some executable

code cannot be modified. All the experiments were conducted on a 64-bit operating

system DELL Optiplex 790 PC, with i7 3.4GHz CPU and 12G RAM.

Specifically, for the Harris3D detector, we used the original implementation with the

default parameter settings: k = 0.0005, σ2 = [4, 8, 16, 32, 64, 128] and τ2 = [2, 4]. For

the Cuboids detector [5], we ran the authors’ implementation and the default scale values

σ = 2, τ = 4 were used in our evaluation. The UTKinect-Action dataset has typically

shorter video clips, we used σ = 2, τ = 2 for the Cuboids detector. For the Hessian

detector [35], the executable code was used with the default parameter setting.

For the HOG/HOF descriptor, we followed [85] and adopted the grid parameters nx =

ny = 3, nt = 2, σ2 = 4 and τ2 = 2. For the HOG3D descriptor [36], we used the

parameters nx = ny = 5, nt = 4, σ = 2 and τ = 2 for the UTKinect-Action dataset and

nx = ny = 2, nt = 5, σ = 2 and τ = 4 for the other three datasets in our evaluation.

For the Cuboid descriptor [5], we applied the descriptor size ∆x(σ) = ∆y(σ) = 2σ +

1,∆t(τ) = 2τ + 1, where σ = 2, τ = 4. The PCA was applied to reduce the feature

dimensions to 100. For the ESURF descriptor, we used the executable code with default

parameter settings [35]: ∆x(σ) = ∆y(σ) = 3σ,∆t(τ) = 3τ .

For all depth databases, the depth sequences are firstly transformed and stored into gray

level videos (depth videos). The skeleton joint positions are also stored for each frame.

Then the spatiotemporal features are extracted from the depth videos for each database.

6.6.2 Evaluation Results

The evaluation results are presented in the following, using all four datasets.

6.6.2.1 On MSRAction3D Dataset

MSRAction3D is a commonly used dataset for 3D action recognition. We followed

the same settings as [23], where the dataset is divided into 3 subsets, each consisting

of 8 actions (see Table6.2). Then a cross-subject scheme is used in our evaluation,

with half of the subjects for training and the remaining half for testing. The overall

accuracy is obtained by taking the average of three subsets. The results of different
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Figure 6.5: Illustration of the spatiotemporal interest points detected on depth se-
quences from four datasets.

Table 6.3: Accuracies of different STIP features on MSRAction3D dataset. Different
detectors and descriptors are combined. Some combinations cannot be realized because

of the non-separable executable code.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 76.1% 80.8% 72.3% 77.3% - -

Cuboids 77.3% 78.7% 68.5% 71.0% 70.0% -

Hessian 60.3% 55.9% 47.3% 44.9% - 47.1%

detectors/descriptors on this dataset are showed in Table 6.3. One can see that the

STIP features have very different accuracies on the same database, ranging from 47.1%

to 80.8%, when different detectors and descriptors are used. This observation is very

different from the results on color/gray level action videos [14], where the different STIP

features have similar accuracies on the same database. This evaluation indicates the

significant difference between 3D depth and color/gray level videos in action recognition.

The highest accuracy is achieved by Harris3D+HOG/HOF feature with a recognition

accuracy of 80.8%. This accuracy is comparable to some state-of-the-art approaches, but

lower than the highest in the literature by more than 10% (see Table 6.10 for the state-

of-the-art results on MSRAction3D). Note that in [84] the skeleton joints information

was used while in our evaluation of STIP features, only the depth videos are used. One

reason that might impact the accuracy is that the interest points cannot be detected for

several depth sequences where the lengths of the sequences are quite short.
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Table 6.4: Subsets of actions used for the experiments on MSRDailyActivity3D
dataset.

AS1 AS2

Read book Drink
Write on a paper Eat

Use laptop Call cellphone
Use vacuum cleaner Cheer up

Sit still Lay down on sofa
Toss paper Walk
Play game Stand up
Play guitar Sit down

Table 6.5: Accuracies of various STIP features on MSRDailyActivity3D dataset.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 60.6% 67.5% 63.8% 59.4% - -

Cuboids 68.8% 70.6% 68.1% 58.1% 64.4% -

Hessian 70.6% 63.8% 61.9% 63.1% - 65.6%

6.6.2.2 On MSRDailyActivity3D Dataset

The MSRDailyActivity3D dataset contains 16 activities performed by 10 subjects in two

scenarios: sitting and standing. Similar to the partition in [23], we divided this dataset

into 2 subsets, and evaluate the performance considering two different scenarios, sitting

and standing, respectively. We consider the activities in each subset according to the

motions: subset 1 (AS1) contains activities without much motion and subset 2 (AS2)

with obvious motion. Table 6.4 shows how we divide the subsets. In our evaluation,

we adopt the cross-subject test scheme, using half of the subjects for training and the

remaining half for testing. The final results are obtained by averaging accuracies over

the subsets.

The evaluation results on MSRDailyActivity3D dataset using different combinations of

detectors and descriptors are presented in Table 6.5. Again, the STIP features achieved

very different accuracies. The highest accuracy is obtained by Cuboids+HOG/HOF

and Hessian+HOG3D, with an accuracy of 70.6%. The result is lower than the reported

results, e.g., Oreifej et al. got 80% accuracy with HON4D feature in [126]. The highest

accuracy from previous approaches is 85.8% obtained in [84]. In our evaluation, all the

combinations of detector/descriptors are above 58%. In the subset with more motion,

the performance of STIP is much better (∼ 80%) than the subset with less motion (∼
50%). This demonstrates that the STIP features can characterize actions with significant

motions, but not static actions like sitting. Further, the STIP features cannot represent

the human-object interaction. There are several activities in this dataset with similar

motion but different objects, e.g., reading and writing, eating and drinking, etc. We also
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Figure 6.6: Examples of interest points that are detected from the background
(MSRActivity3D dataset).

observe that many of the interest points are detected on depth sequences irrelevant to

the actions (see Figure 6.6). This inspires us to evaluate some refinement schemes for

the STIP features (to be shown later).

6.6.2.3 On UTKinect-Action Dataset

The evaluation results on the UTKinect-Action dataset are showed in Table 6.6. Note

that because many depth sequences in this dataset are of length about 10 frames, which

is too short for space-time interest point detection. Thus a preprocessing is conducted

for the depth videos where 10 frames are copied to expand the length of video from both

the starting and ending frames.

From the results, the best accuracy is 81%, obtained by Harris3D+HOG3D. This result

is lower than the result 90.9% in [119], and the highest accuracy 91.5% in [133]. Note that

in [119] and [133] the leave-one-out cross-validation scheme was applied but we use half

of the subjects for training and the other half for testing. Figure 6.7 shows the confusion

matrix of the best STIP feature. Most of the actions are correctly recognized, while the
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Table 6.6: Accuracies of various STIP features on UTKinect-Action dataset. Note
that we use half subjects for training and the remaining half for testing. There are 100

samples in total in the test set.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 81.0% 80.0% 66.0% 69.0% - -

Cuboids 65.0% 65.0% 56.0% 57.0% 67.0% -

Hessian 69.0% 56.0% 57.0% 53.0% - 65.0%

Figure 6.7: Confusion matrix for the feature Harris3D+HOG3D on UTKinect-Action
dataset.

action “carry” has a much lower recognition rate, i.e., 60% of the testing samples are

incorrectly classified as “walk”. These two actions are quite similar in the dataset,

since “carrying” is performed by a “walking” subject who is holding an object, while

the STIP features might not correctly detect the corresponding object regions thus the

object feature might not be well-represented, which might cause the misclassifications

for these two actions.
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Table 6.7: Accuracies of various STIP features on CAD-60 dataset.

HOG3D HOG/HOF HOG HOF Cuboids ESURF

Harris3D 43.8% 50.0% 43.8% 37.5% - -

Cuboids 50.0% 31.3% 37.5% 37.5% 43.8% -

Hessian 43.8% 50.0% 56.3% 43.8% - 62.5%

6.6.2.4 On Cornell Activity Dataset (CAD-60)

For the CAD-60 dataset, all the depth videos are sampled to 500 frames in our evaluation.

All the activity categories (12 desired activities and a random activity) in this dataset

are used in our evaluation as in [124]. The same experimental settings are adopted, i.e.,

three subjects for training, while the remaining for testing.

The evaluation results are shown in Table 6.7. Among the various features, the Hes-

ian+ESURF gives the highest accuracy 62.5%. From the confusion matrix (Figure 6.8),

one can see that some of the similar activities on depth sequence are incorrectly recog-

nized, e.g., talkOnCouch and relaxOnCouch, and the random activity in this dataset also

influences the recognition rate, where the talkOnPhone activity is recognized incorrectly

as the random activity.

In [124], the precision/recall is reported as the performance measurement (67.9%/55.5%).

Yang et al. [121] reported 71.9%/66.6% on this dataset. Koppula et al. [127] reported

the 80.8%/71.4%. We also compute precision/recall for the feature Hessian+ESURF.

The result achieves 66.7%/59.0%. Note that in our experiment we do not divide the

different environment into different subset as [127]. The noisy background in depth

sequences (see Figure 6.5) impact the detection of interest points with many interest

points detected from the background. This drawback can be overcome when human

segmentation is applied. We will investigate some refinement to reduce the effect of

background noise on depth-based action recognition.

6.6.3 Refinements of the STIP features

In the above experiments, various STIP features are evaluated on depth videos with

recognition accuracies reported. The best accuracies on each database are comparable

to, but lower than some state-of-the-art methods that are developed especially for 3D

action analysis. Note that the synchronized RGB videos and the human skeleton joints

positions [13] are usually provided with the depth sequences. Intuitively these different

sources of data can be used as the complementary information for human action recog-

nition. Thus in our evaluation, we attempt to further utilize the RGB videos and the

skeleton joints positions, to enhance the performance for action recognition on depth
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Figure 6.8: Confusion matrix for the feature Hessian+ESURF on CAD-60 dataset.

data. In this way, we can understand the STIP features deeper in depth videos. Two

approaches are investigated in the following.

6.6.3.1 STIP feature refinement using Skeleton Joints

Shotton et al. [13] developed an efficient technique for human skeleton detection with

20 joint positions. Since the STIP features have a drawback, i.e., the spatial relations

or distributions of the interest points cannot be utilized. From the above experiments,

we observe that the detected interest points on depth images can be in the background

or not accurate because of the noise in depth data. Therefore, we demonstrate that

on depth images, the refinement of interest point detection could be done by using the

skeleton. It is based on constraining the locations of STIP according to the skeleton

joints. The idea is different from the work [2], but aims at the same goal—interest

points refinement. Specifically, we define a bounding box around the subject at each

frame t. The bounding box at frame t is obtained by the temporal images from time t−5

to t+ 5, and the maximum boundaries are selected and shifted by 30 pixels to each side

to construct the new bounding box. Then the STIP which are detected on the whole

depth sequences are constrained within the new box. STIP detections which lie outside
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Figure 6.9: Examples of STIP refinement on different datasets. Left column shows the
original interest points detected, right column shows the interest points after refinement

by the human bounding box derived from the skeleton joints.

the bounding box are considered as from the background, and thus are eliminated (see

Figure 6.9). Finally, we do the evaluation again using the same experimental settings

as previous, only a smaller K in K-means clustering because of the reduced number of

interest points.

The evaluation results using this STIP refinement scheme on four datasets are shown in

Figure 6.10. From the results we observe that (1) most of the features can get better

results when applied the STIP refinement, e.g., on MSRAction3D dataset, the accuracy

of Cuboids + Cuboids feature increases by 4.2% after the refinement; on MSRDailyAc-

tivity3D dataset, an 11.9% increase is achieved for the Hessian + ESURF feature; and on

UTKinect-Action dataset, the accuracy is increased by 13% for Cuboids + HOG/HOF

feature. We also notice that on the CAD-60 dataset, the STIP refinement method does
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Figure 6.10: Bar graph of the recognition accuracies before and after the refinements
on different datasets. The vertical axis denotes the recognition accuracy (%).

Table 6.8: Accuracies using skeleton and RGB refinement approaches. Two cells have
no results since the MSRAction 3D dataset does not contain RGB data.

MSRDailyActivity3D UTKinect-Action CAD-60 MSRAction3D

Original 70.6% 81.0% 56.3% 80.8%

RGB Refined 75.6% 85.0% 68.8% –

Skeleton Refined 72.5% 84.0% 50.0% 81.7%

Sk+RGB Refined 77.5% 85.0% 62.5% –

not improve the accuracies. One reason might be that the dataset was collected in five

different locations and certain actions are “correlated” to some specific scene/location,

e.g., the action ‘cooking’ is performed in kitchen, while the action ‘brushing teeth’ is

performed in bathroom, etc. The eliminated STIPs, which are mainly from the back-

ground, could contain some helpful information for action encoding. Eliminating the

interest points from background will “lose” the scene or context information, thus the

refinement may have some negative impact on action analysis; (2) The overall accura-

cies on MSRAction3D and MSRActivity3D datasets increase after applying the STIP

refinement. On MSRAction3D dataset, the refined accuracy is 80.5%, comparing to the

original accuracy 78.7%, on MSRActivity3D dataset, the best accuracy is 77.5%, which

is higher than the original 70.6%, after the refinement.
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6.6.3.2 STIP feature refinement using RGB images and Skeleton Joints

We have shown above that in most cases the STIP refinement with the 20 skeleton

joint positions can increase the action recognition rates. However, the performance is

still highly relied on the interest point detection accuracy. When the interest point

detection performs poorly on the depth maps because of the noisy depth data, the

skeleton constraints may not help too much. Based on this consideration, we pursue

another refinement scheme. The idea is to adopt the interest point detection on RGB

videos, i.e., using the STIP locations detected in RGB videos for depth sequences. In

other words, the interest point detection is conducted on RGB sequences, and just

duplicated to the depth maps. The feature descriptors are still executed on the depth

videos.

Experiments are conducted on three datasets except the MSRAction3D because it does

not have the RGB data. We use the same settings as previous. The evaluation results

are shown in Table 6.8. The best STIP feature on each dataset are selected (because

separate implementation of ESURF descriptor is not available, we chose the 2nd best

STIP feature instead). From the results, one can see that the accuracies are improved

significantly after using RGB refinement approach, either the skeleton refinement is

applied or not. On MSRDailyActivity3D dataset, the accuracy is increased from 70.6%

to 75.6%, on CAD-60 dataset, the accuracy is improved from 56.3% to 68.8%, and on the

UTKinect-Action dataset, the accuracy is improved from 81.0% to 85.0%, when using

the RGB refinement approach.

For the refinement with skeleton joints, the accuracies can be improved or keep the same

on the MSRDailyActivity3D and UTKinect-Action datasets, but reduced on the CAD-

60 dataset. The reason could be that the interest points located in the background

or scene may help to improve the action recognition accuracies (the CAD-60 dataset

contains different actions in different scenes), while the removal of those interest points

(constrained by the skeleton joints) can reduce the recognition performance.

The refinement results show that it may not be accurate enough to use the detected

locations of interest points on depth sequences directly, because of the noisy depth

values.
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6.7 Fusing spatiotemporal features and skeleton joints for

action recognition

In the above, two approaches have been presented to refine the STIP features. These

approaches can be viewed as posing constraints to the interest point locations on depth

videos, by using either RGB videos or the skeleton joints. On the other hand, the skele-

ton joints positions extracted from the depth videos can be used as another feature,

representing human posture information. In this section we want to evaluate the perfor-

mance of combining the STIP features with the skeleton joints feature. This evaluation

can tell if the STIP features can complement the skeleton joints features, and if the

combination can improve the accuracies significantly. If the accuracies can be improved

greatly, it can indicate the usefulness of the STIP features from another aspect.

Specifically, the combination approach has four major steps, which has been presented

in a workshop [132]. Firstly, the STIP features are extracted on depth sequences. Then

skeleton joints features are computed from the skeleton joint positions. A quantiza-

tion is performed for the two features respectively to encode the action sequences with

histograms. Finally, a feature-level fusion is executed for action recognition using the

random forests method [134]. We chose the detector/descriptor combinations which

performs the best based on our evaluation presented above. The evaluation of the STIP

features in Section 6.6 is the basis for our fusion approach [132].

We use the histogram of the skeleton joints features proposed in [121] to combine with

the best STIP features on each database. Different from [121] where the Naive Bayes

classifier was used, we compute the histogram of the joints to combine with the STIP

features by the random forests method.

The features from joint locations consist of three parts: (1) current posture: pair-wise

joint distances in current posture; (2) motion: joints difference between current posture

and the original (in the first frame); and (3) offset: joints differences between current

posture and the previous one. A concatenation of the three feature vectors is taken to

represent the feature. The PCA method is applied for dimensionality reduction.

To represent each action sequence, we quantize the STIP features and the skeleton joints

features, respectively, based on the K-means clustering. The cluster centers are used as

the keywords to construct the histogram bins. These features are used in the next step

for feature-level fusion and action classification.

In order to perform the fusion and feature selection of spatiotemporal features and

the skeleton joints features, the random forests (RFs) method [134] is used. RFs are

usually considered as a classifier using tree predictors in which each tree splits the data
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Table 6.9: Accuracies of the fusion method compared to each single feature on four
datasets. RFs denotes the random forests method.

MSRAction3D Acc.

STIP (Harris3D+HOG/HOF) 77.5%

Skeleton Joint Features 90.9%

Combined features with RFs 94.3%

UTKinect-Action Acc.

STIP (Harris3D+HOG3D) 80.8%

Skeleton Joint Features 87.9%

Combined features with RFs 91.9%

CAD-60 Acc.

STIP (Hessian+ESURF) 75.0%

Skeleton Joint Features 81.3%

STIP + Skeleton 87.5%

MSRDailyActivity3D Acc.

STIP (Hessian+HOGHOF) 70.6%

Skeleton Joint Features 73.8%

Combined features with RFs 80.0%

depending on the randomly selected features. And there are many nice properties to use

the random forests: (1) robustness to noise, (2) efficiency for classification, and (3) the

improvement of accuracy by growing multiple trees and vote for the most popular class.

Here we use the RFs for fusion of distinct features and action classification together.

The experiments are conducted on the four datasets (MSRAction3D, UTKinect-Action,

CAD-60, and MSRDailyActivity3D) while three of them were used in our study in

[132]. Our fusion approach can improve the recognition rates to 94.3%, 91.9%, 87.5%,

and 80.0%, respectively, on the four databases, which are significantly higher than the

STIP feature or skeleton. This result shows that the STIP features can be useful to

complement the often-used skeleton features for action recognition.

We also compare the fusion results to other results reported in the literature on the

four datasets. Table 6.10 shows all reported results that we can find on the MSRAc-

tion3D dataset. Under the same experimental settings, it can be seen that the fusion

result of 94.3% accuracy is the second best result among all of the previous methods.

Our result is only 0.5% lower than the best result in [135]. On the UTKinect-Action

dataset from Table 6.11, the fusion approach has an accuracy of 91.9% which is higher

than the DSTIP+DCSF feature [2], and slight higher than the HOJ3D feature in [119]

(90.9%) and the space-time pose representation in [133] (91.5%). Note that we used

the same settings as [2], which is more challenge than the settings in [119] and [133].

On the CAD-60 dataset, same experimental settings are kept the same as [124] and the

presicion/recall of our fusion method is computed for a direct comparison with other
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Table 6.10: Comparisons of different methods on MSRAction3D dataset.

Method Accuracy

High Dimensional Convolutional Network [125] 72.5%

Action Graph on Bag of 3D Points [23] 74.7%

HOJ3D feature [119] 79.0%

Key Pose Learning [122] 80.3%

Eigenjoints [121] 82.3%

STOP feature [120] 84.8%

Random Occupancy Patterns [125] 86.2%

Actionlet [84] 88.2%

HON4D [126] 88.9%

DSTIP+DCSF [2] 89.3%

Depth Motion Maps [123] 91.6%

Space-time Pose Representation [133] 92.8%

JAS (Cosine)+MaxMin+HOG2 [135] 94.8%

STIP + Skeleton 94.3%

Table 6.11: Comparisons of different methods on UTKinect-Action dataset.

Method Accuracy

DSTIP+DCSF [2] 85.8%

HOJ3D [119] 90.9%

space-time pose representation [133] 91.5%

STIP+Skeleton 91.9%

Table 6.12: Comparisons of different methods on CAD-60 dataset.

Method Precision/Recall

J. Sung et al. [124] 67.9%/55.5%

X. Yang et al. [121] 71.9%/66.6%

Koppula et al. [127] 80.8%/71.4%

STIP + Skeleton 93.2%/84.6%

methods, shown in Table 6.12. Our fusion approach obtained a much higher accuracy

than the state-of-the-art results on this dataset. Finally, Table 6.13 shows the results

on the MSRDailyActivity3D dataset, an accuracy 80.0% is obtained using our fusion

approach. Slight different settings are used in our experiment, the result is comparable

but about 8% lower than the highest accuracy. Note that all the 16 activities are used

in our experiment, while in [2], four activities (with less motion) were removed in their

experiment.

From the comparison with various methods in the literature, we demonstrate the useful-

ness of the STIP features for depth-based action recognition, when combined with the

skeleton feature.
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Table 6.13: Comparisons of different methods on MSRDailyActivity3D dataset.

Method Accuracy

NBNN + parts + time [136] 70.0%

Local HON4D [126] 80.0%

DCSF [2] 83.6%

RGGP + Fusion [137] 85.6%

Actionlet [84] 85.8%

DCSF+Joint [2] 88.2%

STIP+Skeleton 80.0%

6.8 Conclusions

We have presented a comprehensive evaluation of the spatiotemporal interest point fea-

tures for action recognition in 3D. The evaluated STIP features include three spatiotem-

poral interest point detectors and six descriptors. The combinations of these detectors

and descriptors form 14 different features. These STIP features have been evaluated

on four different depth action/activity databases. The comparisons to the state-of-the-

art methods have shown that the STIP features are still useful for depth-based action

recognition.

From the evaluation, we have shown that most of the results are comparable to the

current state-of-the-art approaches. However, under the bag-of-words framework, the

extracted features do not contain the spatial distribution of the interest points in depth

maps, this is one reason that limits the performance. We have also shown that the noisy

depth data and background have a great impact on interest point detection. Moreover,

the interest point detection may not perform well on actions without much motion,

resulting in lower accuracies.

The evaluation has shown that different STIP features perform quite differently on

depth actions. It discovers that the feature with Harris3D and HOG/HOF performs the

best on the MSRAction3D dataset, the Cuboids detector with HOG/HOF descriptor

performs the best on the MSRDailyActivity3D dataset, while the Harris3D detector

combined with HOG3D descriptor is the best on UTKinect-Action dataset. On the

CAD-60 dataset, the Hessian detector with ESURF descriptor gives the highest accuracy.

Two interest points refinement schemes have been presented for the STIP features, based

on constraining the STIP features using skeleton joint positions and/or the detection in

RGB videos. We have shown that the STIP features can be refined to achieve better

performance in most cases. We have also proposed a fusion scheme to combine the best
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STIP features with the skeleton joint features in each database. Significant improve-

ments of the recognition accuracies have been achieved on all four databases. Overall,

we have explored the STIP features for 3D action recognition from different aspects.



Chapter 7

Fusing Multiple Features for

Depth-based Action Recognition

7.1 Abstract

Human action recognition is a very active research area in computer vision and pattern

recognition with important applications. Recently, human action recognition using the

depth data captured by the emerging RGB-D sensors has shown a great potential in

action analysis, compared to the traditional color video-based approaches. Several fea-

tures and/or algorithms have been proposed for depth-based action recognition. Some

questions are raised: Can we find some complementary features for depth-based ac-

tion analysis? Can we fuse these complementary features to improve the recognition

accuracy significantly? To address these questions and have a better understanding of

depth videos for action recognition, we advocate the study of fusing different features

for depth-based action analysis. Although data fusion has shown great success in many

areas, such as multimedia analysis and biometrics, it has not been well studied yet on

whether the fusion is helpful or not for depth-based action recognition, or how to do

the fusion properly. In this paper, we study different fusion schemes comprehensively,

using diverse features for action characterization in depth videos. Two different levels of

fusion schemes are investigated, i.e., feature-level and decision-level. Various methods

are explored at each fusion level. Four different features are considered to characterize

the depth action patterns from different aspects. The experiments are conducted on four

challenging depth action databases, in order to evaluate and find the best fusion methods

generally. Our experimental results show that the four different features investigated

in the paper can complement each other, and appropriate fusion methods can improve

the recognition accuracies significantly over each individual feature. More importantly,
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our fusion-based action recognition outperforms the state-of-the-art approaches on these

challenging databases.

7.2 Introduction

Human action recognition has been an active research topic for more than two decades.

It has a wide range of applications in the real world, such as Human Computer In-

teraction (HCI), video surveillance, video retrieval and security [7]. Most of the work

has focused on action recognition using the videos captured in the visible spectrum

[9, 10, 46]. Very recently, with the emerging, low-cost RGB-D sensors, e.g., the Kinect,

human action recognition in 3D data has gained great attentions in computer vision.

Depth maps provide many advantages over traditional color images/videos. For exam-

ple, firstly the depth maps provide the 3D structure and shape information which makes

several problems easier to deal with, such as segmentation, detection, etc. Second, depth

images/videos are insensitive to illumination changes. Third, a quite accurate estima-

tion of 3D human skeleton joint positions can be obtained from the depth data [13].

Therefore, using the Kinect sensor, three channels (RGB, depth and skeleton joint posi-

tions) of data are provided, which not only bring great benefits for robotics and human

centered computing, but also give a broader scope for action recognition as well [18].

7.2.1 Related Work on Depth-based Action Recognition

Depth-based action recognition has been actively studied since 2010 [23]. Several algo-

rithms and/or features have been proposed in the literature.

There are several representative works for action recognition with 3D depth data. Li

et al. [23] proposed an action graph for depth action recognition. A bag of 3D points

sampled on depth data is used to encode the action posture, and the action graph

is used to model the dynamics of actions. Wang et al. [84] proposed to combine the

skeleton feature and local occupation feature, then learned an actionlets ensemble model

to represent actions. A multiple kernel learning method is used to combine the actionlets.

Wang et al. also proposed a semi-local feature called Random Occupancy Patterns

(ROP), which is extracted from 4D volumes [125]. Sparse coding is utilized to encode

the features and the SVM is used for classification. Vieira et al. [120] proposed the

space-time occupancy patterns to represent depth sequences. Both space and time axes

are divided into multiple segments. Occupancy feature is computed in each cell, and

a nearest neighbor classifier is applied for recognition. Different approaches based on

Motion History Images (MHI) are proposed by Yang et al. [121] [138] [139]. The main
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idea is to use accumulated depth maps and compute histogram of gradients (HOG)

features to represent human actions. More recently, Oreifej and Liu [126] proposed

a method called HON4D to describe the depth sequence as a histogram captured in

the 4D space of time, depth and spatial coordinates. A 600-cell polychoron is used to

quantize and represent the features. They used the SVM classifier and showed a good

performance for action recognition. In [2], a modified spatiotemporal feature based on

Cuboids is proposed to capture the action motion and eliminate the flip noise on the

depth video. A feature selection scheme is applied to the proposed features and then

the selected features are fed into the SVMs for classification.

On the other hand, by modeling the skeleton joints, human actions in a depth video

can be represented by the sequence of human postures and can be fed into the learning

based algorithms, such as Hidden Markov Models (HMMs) and Dynamic Time Warping

(DTW). In [140] and [141], similar ideas were proposed where feature vectors defined

by skeleton joints are used to modal the human action, and DTW is applied to the

resulted feature vector for action recognition. Yang et al. [138] proposed another skeleton

feature to modal the human action posture frame by frame, based on computing posture

feature, motion feature, and the offset feature, according to the relative frames in the

action video. In [84], pairwise skeleton joint positions were computed in each frame

to shape the motion of the human body. Xia et al. [119] proposed an alternative

feature called HOJ3D based on the skeleton joints. A coordinate based on skeleton

joints is constructed, and multiple 3D bins are used to extract histogram features, by

counting the number of joints in each bin. A Hidden Markov Model is used for action

classification. Similarly, Miranda et al. [122] used the pose descriptor in a torso-based

coordinate system and the SVM classifier to learn key poses. A decision forest is then

used to recognize the action classes.

There are also works using both the RGB videos and depth maps for action recognition

[124], [128] and [129]. The histogram of oriented gradient (HOG) feature was used as the

descriptor for both RGB and depth images in [124]. The hand positions, body pose and

motion features were also extracted from skeleton joints. A two-layer maximum-entropy

Markov model is trained for classification.

7.2.2 Related Work on Data Fusion

Data fusion has been studied extensively, and shown great performance in many ar-

eas, including multi-sensor system [142], multimedia analysis [143], human identification

[144], face recognition [145], handwriting recognition [146], biometrics [147], etc. Various

methods have been proposed and investigated for data fusion.



Chapter 7. Fusing Multiple Features for Depth-based Action Recognition 95

In [143], a survey of multimodal fusion for multimedia analysis was conducted. A cat-

egorization of different fusion methods with a thorough review of literature was given.

They argued that the linear weighted fusion and SVM fusion methods are more often

used because of the efficiency of these methods. Kittler [148] proposed the theoretical

framework for combining different classifiers, and [149] investigated various rule-based

fusion methods and experimentally validated the performance. Later on, a more ex-

tensive study was conducted in [150] on classifier fusion strategies. In [151], a decision

template is proposed to represent different fusion methods. In [147], different levels of

fusion methods were presented for biometrics applications.

The usefulness of data fusion in other areas motivated us to explore fusion-based ap-

proaches for depth-based action recognition, which has not been well studied yet, to

the best of our knowledge. In this paper, fusion methods are explored on two levels:

Feature-level and Decision-level. For the Feature-level, Random Forests, Joint Mutual

Information and Conditional Mutual Info Maximization approaches are studied. For the

Decision-level fusion, the Majority Voting, Naive-Bayes Combination, Rule-based fusion,

SVM-Based fusion and Multi-Agent System approaches are studied. These approaches

are further described in Section 7.4.

7.2.3 Our Approach

We study whether and how fusion-based approaches can help to improve the action

recognition accuracies in depth videos. The underlying assumption is that there are

complementary features that can be extracted in depth videos. For the purpose of fu-

sion, the complementary features should be extracted and combined together appropri-

ately, otherwise the overall accuracy might not be improved even with multiple features.

In our preliminary work [132], the spatiotemporal features and skeleton features were

combined using the random forest method [134]. This fusion approach improves the

accuracies of depth-based action recognition significantly. In this paper, we will further

explore our fusion-based idea, by combining more features with diversity, investigating

and evaluating a variety of fusion methods comprehensively, and using more databases

to validate the fusion methods for generality.

Several representative data fusion methods are explored for our problem. We compare

different fusion methods and find the best ones to solve the specific problem of depth-

based action recognition.

The major contributions of our work include: (1) Evaluation of different features on

depth-based action recognition, using the same experimental setting. There are four

different features chosen for the evaluation. Two of them capture local motions and
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were originally proposed for action recognition in RGB videos, the third one extracts

features according to the skeleton joints positions, and the last one extracts features

from 3D surface normal distributions; (2) Exploration of two levels of fusion schemes,

i.e., the feature-level and decision-level fusions. Several methods are explored at each

fusion level; (3) Validation of the capability of different fusion methods and finding the

appropriate for depth-based action recognition on four challenging databases.

The remaining of the paper is organized as follows: In Section 7.3, we introduce four

different features for depth-based action characterization. Conceptually these features

represent the action patterns from different aspects. In Section 7.4, we describe dif-

ferent fusion methods belonging to two different fusion levels. The experiments are

conducted in Section 7.5 with comparisons to the state-of-the-art methods. Finally, we

draw conclusions.

7.3 Feature Extraction and Description on Depth Data

Feature extraction and representation is an important step for action recognition. To

develop our fusion-based approach to depth-based action recognition, we use multiple,

diverse representations to characterize the action patterns. In our preliminary work [132],

the spatiotemporal interest point features (STIP) and skeleton features are extracted and

fused for action recognition in 3D. Here we expand the preliminary work by integrating

more features, and executing a systematic study of various fusion methods. The 4D

descriptor (HON4D) can characterize the normal distributions of the 3D surfaces in

action performing [126], and the space-time auto correlation (STACOG) feature can

represent more details of human actions [152]. Totally there are four different features

to investigate for our developing of fusion-based recognition framework, characterizing

the depth action patterns from different aspects. We introduce these features in the

following.

7.3.1 Spatiotemporal Interest Point Features

Spatiotemporal interest point (STIP) features capture the complex motion of human

actions. These features are quite popular for action representation in color videos [131],

but not often in depth data. Here we adapt some STIP features to depth sequences.

We attempted several combinations of the detectors and descriptors and find the best

ones for depth action characterization. Because of the space limits, we briefly describe

the STIP features that we used and only the best one will be reported in each dataset

experimentally (see Section 7.5).
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The Harris3D detector [37] computes the locations of the interest points based on a

second-moment matrix of gradients with the convolution of spatiotemporal gaussian

kernel in the video sequence. It locates the spatiotemporal volumes where large varia-

tions of gradient exist along space and temporal directions. Specifically, a spatiotemporal

second-moment matrix is computed from a video sequence f ,

µ = g(·)×


L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , (7.1)

where g(·) is a Gaussian weight function and L is the convolution of f with the spa-

tiotemporal gradient. The interest point locations are determined by computing the

local maxima of the response function R = det(µ)− k · trace3(µ).

Another detector applied in this paper is the Hessian detector [35]. The Hessian detector

uses the response function S = |det(H)| to measure the strength of each interest point,

where H is the Hessian matrix.

Given the detected locations, various descriptors can be used to characterize the local

motion patterns. The HOG/HOF descriptor was proposed in [85] to describe local

human motion in RGB videos. It computes the histogram of gradient (HOG) and

histogram of optical flow (HOF) in each local volume. Klaser et al. [36] extends the HOG

to HOG3D descriptor, which computes the 3D gradient and constructs a histogram as

the feature vector. It computes the histogram of 3D gradient orientations. The integral

videos can be pre-computed to efficiently compute the gradients and combine both shape

and motion information at the same time. The extended SURF (ESURF) descriptor [35]

is an extension of the SURF [38] for action representation.

7.3.2 Space-Time Auto-Correlation of Gradients (STACOG)

A method called the Space-Time Auto-Correlation of Gradients (STACOG) was pro-

posed with the bag-of-frame-features computation in [152] to extract motion features

from RGB action videos. It is computed with the frame-based STACOG features sam-

pled densely along the time axis. In order to extract the feature, space-time gradient vec-

tor is calculated by taking derivatives (Ix, Iy, It) at each local space-time volume, around

each space-time point. The gradients can be represented by the angles θ = arctan(Ix, Iy)

and φ = arcsin(It/m), where m =
√
I2x + I2y + I2t is the magnitude. Then a histogram

is constructed by binning the gradients in a unit sphere. The histogram is defined as

space-time orientation coding (STOC) vector. The auto-correlation functions can be
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computed for the space-time gradients:

F0 = Σrm(r)h(r), (7.2)

F1(a1) = Σrmin[m(r),m(r + a1)]h(r)h(r + a1)
T , (7.3)

where r is the reference point (x, y, t), h is the STOC vector, and a1 is the displace-

ment vector from the reference point, and F0 and F1 are the zero and first order auto-

correlations. We adapt the STACOG features from RGB to depth data.

7.3.3 EigenJoints Feature

Human skeleton joints can be detected fast on depth data [13]. The skeleton joint

positions can be viewed as an alternative modality for action characterization. Features

can be computed from skeleton joint positions to represent the action patterns, which are

usually not available in color videos. Several features extracted from skeleton joints are

proposed for depth-based action recognition such as [84], [119], [138]. We implemented

these features and found that the method in [121] gives a better representation. Thus

we chose the histogram of the skeleton joints features to represent human actions.

Specifically, the features consist of three parts: (1) current posture: pair-wise joint

distances in current posture compared in the current frame; (2) motion: joints differences

between current posture and the previous one; and (3) offset: joint differences between

current posture and the original (in the first frame). Denote each 3D skeleton joint

by pi = (xi(t), yi(t), zi(t)) at frame t. The number of skeleton joints in each frame is

denoted as N . The feature vector can be computed by:

f = [fcurrent fmotion foffset], (7.4)

fcurrent = {pi − pj | i 6= j; i, j = 1..N}, (7.5)

fmotion = {pi(t)− pi(t− 1) | i = 1..N}, (7.6)

foffset = {pi(t)− pi(0) | i = 1..N}, (7.7)

where p(0) denotes the original posture in each action sequence.

7.3.4 Histogram of Oriented 4D Normals (HON4D)

The depth data can be represented as a surface in 4D space with a set of points (x, y, t, z),

where z is the depth value of the point. Then the normal to the surface can be computed
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Figure 7.1: Illustrate the schemes of the decision-level/late fusion (left) and feature-
level/early fusion (right) in combining different features for 3D action recognition.

by:

n = ∇S = (
∂z

∂x
,
∂z

∂y
,
∂z

∂t
,−1)T . (7.8)

The surface normals over all voxels in the depth sequence can be used for action repre-

sentation [126]. A 600-cell polychoron in 4D space is used to quantize the 4D normals

to derive the feature. The HON4D will be combined with other features together to

develop our fusion-based approach.

7.4 Fusion Methods

Data fusion has gained much attention in recent years. It can be accomplished at

different levels [153], e.g., early fusion (sensor, feature levels), where fusion is conducted

before matching, and late fusion (rank, score, decision levels), where fusion is executed

after matching. We present several fusion methods at both the decision and feature levels

to solve our problem of depth-based action recognition (see Fig. 7.1 for an illustration).

7.4.1 Feature-Level Fusion

According to [147], feature level fusion is usually conducted through feature normaliza-

tion and feature selection or transformation, because of the relationship between different

feature sets and the curse of dimensionality [154]. The objective of feature-level fusion is

to combine different feature sets to generate a new feature vector. For feature selection,

we adopt two representative approaches from [155]. Totally we explore three methods

for feature-level fusion to deal with the problem of depth-based action recognition.
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7.4.1.1 Random Forests (RFs)

Random Forests [134] are usually considered as a classifier (or regressor) using tree

predictors in which each tree splits the data depends on the randomly selected features.

Random Forests can be used as a fusion method which is based on randomness of the

split in each node and the forest structure. There are many nice properties of the

random forests method: (1) robustness to noise, (2) efficiency for classification, and (3)

the improvement of accuracy by growing multiple trees and voting for the most possible

class. Here we use the RFs for fusion of distinct features and action classification jointly.

Let the feature vector be v ∈ RN , where the number of the features for each sample is

N . A number n < N is specified at each node of the tree, where n features are randomly

selected to determine the split of that node. The randomly selected n features are used

in the tree node.

The best split is determined by the information gain using these features,Several decision

trees are growing to generate a forest, and each tree grows until it reaches the maximum

tree depth maxdep, or the tree node receives the given number of minimum samples

minnode. In the leaf nodes, the probabilistic distribution for each class is computed.

In this way, the feature fusion is executed randomly and naturally in the tree building

process.

In recognition phase, each new observation x goes down to one of the leaf nodes in each

tree, denoted as l(t, x), which contains the distribution Pn of all classes. Random forests

classifier chooses the class label which gets the most votes over all the trees:

ĉ = arg max
j

1

T

T∑
t=1

pjl(t,x), (7.9)

where ĉ is the predicted class label, T is the total number of trees, l(t, x) is the leaf

node of tree t where the test sample x falling into. pjl(t,x) is the posterior probabilities

for class j at leaf node l(t, x), pjn =
|Sj |
|S| , where |S| is the total number of samples in this

leaf node and |Sj | is the number of samples of class j in S.

7.4.1.2 Joint Mutual Information (JMI)

JMI was proposed to select a discriminative feature subset from the feature pool [156].

In our case, different features are normalized and concatenated to construct the feature

pool. We investigate if the feature selection by JMI can fuse different features for our

action recognition in 3D.
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The mutual information between X and Y can be defined [156] by,

I(X;Y ) = H(X)−H(X|Y ) = Σx∈XΣy∈Y p(xy) log
p(xy)

p(x)p(y)
, (7.10)

where H(X) denotes the entropy of the random variable:

H(X) = −Σx∈Xp(x) log p(x), (7.11)

and the conditioned form of entropy H(X|Y ) can be written as:

H(X|Y ) = −Σy∈Y p(y)Σx∈Xp(x | y) log p(x | y). (7.12)

As a feature selection method, the JMI can be viewed as using a criterion J to measure

how useful a feature or feature subset is when used by a classifier. This criterion is

defined as:

Jjmi(vk) = Σvk∈SI(vkvj ;Y ), (7.13)

where S is the previously selected feature set, Y is class label, and vk is the kth feature

in the feature vector v.

The JMI pairs the candidate features in vk with each newly selected feature to increase

the complementary information between features [155].

7.4.1.3 Conditional Mutual Info Maximization (CMIM)

CMIM is an alternative feature selection method [157]. Different from JMI, the CMIM

method adds a new feature only if the optimal value based on a criterion is larger than

using the features already selected, such that the information has not been brought by

any already selected features. This criterion is given by

Jcmim(vk) = minvk∈S [I(vk;Y | vj)] , (7.14)

which can be equally written as:

Jcmim(vk) = I(vk;Y )−maxvk∈S [I(vk; vj)− I(vk; vj | Y )] , (7.15)

where S is the previously selected feature set, Y is class label, and vk is the k-th feature

in the feature vector v.

Using the feature selection procedures, different feature sets can be fused together to

feed into a classifier for action recognition.
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7.4.2 Decision-Level fusion

Different from feature-level fusion, the decision-level fusion or late fusion deals with the

fusion process on the decision level, where classifier outputs are combined to make the

final decision.

Let v ∈ Rn be a feature vector extracted from an input pattern, and let {ω1, ω2, ..., ωc}
be the class labels of c classes. For a classifier D, the output of D given the input pattern

v can have two representations: D(v) = [d1(v), d2(v), ...dc(v)], where di(v) ∈ [0, 1], i =

1..c, is an estimate of the posterior probability P (ωi|v) offered by classifier D. The other

is D(v) = ωi, i ∈ {1..c}, where ωi is the class label given by classifier D.

When there exist totally L classifiers, denoted by {D1, · · · , DL}, the representations for

multiclassifiers can be given [151] by

(1) Decision Profile:

DP (v) =



d1,1(v) · · · d1,j(v) · · · d1,c(v)

· · · · · · · · ·
di,1(v) · · · di,j(v) · · · di,c(v)

· · · · · · · · ·
dL,1(v) · · · dL,j(v) · · · dL,c(v)


, (7.16)

where di,j(v) denotes the estimate of posterior probability of class j made by classifier

Di, i ∈ [1, L], j ∈ [1, c].

(2) Decision Vector:

DV (v) =
[
ωc1 · · · ωci · · · ωcL

]
, (7.17)

where ωci is the class label given by classifier Di. Given above representations, we will

present specific fusion methods for decision-level fusion as follows.

Popular methods for decision-level fusion include (weighted) majority voting, Naive-

Bayes Combination, weighted Sum, Minimum, Maximum, Median, Product, SVM-based

fusion and Multi-agent system [151] [147] [148] [143] [143] [158].

7.4.2.1 Majority Voting

Majority voting is one of the most common approaches for decision-level fusion [148].

The idea is to assign the final class label by “voting” over the different classifiers, and

select the one that the majority classifiers agree on. For each classifier Di in L classifiers,

the output of Di given an input pattern v is a predicted class label ωci , and the final
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class label is assigned according to which class label is the majority in the decision vector

DV (v) =
[
ωc1 · · · ωci · · · ωcL

]
. If more than one label occurs, the class label will be

randomly selected from those labels.

It is reasonable to assign different weights to the decisions made by different classifiers,

when the performance of these classifiers is quite different. Larger weights can be as-

signed to the decisions made by more accurate classifiers. So the discriminant function

for class ωk can be rewritten as:

gk = ΣL
i=1wis

k
i , (7.18)

where wiis the weight of classifier Di, and ski is an indicator function defined as:

ski =

1, if the classifier Di outputs class label ωk

0, otherwise
(7.19)

The weight of each classifier can be determined by a training process in a supervised

manner.

7.4.2.2 Naive-Bayes Combination

The Naive-Bayes fusion method relies on transforming decision labels into probabilities,

under the assumption that different classifiers are mutually independent in the multi-

classifier system [146]. The first step is to construct confusion matrix CMi for each

classifier Di. Each element on the k-th row and s-th column denotes the number of

patterns of the training data set of which the true label is ωk but is assigned to class ωs

by Di. The next step is to construct the Label Matrix LMj for each classifier, where

each element is defined by:

lmi
k,s = P̂ (ωk | Di(v) = ωs) =

cmi
k,s

cmi
�,s
, (7.20)

where cmi
k,s denotes the element on the k-th row and s-th column of CMi, cm

i
�,s denotes

the sum of the s-th column of CMi.

For each pattern v, classifier Dj outputs a class label, the estimated probability of the

class label ωi is computed by:

θi(v) = ΠL
j=1P (i | Dj(v) = sj) = ΠL

j=1lm
j
i,sj
. (7.21)
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We found that the above multiplication in [146] cannot work well for our problem.

Replacing it with summation can result in much better results:

θi(v) = ΣL
j=1lm

j
i,sj
. (7.22)

7.4.2.3 Sum, Minimum, Maximum, Median and Product Rules

These fusion methods can be categorized as rule-based methods [148] [150]. These basic

rules are defined to combine multiple classifiers and can generally perform well if the

quality of temporal alignment between different modalities is good [143].

Denote θ the predicted class label, P (ωj | di) the posteriori probability of θ assigned as

class ωj by the measurement vector di from the i-th classifier. We have

(i) Sum rule: Assign θ → ωj if

(1− L)P (ωj) + ΣL
i=1P (ωj | di) =

c
max
j=1

[
(1− L)P (ωj) + ΣL

i=1P (ωj | di)
]

(7.23)

(ii) Maximum Rule: Assign θ → ωj if

L
max
i=1

P (θ = ωj | di) =
c

max
j=1

L
max
i=1

P (θ = ωj | di) (7.24)

(iii) Minimum Rule: Assign θ → ωj if

L
min
i=1

P (θ = ωj | di) =
c

max
j=1

L
min
i=1

P (θ = ωj | di) (7.25)

(iv) Product Rule: Assign θ → ωj if

P−(L−1)(ωj)Π
L
i=1P (θ = ωj | di) =

c
max
j=1

P−(L−1)(ωj)Π
L
i=1P (θ = ωj | di) (7.26)

(v) Median Rule: Assign θ → ωj if

L
max
i=1

P (θ = ωj | di) =
c

max
j=1

medianLi=1P (θ = ωj | di) (7.27)

7.4.2.4 SVM-Based Fusion

SVM-Based fusion is a decision-level fusion method which combines multiple individual

SVM classifiers by a new SVM classifier using their confidence scores. Basically, given
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the training samples xi ∈ Rn and the class labels yi ∈ {−1, 1} , the Support Vector

Machine (SVM) [47] optimize the following problem:

min
W,b,

1

2
w ·w + CΣl

i=1ξi, s.t. yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, ..., l. (7.28)

The SVM-based fusion approach is based on a two-layer structure, where the input to the

higher layer SVM is the confidence scores given by individual lower-layer SVM classifiers

[143]. Each lower-layer SVM classifiers train one feature and output the confidence scores

instead of the class labels. The confidence scores of all individual classifiers are then

combined into a new feature vector, and then fed into the second-layer SVM for final

classification.

7.4.2.5 Multi-Agent System

A multi-agent system (MAS) was proposed to solve the multiclassifier classification

problem [158]. An auction-based negotiation is used for classification. The idea is

that all agents/classifiers are considered to be the buyers who are trying to reach an

agreement in relation to an input pattern. Specifically, the confidence scores of each

agent/classifier Di given an input pattern v is computed in the first step, denoted as:

Di(v) = [di,1(v), di,2(v), ...di,c(v)], and the class with maximum confidence of each

agents is selected as the chosen class for that agent, the maximum confidence value of

each agent is denoted as: [d1,m1 , d2,m2 · · · dL,mL ]. Given L agents, the cost for the agents

are defined as a vector cj = {cj1, c
j
2, · · · , c

j
L}. The cost for the i-th agent is computed by

cji =

dj,mj − dj,i i 6= j

dj,i − Σc
k 6=idi,k i = j

. (7.29)

The agent with the highest cost argj maxLj=1 c
j
j is considered the loser. Then the confi-

dence of the chosen class of all agents are changed according to the difference between

the current confidence and their responding cost: di,j = di,j − cjj . After the confidence

values of each agent have been updated, the agent can decide whether or not to keep

the chosen class, according to the current confidence values. When an agent loses twice

in succession, it is then discarded from the negotiation. The remaining agents continue

this process, until there is only one agent remains in the auction.
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7.5 Experiments

In this section, we conduct experiments on four challenging depth-based action databases,

using four different features and various fusion methods. First, we transformed the depth

data into gray level depth videos and projected all the skeleton joint positions into image

coordinates. After this preprocessing, feature extraction is conducted on each database.

Every action sequence is represented by four different feature vectors, i.e., the STIP,

STACOG, EigenJoints, and HON4D, respectively. For feature quantization, the K-

means clustering method is used to derive histograms for each feature in each action

video. Before investigating the comprehensive fusion-based framework, we analyze the

performance of the individual feature for action recognition. Note that the same train-

ing and test sets are used for both individual features and various fusion methods. The

SVM is used as the supervised classifier for each individual feature vector. After evalu-

ating the individual features, various fusion methods are investigated. On feature-level

fusion, different feature vectors are normalized first before fusion. Random forests can

both select features and execute the classification task. For other feature-level fusion

methods, the SVM is used as the classifier. On decision-level fusion, the SVM classifiers

are trained for each feature independently, from which multiple decisions are made for

each test pattern. The confidence scores or the intermediate decision class labels are

transmitted into the fusion engine for fusion with different methods.

In the following, we introduce the four databases first, followed by some experimental

settings, and then the experimental results. We also provide some analysis and discus-

sions about the experimental results.

7.5.1 Databases

Four challenging 3D action databases are used in our experiments to evaluate the per-

formance of different fusion approaches. In brief, these four databases capture vari-

ous human actions/activities under different circumstances (viewpoints, locations, and

backgrounds, etc.) with different considerations (# of actions, # of human subjects,

or different scenarios, etc.) and complexity. And also, the performed actions are quite

different in these databases. More details are given below.

MSRAction3D dataset [23] captures 20 human actions using a depth camera similar to

the Kinect sensor. In total 10 subjects were asked to perform 20 action classes 3 times

each. Each video clip is of resolution 640 × 480 at 15fps. We used all of the 557 video

clips, along with the skeleton joint locations provided by [23]. In our experiment, we

follow the same settings of “cross-subjects” as in [23]. The whole dataset was divided
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Figure 7.2: Some examples (with skeleton joints shown) in the MSRAction-3D
dataset.

Figure 7.3: Some examples (with skeleton joints shown) from the MSRActivity3D
dataset. The actions (from left to right) are: cheer up, drink, stand up, play guitar,

and walk.

into 3 subsets, half of the subjects are used for training while the other half of subjects

are used for testing. The final accuracy on this dataset is the average of the accuracies

over the three subsets. See Fig. 7.2 for some example images in this dataset.

MSRDailyActivity3D dataset [84] was collected with human daily activities by the

Kinect. In total there are 16 activities in this dataset: drink, eat, read book, call cell-

phone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper,

play game, lay down on sofa, walk, play guitar, stand up, sit down. Each subject per-

formed an activity in two scenarios, one “sitting on sofa” and the other “standing”. The

number of activity videos is 320. Three types of data, i.e., the RGB, depth and skeleton

joint positions are provided in this dataset. The specific subject IDs which are used in

training and testing are listed in Table 7.1. See Fig. 7.3 for examples of depth images

in this dataset.

UTKinect-Action dataset [119] contains 10 different action classes performed by 10 sub-

jects, collected by a stationary Kinect sensor. The 10 action classes are: walk, sit down,

stand up, pick up, carry, throw, push, pull, wave hands, clap hands. Depth sequences

are provided with resolution 320 × 240, and skeleton joint locations are also provided

in this dataset. In our experiments, we used the cross-subjects scheme with half of the

subjects for training while the remaining for testing (See Table 7.1), which is different

from the leave-one-out scheme used in [119] where more subjects were used for training.

Some example images of this dataset are shown in Fig. 7.4.
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Figure 7.4: Some example images (with skeleton joints shown) in the UTKinect-
Action dataset. The actions (from left to right) are: carry, clap hands, pickup, push,

and wave.

Figure 7.5: Some example images (with skeleton joints shown) from the CAD-60
dataset. The actions (from left to right) are: brush teeth, talk on phone, cook, relax

on couch, and wear contact lens.

Table 7.1: Subject IDs which are used for training and testing in each database.

Dataset Training Subject IDs Testing Subject IDs

MSRAction3D 2, 3, 5, 7, 9 1, 4, 6, 8, 10

MSRDailyActivity3D 1, 6, 8, 9, 10 2, 3, 4, 5, 7

UTKinect-Action3D 1, 2, 3, 4, 8 5, 6, 7, 9, 10

CAD-60 1, 3, 4 2

Cornell Activity Dataset-60 (CAD-60) [124] has 60 RGB-D sequences collected by the

Kinect , each video is of length about 45s. In this dataset, four different subjects per-

formed 12 different activities in five locations. The five locations are: office, kitchen,

bedroom, bathroom and living room. To reduce the computational complexity, we first

sub-sample each video to the length about 500 frames. Then we follow the same proce-

dure of “new person” as in [124] for training and testing (See Table 7.1). See Fig. 7.5

for some example images of this dataset.

7.5.2 Experimental Settings

We follow the same experimental settings as our conference paper [132]. Specifically, for

the STIP feature extraction, Harris3D detector with HOG/HOF descriptor are used

for MSRAction3D dataset. Harris3D detector and HOG3D descriptor are used for

UTKinect-Action dataset. On CAD-60 dataset, Hessian detector and ESURF descriptor

are adopted. On MSRDailyActivity3D dataset, Hessian detector and HOG3D descrip-

tor are used to extract local features. These are the best STIP features in each dataset,
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based on a systematic evaluation. Because of the space limit, we do not present the de-

tailed evaluations here. The K-means clustering method is applied to quantize the STIP

features into histograms. Empirically we set K = 100 to get the clusters or keywords.

For skeleton joints feature, the bag-of-words scheme is used for quantization. In order

to get the STACOG feature, we follow the settings in [152], adopting a hemisphere for

coding the gradients. Four orientation bins along the longitude are arranged on each of

five layers along the latitude, and one bin is located at pole, totally there are B = 21

bins. We restrict N ∈ {0, 1}, where 0th order F0 and the 1st order feature F1 are con-

sidered. The dimensionality of STACOG features is d = B + 13B2 = 5754. The Linear

discriminant analysis (LDA) is performed for dimension reduction. For the HON4D

feature, each video sequence is divided into 5× 4× 3 spatiotemporal cells (5× 4× 2 cells

for UTKinect-Action dataset because this dataset has typically shorter video clips) and

separate HON4D feature is obtained for each cell. The final descriptor is a concatenation

of the HON4Ds obtained from all the cells. Note that since the subjects’ locations and

the temporal motions are changing significantly in MSRDailyActivity3D dataset, local

HON4D descriptor is adopted to represent shape and motion information. Because the

dimensionality of HON4D feature is much higher than the other three features, we use

PCA to reduce the HON4D feature dimension to 100 in our experiments. For feature

normalization, we employ the Gaussian normalization scheme. For the classifiers used in

the experiment, the SVMs with χ2 kernel are used. For the random forests the number

of trees can be selected from [1, 500], and the number of features used in each split can

be selected from [3, 60]. The related parameters were adjusted in a tuning set, which is

about 20% of the training examples in each training dataset.

7.5.3 Gaussian Normalization

After the feature representation, the data range of different features might be very differ-

ent, a direct fusion of such features might not perform well. The Gaussian normalization

is used to map different features into a comparable range. Suppose there are M video

sequences in the database, the four types of features can form an M ×N feature matrix

F = fij , where fij is the jth feature component in feature vector fi,·, each feature vector

is of N dimensions. Our goal is to normalize the entries in each column f·,j to the same

range so as to ensure that each individual feature component receives equal weight in

determining the similarity between two vectors. We compute the mean µj and standard

deviation σj of the sequence and then normalize the original sequence into a normal

distribution N ∼ (0, 1) as follows:

f
′
ij =

fij − µj
σj

(7.30)
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then, the probability of a feature component value in the range of [-1, 1] is approximately

99%. An additional shift will guarantee that 99 percent of feature values are within [0,1]:

f̃ij =
f
′
ij + 1

2
(7.31)

After this shift, we can consider that all of the feature component values are within

the range of [0,1]. Therefore, this normalization process ensures the same range of the

feature components when different types of feature are used.

7.5.4 Experimental Results

We present the experimental results of individual features first, and then the fusion

results based on different fusion methods.

7.5.4.1 Results of Individual Features

We first investigate the individual features on the depth action datasets. The bag-of-

words approach is used for histogram construction and the SVM is used as the classifier.

In order to explore the capability of different features, we use the bag-of-feature approach

for the STACOG feature, other than the bag-of-frame as in [152]; for HON4D feature,

we adopted the uniform settings, without using the skeleton information for local non-

uniform quantization as in [126]; Different from [138] where the Naive Bayes nearest

neighbor classifier was used, we extract the skeletons and then construct the histogram

features for the SVM classifier.

The experimental results on four databases using four different features are shown in

Fig. 7.6. The HON4D feature performs the best on the MSRAction3D (Accuracy:

92.0%) and MSRDailyActivity3D database (Accuracy: 75.6%), while on the other two

databases, its accuracies are lower than some other features. On the other hand, the

EigenJoints feature achieves the best results on UTKinect-Action (Accuracy: 87.9%) and

CAD-60 (Accuracy: 81.3%) databases. This feature performs the second best in other

two databases. It can also be observed that the STIP feature and the STACOG feature

exhibit comparable performance although they are not the best on these four databases.

This fair comparison of different features has not been carried out in previous research.

Our evaluation tells that no single feature can perform the best in all databases. This

is also one of the reasons why we are interested in studying the fusion-based approach

for depth-based action recognition.



Chapter 7. Fusing Multiple Features for Depth-based Action Recognition 111

Figure 7.6: An evaluation of the individual features on four databases: MSRAc-
tion3D, MSRDailyAcitivity3D, Kinect-Action and CAD-60. The same training and

test data are used for each feature to have a fair comparison.

After evaluating the individual features on the depth action databases, we conduct

experiments that applying various fusion methods, and show the performance using the

same data (training and test sets) on the four databases.

7.5.4.2 Fusion Results on MSRAction-3D Dataset

The experimental results on MSRAction-3D dataset using various fusion methods are

shown in Table 7.2. The highest accuracy of 98.2% is achieved by the sum rule based

fusion method, which is significantly better than any single features. For example, the

accuracy of the best single feature HON4D is 92.0%. We can also observe that in the

feature-level fusion scheme, the random forests fusion approach achieve the accuracy

of 97.3%, close to the best result obtained by the sum rule based decision-level fusion

method. The confusion matrix is shown in Fig. 7.7, where most of the actions can be

separated well.

7.5.4.3 Fusion Results on UTKinect-Action Dataset

The results of different fusion methods with the four individual features on the UTKinect-

Action dataset are shown in the second column of Table 7.2. From the results we can see
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Table 7.2: The recognition accuracies of individual features and various fusion meth-
ods on four datasets. The decision-level fusion methods include the MAS, MAJ, SVM,
SUM, MIN, MAX, MED, and PRODUCT, and the feature-level fusion methods include

the RFs, JMI and CMIM. (See text for the meaning of each fusion method.)

Method Accuracy

MSRAction3D UTKinect CAD-60 MSRActivity

Single Feature

STIPs 77.5% 80.8% 75.0% 70.6%
EigenJoints 90.9% 87.9% 81.3% 73.8%
STACOG 80.6% 62.6% 68.8% 63.1%
HON4D 92.0% 77.8% 56.3% 75.6%

Decision-Level Fusion

MAS 93.3% 83.8% 68.8% 59.4%
MAJ 96.3% 92.9% 87.5% 88.1%
SVM 97.3% 86.9% 81.3% 79.4%
SUM 98.2% 91.9% 68.8% 85.6%
MIN 90.6% 61.6% 50.0% 58.8%
MAX 95.2% 88.9% 68.8% 72.5%
MED 96.3% 90.9% 62.5% 70.0%

PRODUCT 96.4% 86.9% 68.8% 72.5%

Feature-Level Fusion
RFs 97.3% 92.9% 87.5% 88.8%
JMI 94.2% 85.9% 81.3% 69.4%

CMIM 94.6% 85.9% 81.3% 70.0%

Figure 7.7: The confusion matrix of the SUM rule based fusion on MSRAction3D
dataset.

that the decision-level fusion gets an accuracy 92.9% by applying the majority voting

method. Comparable accuracies are achieved by the sum rule and median rule based

fusion methods, which are 91.9% and 90.9%, respectively. On the other hand, random

forests exhibits a better accuracy (92.9%) than the other feature-level fusion methods.

The confusion matrix of the majority voting method is shown in Fig. 7.8, which shows

that the actions “carry” and “throw” impact the overall accuracy because several sam-

ples are incorrectly classified as other (similar) actions, e.g., the action “carry” is actually

a walking subject carrying an object, which confuses the system to classify it as walking.

The ambiguity may also happen between actions “throw” and “push” in this dataset,

thus classifying such actions is still challenging.
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Figure 7.8: The confusion matrix of the majority voting fusion method on UTKinect-
Action (left) and CAD-60 dataset (right).

7.5.4.4 Fusion Results on CAD-60 Dataset

On the CAD-60 dataset, the decision-level and feature-level fusions achieve the same

best accuracy of 87.5% based on the MAJ rule and RFs, respectively. This accuracy

is much higher than each of the individual features. From Table 7.2, one can observe

that most of the decision-level fusion methods perform poorly, some even lower than the

individual features. The feature-level fusion methods (except the RFs) have the same

accuracy of 81.3% as the best individual feature, i.e., the EigenJoints feature. These

results show clearly that some fusion methods cannot work well, depending on the input

data and the specific fusion methods. That is why we need to investigate the different

fusion methods carefully, in order to find the workable methods for the specific problem

and special data.

7.5.4.5 Fusion Results on MSRDailyActivity3D Dataset

Results of different fusion methods on MSRDailyActivity3D dataset are shown in the

last column of Table 7.2. The random forest method as a feature-level fusion scheme

achieves the highest accuracy of 88.8%, higher than any other fusion methods on this

dataset. Among the decision-level fusion methods, the majority voting has an accuracy

of 88.1%, very close to the random forest method. The recognition accuracies of these

two fusion methods are higher than each of the individual features, as shown in the top

rows in Table 7.2.

7.5.5 Comparison with the State-of-the-art Methods

We further compare our fusion-based approach with the state-of-the-art methods for

depth-based action recognition on the four challenging datasets. In all our experiments,
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Table 7.3: Comparison of the recognition accuracies between our fusion-based ap-
proaches and all state-of-the-art methods on MSRAction3D dataset.

Method Accuracy

High Dimensional Convolutional Network[125] 72.5%

Action Graph [23] 74.7%

HOJ3D [119] 79.0%

Key Pose Learning[122] 80.3%

EigenJoints[121] 82.3%

STOP [120] 84.8%

ROP [125] 86.2%

Actionlet [84] 88.2%

HON4D [126] 88.9%

DSTIP+DCSF [2] 89.3%

Part-set [159] 90.2%

Depth Motion Maps [139] 91.6%

DS-SRC [160] 93.6%

JAS (Cosine)+MaxMin+HOG2 [135] 94.8%

STIP+Joint+RFs [132] (Our Preliminary) 94.3%

Decision Level Fusion (SUM Rule) 98.2%

Feature Level Fusion (Random Forests) 97.3%

Table 7.4: Comparison of the recognition accuracies between our fusion-based ap-
proaches and all state-of-the-art methods on the UTKinect-Action dataset. Note that,
we used a less number of training examples, while the leave-one-out setting was used

in [2].

Method Accuracy

Posture Word [2] 79.57%

DSTIP+DCSF [2] 85.8%

HOJ3D [119] 90.9%

DS-SRC [160] 91.0%

STIP+Joint+RFs [132] (Our Preliminary) 91.9%

Decision Level Fusion (Majority Voting) 92.9%

Feature Level Fusion (Random Forests) 92.9%

Table 7.5: Performance comparison of our fusion-based approaches with the state-of-
the-art methods on the CAD-60 dataset.

Method Precision/Recall

[124] 67.9%/55.5%

[138] 71.9%/66.6%

[127] 80.8%/71.4%

[132] (Our Preliminary) 93.2%/84.6%

Decision Level Fusion (Majority Voting) 96.4%/84.6%

Feature Level Fusion (Random Forests) 90.9%/84.6%
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Table 7.6: Performance comparison between our fusion-based approaches and the
state-of-the-art methods on MSRDailyActivity3D dataset. Note that, all the actions
are used in our experiment, while in [2] four actions (with less motion) were removed

from the dataset in their experiment.

Method Accuracy

NBNN+parts+time [136] 70.0%

Local HON4D [126] 80.0%

DCSF [2] 83.6%

RGGP+Fusion [137] 85.6%

Actionlet [84] 85.8%

DCSF+Joint [2] 88.2%

Decision Level Fusion (Majority Voting) 88.1%

Feature Level Fusion (Random Forests) 88.8%

the cross-subjects action recognition is conducted, since it is more appropriate in prac-

tical applications. We list all the published results on the four databases, to the best of

our knowledge. In specific, on the MSRAction3D dataset, half of the subjects are used

for training and the remaining half for testing. Table 7.3 shows the reported results in

the literature on the MSRAction3D dataset. We can see that the sum rule based fusion

can achieve an accuracy of 98.2% and the random forests feature-level fusion can get an

accuracy of 97.3%, both are much higher than all of the previous reported results. On

the UTKinect-Action dataset, the results are shown in Table 7.4, where the majority

voting and Random Forests methods have the same accuracy of 92.9%, which is also

higher than all the state-of-the-art methods on this dataset. For the CAD-60 dataset,

the same “new person” setting is used as previous approaches in our experiment. The

precision/recall were computed as the performance measure to have a direct comparison

with the previous methods. The results are shown in Table 7.5. One can see that both

the majority voting and random forests methods can get the same recall value, how-

ever, the majority voting has a higher precision value than the random forests. Finally,

we compare our results with the state-of-the-art on the MSRDailyActivity3D dataset.

From Table 7.6 one can see that, the random forests has the highest accuracy of 88.8%,

which outperforms the DCSF+Joint approach in [2]. The majority voting can get an

accuracy of 88.1%, which is lower than the 88.2% reported in [2], however, four actions

were eliminated in their experiments, while we used all 16 actions.

Through the comparisons with the state-of-the-art methods, our fusion-based approaches

perform the best on all four challenging datasets. The appropriate fusion methods have

been found based on our exploration, at both the decision and feature levels, while some

other fusion methods cannot work well for our problem. The comprehensive results

demonstrate that proper fusions of different features are important that can significantly

improve the action recognition performance in depth videos.
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7.6 Conclusions

We have presented a comprehensive study of fusing diverse features for depth-based

action recognition. Both the decision-level and feature-level fusion schemes have been

explored with different methods at each fusion level. A number of experiments have been

conduced on four depth databases. Experimentally we have shown that the four different

features that we investigated can be complementary to each other, characterizing the

depth actions from different aspects. Given the diverse features, different fusion methods

perform quite differently in action recognition. Based on a systematic evaluation, the

appropriate fusion methods have been found to significantly improve the recognition

accuracies over each individual feature. We have also shown that our fusion-based

action recognition in depth videos can outperform the state-of-the-art methods on all

four challenging databases.



Chapter 8

Computational Depression

Diagnosis Analysis using Deep

Learning Approach

8.1 Abstract

As a severe psychiatric disorder disease, depression is a state of low mood and aver-

sion to activity, which prevents a person from functioning normally in both work and

daily lives. Recently, one of the approaches to track the patients with depression is

monitoring through human-computer interaction. In this paper, we study the problem

of automatically analyzing the depression diagnosis. A new approach to predict the

Beck Depression Inventory II (BDI-II) values from video data is proposed based on the

deep learning networks. The proposed framework is designed in a two stream manner,

aiming at capturing both the facial appearance and dynamics. Besides, we employ the

joint tuning layers that can implicitly integrate the appearance network and dynamics

network. Experiments are carried out on two databases, AVEC2013 and AVEC2014

depression databases, and the experimental results (mean absolute error and root mean

square error) show that our proposed approach significantly improve the depression value

prediction, compared to the other visual-based approaches.

8.2 Introduction

Major depression disorder (MDD) is one of the prevalent causes of disability which

heavily threatens the mental health of human among all age groups [161]. Depression

117
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Figure 8.1: Example image frames with depression value score (BSDII score) and
depression severity categories from AVEC2014 database.

disorder, with a 10-20% for women and 5-12% for men lifetime risk, can severely affect

person’s thoughts, behavior, feelings, and ability to work. Depressed people may feel

sad, helpless, anxious, hopeless, worried, irritable, or restless, even in the worst scenario,

severe depression could even lead to suicide[162] [163]. Fortunately, through proper med-

ication, psychological counseling and other clinical methods, MDD is treatable despite

of its severity. Currently, the diagnosis of MDD mostly requires comprehensive assess-

ment by a experienced professional. It is largely constrained by individual subjective

observation and lack of real-time measurements. As the increasing number of people

suffering from MDD, it also brings the burden to the accurate diagnosis. Therefore,

machine learning based methods is expected to provide a subjective assessment and a

fast diagnosis, which can aid the MDD therapy.

The study on automatic mental health assessment have been given increasing attention

in recent years. One way of keep track of patients with depression is online monitoring

through human computer interaction and affective computing technologies. Particularly,

machine learning methods of automatically analyzing affect and expressive behavour,

are directly related to depression diagnosis. Evidence has shown that speech production

differs in people with depression [164][165], thus many methods have been proposed

utilizing audio cues for depression diagnosis [166–170]. It is also suggested that nonverbal

cues is indicative of depression severity, such as gestures and expressions [171, 172].
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Table 8.1: Beck Depression Inventory-II (BDI-II) score and depression severity.

BDI-II Score Depression Severity

0 - 13 None

14 - 19 Mild

20 - 28 Moderate

29 - 63 Severe

Studies have showed that more than a half visual-based nonverbal behavior is around

facial region in human communication activities [173–176]. Accordingly, in this work we

focus on the visual-based nonverbal behavior for the depression diagnosis.

From the machine learning perspective, the depression diagnosis can be modeled as a

regression problem, e.g., in AVEC2013 and AVEC2014 depression recognition challenge,

the goal is to predict the depression value called Beck Depression Inventory-II (BDI-II

score [177], see table 8.1) for the subject in each video. To deal with this problem,

the facial appearance and dynamics in the video clips are often considered very useful

for an depression diagnosis system. In this work, we study the depression recognition

and propose a new approach to model the facial appearance and dynamics, based on

deep convolutional neutral network (DCNN). Our approach is designed in a two stream

manner, combined with joint-tuning layers for depression prediction. Specifically, facial

appearance representation is modeled through a very deep neural network, with face

frames as the input. Facial dynamics are modeled by another deep neural network,

with face “flow images” as the input. Face “flow image” are generated by computing

within the video sub-volumes using the optical flow, to capture the facial motions. The

two deep networks are then integrated by joint-tuning layers into one deep network,

which can further improve the overall performance. To the best of our knowledge, our

proposed approach is the first time employing deep learning technology for the problem

of depression diagnosis. Extensive experiments conducted on two depression databases

AVEC2013 [178]and AVEC2014 [179] show that, our approach achieved better results

than the other state-of-the-art visual-based methods for depression recognition.

The rest of our paper is organized as following: Firstly, in Section 8.3 previous work

on depression diagnosis is described. Then in Section 8.4, our proposed method and

network architecture are presented in details. Next, experiments are conducted on two

databases and the results are shown in Section 8.5. Finally, some discussions and future

work are given in Section 8.6.
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Figure 8.2: Schematic illustration of proposed method for depression recognition
using deep learning approach.

8.3 Previous work

The Audio-Visual Emotion Challenge and Workshop 2013 and 2014 (AVEC2013 and

AVEC2014) held the competition event for depression recognition as one of its sub

challenges. Formulated as a regression problem, the diagnosis depression values are

tested on the collected audio-video database (see Section 8.5.1 and 8.5.2 for more details

about the database). Since our focus is on video-based learning approach, where audio

clue are not utilized, in the following, we briefly describe the competing visual based

methods in the AVEC2013 and AVEC2014 competitions.

Baseline features for AVEC2013 was using the Local Phase Quantization (LPQ)[180],

which has shown good performance in facial expression recognition. Specifically for the

AVEC2013 depression recognition, the face detection, fitting and alignment were firstly

performed for each video frame. Then the dense LPQ features were extracted from those

facial regions. Facial feature for each frame is represented by concatenating histograms

of different blocks within the face region. Finally, the Support Vector Regressor (SVR)

is applied for the prediction.

In Cummins et al. ’s work [168], two different features are compared: the Space-Time

Interest Points (STIPs) [85], and Pyramid of Histogram of Gradients (PHOG) [181].

In their method, face tracking is firstly applied for each video frames to obtain the

face region. Then, both STIPs and PHOG features are extracted from the aligned face

images. Those features are further generated as histograms by using the bag-of-word

scheme, respectively. Finally, SVR with histogram intersection kernel was used for the

training and testing. In their experiments, PHOG has shown better results than STIPs.

Meng et al. in their work [167] utilized Motion History Histogram (MHH) [182] to

characterize motion information of each pixel in the video. Totally there were 5 MHH
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based images were generated from each video frame. Then Edge Orientation Histogram

(EOH) and Local Binary Patterns (LBP) [183] features were extracted from each MHH

based image. Finally, a Partial Least Squares (PLS) [184] regressor was used for the

regression. In their method, the MHH based descriptor to some extend can reflect all

behaviors but temporal information is still not well-encoded.

In our previous work [185], the temporal dynamic is captured by the LPQ-TOP features

from facial region sub-volumes. Then a behavior pattern dictionary is learned through

sparse coding schemes. The sparse codes are calculated for each LPQ-TOP feature sep-

arately. Finally, a discriminate mapping method and decision level fusion were applied

to further improve the accuracy for depression diagnosis.

In the AVEC2014, local dynamic appearance descriptor LGBP-TOP [186] has been

adopted as the baseline video features. LGBP-TOP utilize a number of Gabor filters on

a block of consecutive frames as input, then apply LBP feature extraction from three

different orthogonal slice of the block: XY, XT and YT. The resulting patterns are

further histogrammed and concatenated into the final feature representation. Support

Vector Regressor (SVR) is used for the prediction, which is the same as AVEC2013.

In the video based approach from [187], the authors detected the face within each video

frame firstly, then utilized three motion related features: motion history image, motion

static image and motion average image from the detection face region. The feature were

also combined with the relative differences of the face and eye coordinates. Finally, the

extracted features were fed into a SVR for the prediction.

In [188], the authors firstly detected and cropped the faces within each video frame,

then three features were extracted: Local Binary Patterns (LBP), Edge Orientation

Histogram (EOH) and Local Phase Quantization (LPQ). Instead of generating from a

image sequence, they proposed an 1-D Motion History Image (MHH) that extracts the

changes on each component in a feature vector sequence. Then histogram features are

used to represent all the components of the feature vector in one video. Partial Least

Squares (PLS) regression is applied for the final prediction.

In [189], the authors proposed to utilize both LGBP-TOP and LPQ features for the

video representation. They focus on the inner facial regions that correspond to eyes and

mouth for the feature extraction. Then the Canonical Correlation Analysis (CCA) is

applied on the feature vectors, and the two features are combined to generate the final

regression results.

Most of the above mentioned methods were based on hand-crafted features which were

proposed for facial analysis or expression recognition. These features may not be ap-

propriate for for the task of depression analysis. Therefore it is necessary to explore a
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more robust representation for the depression data, which can better capture the ap-

pearance and dynamics cues. In this work, we propose a new approach that based on

deep learning networks, for the depression diagnosis prediction.

8.4 Network architectures for depression recognition

Video data can be naturally viewed into two components, i.e., spatial and temporal

components. For the problem of depression recognition, on one hand, the spatial part

carries the appearance information about the face and static expressions for the subject

in the video. On the other hand, the temporal part, captures the motion across the

frames, contains the facial dynamics such as the expression and micro expression changes

of the subject. Therefore, we explore the architecture from video data accordingly, by

treating it into appearance and dynamics models. As shown in Figure 8.2, each part

is implemented using a DCNN. Moreover, joint layers are proposed to combine the two

streams for the final depression recognition.

8.4.1 Appearance-DCNN

Deep convolutional neutral networks (DCNN) are known to be very effective to learn

face representations given large number of face samples. However, for the specific task

of depression recognition, usually the size of data available is very limited. To handle

this issue, we utilize a cascaded way to train the facial appearance deep model by two

steps: a pre-training step and a fine-tuning step.

In the pre-training step, a deep network (e.g., GoogLeNet [190]) is trained from scratch

by utilizing large number of face samples with identity labels. After this step, the deep

network is expected to effectively capture rich facial structures, which can be considered

as a base deep model for facial representations. Since this pre-trained network aims

at minimizing the identification error, it is still necessary to fine-tune the network for

depression recognition, i.e., a regression task. Figure 8.3 shows the detailed deep network

architecture that is applied in our framework.

Next, in the fine-tuning step, the aim is to adapt the pre-trained network with depression

data so that the network is capable of predicting the depression values given the input of

image frames. Because depression prediction serves as a regression problem, the network

loss in this step is changed to Euclidean loss for regression, other than the softmax loss

used in pre-training step. Mathematically, the Euclidean loss function E computes the
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Figure 8.3: Network architecture (GoogLeNet) of proposed method for depression
recognition.

the sum of squares of differences of its two inputs, which can be written as:

E =
1

2N
ΣN
i=1||ŷi − yi||2, (8.1)

where N is the number of samples, ŷi is the output from the network and yi is the

ground truth.

Then the training images frames with their depression values are fed into modified pre-

trained network for the fine-tuning. After this step, the network is capable of learning

the depression representations given the input of image frames.

8.4.2 Dynamics-DCNN

In this section, we describe the architecture to model facial dynamics, by utilizing the

optical flow between video frames, which is named dynamics-DCNN. Unlike the appear-

ance model described above, the input of this model is formed by optical flows between

several consecutive video frames. In this way, the input itself captures the motion be-

tween frames caused by the movement of the subject, so that the network does not to

estimate the motion implicitly.

Specifically, for each frame in the video, we compute the optical flow displacements

between several consecutive frames. Since in the depression recognition we focus on the

face region in each video frame, however the changes of face region between two frames
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Figure 8.4: Example image frames (top row) and generated flow images (bottom row)
from AVEC2014 dataset.

are usually too subtle. Therefore, we compute optical flow between several consecutive

frames (e.g., every 10 frames), so that the motion of the face can be well captured at

the same time the video redundancy can be reduced.

Then the optical flow computed from each image is transformed into a “flow image”

[191]. The three channels of the “flow image” are constructed by the horizontal and

vertical components: x flow values, y flow values, as well as the flow magnitude. The

values of each channel are then centered and normalized between 0 and 255, respectively.

Figure 8.4 shows some examples of RGB image frames and generated flow images.

Given the “flow images” computed from video frames, a DCNN is trained for modeling

the facial dynamics. The architecture and configurations remain largely the same as

that used in the appearance DCNN, without the pre-training step. Figure 8.3 shown

the illustration of the networks.

8.4.3 Joint tuning layers

In our approach, the appearance DCNN and the dynamics DCNN are capable of pre-

dicting the depression values separately. In order to further improve the performance

and integrated the two individual deep networks, we propose to construct joint tuning

layers with a fine-tuning step, aiming at combining the appearance and dynamic models.

Specifically, two fully connected layers are constructed with different number of hidden

units (e.g., 512 and 256, respectively), connecting the concatenated feature layers of

both appearance and dynamics networks. The final loss function is still kept the same

Euclidean loss for regression task. The gradually decreasing number of hidden units

in joint tuning layers, is designed to better convergence for the single value regression.

During the training, the two DCNNs are trained respectively, which can be viewed as
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a pre-training step. Then the final fine-tuning is conducted using the architecture with

joint tuning layers as shown in Figure 8.2, where the input are the RGB video frames

as well as its computed “flow image”.

8.5 Experimental Results

The experiments are conducted on two databases: the Audio/Visual Emotion Challenge

(AVEC) 2013 [178] and 2014 [179] depression sub-challenge databases. In this section,

firstly we briefly describe the two databases that are used in our work. Then we show

and analyze the experimental results. Finally the comparison with other state-of-the-art

methods is presented.

8.5.1 AVEC2013 Depression Database

AVEC2013 depression database [178] is collected in the wild which contains 340 video

clips from 292 subjects. A subset of the audio-visual depressive language corpus (AVid-

Corpus) from AVEC2013 database is used for the depression sub-challenge. This subset

contains video clips of subjects performing a human-computer interaction task, which

is collected by a webcam as well as a microphone. There is only one subject in each

video clips with no constrains when being recorded. The average length of each video

clip is about 25 minutes. The age range of the subjects is from 18 to 63 years old with

a mean age 31.5 years. Some example images of this database are shown in Figure 8.1.

Specifically for the depression sub-challenge, totally there are 150 videos from 82 subjects

are used and split into three partitions: training set, development set, and test set. Each

of the three set contains 50 video clips. For each video clip, a depression severity is

assigned as the label, which was accessed using a standardized depression questionnaire,

the Beck Depression Inventory-II (BDI-II) [178]. BDI-II scores ranges from 0 to 63,

where 0-3 indicates minimal depression, 14-19 indicates mild depression, 20-28 indicates

moderate depression, and 29-63 indicates sever depression. In our experiments, all the

data from training set and development set are used for training our proposed deep

model, while the test set is used to evaluate the overall performances for depression

recognition.

8.5.2 AVEC2014 Depression Database

AVEC2014 depression database is proposed for the Audio/Visual Emotion Challenge

2014 [179], where a subset of the audio-visual depressive language corpus (AViD-Corpus)
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is used for the depression sub-challenge. For the AVEC2014 challenge, two of the 12 tasks

from AViD-Corpus are used, which are referred as Freeform and Northwind tasks. For

both tasks, the recorded videos are split into three partitions: training, development,

and tests of 50 videos, respectively. In our experiments, we merge the training and

development set from both Freeform and Northwind data as one training set. The overall

performances are reported by testing video clips from the test set. Some example images

of this database are shown in Figure 8.4 (top row).

8.5.3 Experimental Settings

8.5.3.1 Face region detection and alignment

In order to extract facial representations from the videos, the first step is to apply face

detection and facial landmark localization for each video frames. In our experiments, we

use dlib library [192] in this step. Then within each video frames, the facial region are

cropped and aligned by the eye locations with an image size of 256× 256. This setting

is kept for all face images for both training set and test set.

8.5.3.2 Facial dynamics computation

After the above step, for each video clip in the dataset, a sequence of facial regions

are extracted where faces are also aligned according to the eye locations. To compute

the facial dynamics, we applied optical flow computation between two frames, with an

interval of 10 frames, which is empirically selected and shows good performances in our

experiments. A “flow image” is generated for each frame by taking the x and y flow

values as the first and second channel. The third channel is created by calculating the

magnitude of optical flow. Those values are also centered around 128 and normalized

between 0 to 255.

8.5.3.3 Subsampling

In order to reduce the large number of frames in each video clip, we applied a subsampling

that take video frames with an interval of 100 frames and frames for AVEC2013 and

10 frames for AVEC2014 databases, respectively. Totally there are about 380,000 video

frames extracted from the AVEC2013 database, while on AVEC2014 the number of

extracted video frames is about 50,000.
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8.5.3.4 Deep convolutional neural network

The layer configuration of our appearance and dynamics deep network is schematically

shown in Figure 8.2, and the details are described in Section 8.4. For appearance and

dynamic DCNN, the model architecture are similar to the GoogLeNet model [190].

In our experiments, the joint tuning layers are designed as two fully connected layers

with 512 and 256 hidden units, respectively. The networks are trained with stochastic

gradient using caffe deep learning toolbox [190] with batch size 32. In appearance DCNN,

the model is fine-tuned from our pre-trained deep face model. This pre-trained model

is trained on CASIA WebFace Database [193] with 494414 images of 10575 subjects.

While in the dynamics DCNN, the training starts from scratch. The loss function is set

to Euclidean loss for regression. The number of iterations for appearance model and

dynamics model are set to 400,000 and 600,000, respectively. The base learning rate are

set to 0.001 and reduced by polynomial with gamma equals to 0.5. The momentum is

set to 0.9 with weight decay equals to 0.0002. For joint tuning, the number of iterations

is set to 200,000, with base learning rate 0.0001. All experiments are conducted using

Titan-X GPU with 12GB memory.

8.5.3.5 Performance Measurement

For each video, the predicted depression value is computed by averaging the predicted

values from both appearance model and dynamics model for each frame (subsampled)

in the video. The overall performance is measured using Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE).

The MAE is computed by:

MAE =
1

N
ΣN
i=1|yi − ŷi|. (8.2)

And the RMSE is computed by:

RMSE =

√
1

N
ΣN
i=1 (yi − ŷi)2, (8.3)

where N is the number of data samples, yi denotes the ground truth of i − th sample

and ŷi is the predicted value of i− th samples.
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Table 8.2: Depression recognition results of the proposed methods on AVEC2013
(Test set). Ave. means score level fusion by taking average.

Our Methods RMSE MAE

Facial Appearance Model 10.19 7.88

Facial Dynamics Model 10.02 7.87

Appearance & Dynamics (Ave.) 9.91 7.74

Appearance & Dynamics (Joint Tuning) 9.82 7.58

8.5.4 Performances of individual models for depression recognition

The results of depression recognition on AVEC2013 and AVEC2014 databases are shown

in table 8.2 and 8.3, respectively. Firstly, we explored the performance using individual

deep model (appearance and dynamics models) without any joint tuning procedure.

From table 8.2 one can see that, on AVEC2013 database, when only the appearances

model is used, the MAE and RMSE achieved 7.88 and 10.19, respectively. While the

MAE and RMSE are 7.87 and 10.02 when using dynamics model, which is comparable

to the appearance model. From table 8.3 (AVEC 2014), when using appearance model

the MAE and RMSE are obtained 7.82 and 10.36, respectively. Comparable MAE and

RMSE are also obtained (7.52 and 9.80 respectively) when using dynamics model. These

results show the effectiveness of appearance model as well as dynamics models, both of

which are capable of learning the facial representations for depression recognition from

the video frames.

8.5.5 Overall Performance by fusing the individual models

We also compute the performance by fusing the appearance and dynamics models. This

fusing is conducted on score level and the results are computed by averaging the results

for both appearance and dynamics models. The experimental results are shown in table

8.2 and 8.3 for AVEC2013 and AVEC2014, respectively. From table 8.2, one can see that,

the results after fusing the models obtained the MAE 7.74 and RMSE 9.91 on AVEC2013

database. On AVEC2014 database (see table 8.3), the fusion results achieved the MAE

7.53 and RMSE 9.73, respectively. Both results performs better than those using the

individual model. This observation shows that by fusing the appearance and dynamics

models, the overall performance can be improved than using individual model, which

further implies the necessity of utilizing both facial appearances and dynamics for the

depression recognition.
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Table 8.3: Depression recognition results of the proposed methods on AVEC2014
(Test set). Ave. means score level fusion by taking average.

Our Methods RMSE MAE

Facial Appearance Model 10.36 7.82

Facial Dynamics Model 9.80 7.52

Appearance & Dynamics (Ave.) 9.73 7.53

Appearance & Dynamics (Joint Tuning) 9.55 7.47

Table 8.4: Depression recognition result comparison to other methods on AVEC2013
(Test set). Note that the listed results are using video data only.

Methods RMSE MAE

Baseline [178] 13.61 10.88

team-australia [168] 10.45 N/A

Uni-Ulm [167] 11.19 9.14

Wen [185] 10.27 8.22

Our Method 9.82 7.58

8.5.6 Overall Performance by Joint Tuning

Next, we conduct experiments using the proposed joint tuning approach. The results

are shown in forth columns in table 8.2 and 8.3, for AVEC2013 and AVEC2014, respec-

tively. It can be seen from the table that, when joint tuning is applied, the MAE and

RMSE obtained are 7.58 and 9.82 respectively on AVEC2013 database. These results are

significantly better than that obtained by individual models. Besides, the joint tuning

results are also better than that obtained by score-level fusion (MAE 7.74 and RMSE

9.91) of the two models. Similar observations can also be found on AVEC2014 database

(see table 8.3), the best result is achieved by using joint tuning, where the MAE is 7.47,

and RMSE is 9.55. These results illustrate that, the proposed joint tuning approach

can better utilizing both the appearance and dynamics models, and the performance is

significantly improved. Moreover, the comparison with score-level fusion also shows the

effectiveness of the proposed joint tuning approach.

8.5.7 Comparison with pervious methods

Finally, we compare our approach to other methods on both AVEC2013 and AVEC2014

database. For a fair comparison, we show the results that are only using video data

for depression recognition in table 8.4 and 8.5. From the table one can see that, our

approach achieves better performance than the other listed methods on both AVEC2013

and AVEC2014 database. This further shows the effectiveness of our proposed approach

for depression recognition.
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Table 8.5: Depression recognition result comparison to other methods on AVEC2014
(Test set). Note that the listed results are using video data only.

Methods RMSE MAE

Baseline [179] 10.86 8.86

UUIMSidorov [194] 13.87 11.20

InaoeBuap [187] 11.91 9.35

Brunel [188] 10.50 8.44

BU-CMPE [189] 9.97 7.96

Our Method 9.82 7.58

Figure 8.5: Comparison of depression recognition results on AVEC2014 competition.
Note that several of the listed methods are utilizing audio data while our method only

use visual data.

8.6 Discussion and Conclusions

Since the AVEC2013 and AVEC2014 databases are also used for the depression compe-

tition, in this section, we show our results with comparison to the competition results.

Note that, our approach only utilized the video data without using audio clues, however

in the listed competition results, audio based approaches are also utilized in many of

those methods. We believe that by combining audio based approach, our results could

be further improved. In this work, our focus is exploring visual-based approaches for

depression analysis.
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Figure 8.6: Comparison of depression recognition results on AVEC2014 competition.
Note that several of the listed methods are utilizing audio data while our method only

use visual data.

The results of the AVEC2013 and AVEC2014 challenges are shown in figure 8.5 and 8.6.

Note that, in these tables, most of the methods are utilizing both video and audio data

for the depression recognition, while in our approach, only video data are used. From

figures 8.5, one can see that, our approach performs better than four methods on the

AVEC2013 database, and comparable to the best results from [166], where both audio

and video data are used. On the AVEC2014 database (see figure 8.6), our approach also

achieved promising results, which is comparable to the top methods where both audio

and video data are utilized.

In summary, we investigated the problem of depression value prediction from video data.

In order to model both facial appearance and dynamics for depression recognition, we

proposed a new approach based on deep learning, which is the first time employing deep

representations for depression analysis, to the best of our knowledge. In our proposed

deep network, a two steam manner is designed to take facial images and facial flows as

input to model the depression information, which we called appearance and dynamics

DCNN, respectively. Then, we proposed to construct joint tuning layers, to combine

the appearance and dynamics DCNN, and further improve the performance. Experi-

mental results on two depression databases, AVEC2013 and AVEC2014 shown that, our
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approach achieved better results compared to other visual based approaches for depres-

sion prediction. Moreover, our result obtained by video data only obtained comparable

performance to the state-of-the-art approaches in the AVEC competition, where most

of the methods were utilizing both video and audio data.
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Summary

In this dissertation, the multi-modality human action recognition is studied. Two main

aspects are investigated: multi-spectral action recognition, depth-based action recog-

nition. Besides, the special category of action recognition: facial action analysis for

depression recognition is also studied. The objective of this dissertation is to investigate

these relatively new topics, to extend the research on action recognition, and propose

new approaches handling the challenges and improve the overall performance. In this

chapter, the summary of the contributions of this dissertation are presented. Then some

future extensions of the current work are described.

9.1 Summary

This dissertation has presented and studied several topics for multi-modality action

recognition. Specifically the multi-spectrum action recognition, RGB-D action recog-

nition, and facial action analysis for depression recognition are investigated and new

approaches are proposed to handle this problems. We summarize our work and discuss

conclusions as following.

9.1.1 Multi-Spectral Action Database

We proposed a new database for the study of multi-modality action recognition. The

collection was using three cameras that capturing the data in visible, near infrared,

and infrared spectrum, respectively. This database contains a large number of samples

which was collected with 30 action classes from 30 subjects. This is the first human

action database that have three different spectrum: visible, infrared, and near infrared,

to the best of our knowledge. Also, this database can serve as an useful benchmarking

133
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for the study of action recognition in many aspects, e.g., action recognition in different

individual modality, action recognition cross different modalities, and action recognition

combining the different modalities, etc.

9.1.2 Visible to Infrared Action Recognition

We explored the new problem of visible to infrared action recognition, and introduced

an approach for such problem. The idea of visible to infrared action recognition is to

better utilize the action data in visible, to help recognize the actions in thermal infrared.

We adopted the adaptive SVM in our approach to train the model using both visible

and infrared data and test on the infrared data. Experimental results compared to

the correlation based approaches shown that, our approach significantly improved the

performance for the visible to infrared action recognition.

9.1.3 Heterogeneous Action Recognition for Infrared Action Recogni-

tion

We investigated the heterogeneous approaches for action recognition from visible to in-

frared. Two new approaches were proposed under the framework of maximizing the

mutual information between actions in different modalities, i.e., visible and thermal in-

frared. To achieve this goal, one approach we proposed is based on correlation mapping,

while the second approach is based on manifold learning and discriminative mapping for

heterogeneous action recognition. Experiments have been conducted on a relatively large

database with 30 actions of different modalities shown the usefulness and effectiveness

of our approaches for addressing the challenging problem.

9.1.4 Infrared Action Recognition using Sparse Coding Approach

We investigated the problem of action recognition in thermal infrared spectrum. We pro-

pose a new method based on spatial temporal sparse coding. The proposed approach is

based on learning the sparse dictionary from the thermal infrared data directly, using

histogram representations. In order to integrating both spatial and temporal structures

of the action videos, a spatiotemporal histogram is extracted from three orthogonal

planes. Besides, a saliency map is computed to incorporate the spatial distribution of

local features. Experimental results demonstrate the proposed feature achieved promis-

ing performance on IR action recognition.
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9.1.5 Evaluation of Spatial-Temporal Interest Points Features for RGB-

D Action Recognition

We conducted an evaluation of local spatial-temporal features on RGB-D action data.

We have evaluating and compared several existing approaches which was proposed for

visible action data, on a relatively new topic: RGB-D action recognition. Firstly, we

conducted evaluations using different spatial temporal features for action recognition in

depth data. Totally there are 14 features that were used in our evaluation. Further,

two schemes are proposed to refine the features. One scheme is to utilize the skeleton

joints modality to constrain the STIP locations, the other scheme is to utilize the RGB

modality for the STIP detection. Experiments wrere carried out on 4 RGB-D databases.

Our evaluations concludes that on different depth database, spatial temporal features

perform quite differently. By combining the features using our proposed schemes, the

overall performance can be improved.

9.1.6 Fusion Approaches for Depth based Action Recognition

We explored and studied the fusion methods on spatial-temporal features for RGB-D

action recognition. Fusion approaches for the RGB-D action recognition has not been

well studied yet, therefore we were aiming at combining different features on different

levels for the RGB-D action recognition, in order to improve the performance compare

to individual approaches. To accomplish this goal, we introduced 11 different fusion

methods based on both feature level and decision level fusion scheme. For the RGB-

D features, totally there are four different type of features that have been applied,

aiming at representing actions from different aspects. Experimental has been done in 4

different databases, and the results shown that for the feature level fusion, random forests

shows good results, and for the decision-level fusion, majority voting approach performs

better than the other methods. These results suggests that different features can be

complementary to each other for the depth based action representation, by combining the

features using appropriate fusion method the performance can be significantly improved

over each individual feature.

9.1.7 Facial Action Analysis for Depression Recognition

We explored deep learning approach on facial action analysis for the problem of depres-

sion recognition. To the best of our knowledge, we have proposed a new approach based

on deep convolutional neural network, which is the first time introducing the deep ap-

proach for depression recognition based on facial video data. A two stream architecture
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of deep network is proposed dealing with both facial appearance and facial dynamics

from the video data. Experimental results on two databases shown that our proposed

approach achieved significantly better results. These results suggest the feasibility of au-

tomatic prediction of depression based on facial action analysis using the deep learning

approach.

9.2 Future Work

In this section, we propose several future research topics based on our study of multi-

modality human action. These future work are summarized as following.

For the action recognition problem, it is more still very challenging to recognize the

real world actions or activities. More robust and power techniques towards to the real

applications has not been well studied yet. One of the major challenges lies in the

fundamental theory of the action recognition, such as the mathematical definition of

vision based human actions, etc. It is also necessary to collect more practical and

general action databases for the future action recognition research.

For the action recognition beyond visible, we have studied the action patterns that

are performed by single subject. In the future, it is necessary to study more complex

actions/activities, for the practical considerations. For examples, action detection in the

dark using IR camera, for the unusual actions, action recognition for night vision video

surveillance system and action recognition for group of people are all interesting but

challenging problems that can be issued in the future.

For the multi-modality action recognition problem, in this work, we have proposed

approaches for the heterogeneous action recognition problem in different spectra. In

our study, two categories of methods, i.e., correlation mapping mapping and manifold

learning, are utilized in recognizing actions from different modalities. In addition to

these methods, metric learning is also another direction, in which a metric between

different modalities is learned so that the samples can be matched effectively.

Toward realistic RGB-D action recognition. In this dissertation, we have discussed the

classification performance of depth based action recognition, specific by evaluating the

spatial-temporal features, and also combining different local and global features. The

fusion methods shows benefits when multiple action representations are extracted from

video clips. Consequently, it seems necessary to study more effective action features/-

models, from different aspects. One possible exploration, is based on deep convolutional

neural network, which has show promising performance in many computer vision topics.

However, in action recognition, the superiority of deep features is still not significant
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comparing to the traditional features, also how to modeling the temporal information

in action clips is still under-studied. Specially in RGB-D data, how to design effective

and robust deep networks is also an important task to develop a deep RGB-D action

recognition system.

Modeling temporal information in action recognition. In Chapter VIII, we shown that

temporal information is modeled through optical flow computed in video clips, to help

the depression representation. Since the motion/temporal information is very important

in action analysis, it is still necessary to study how to more efficiently and effectively

model the temporal information. One interesting direction is based on the deep learn-

ing approach. Specifically, recurrent neural network (RNN) is proposed to handle the

sequence data, and its further extension LSTM has shown promising results in action

recognition. However, how to integrate the LSTM with DCNN, and improve the perfor-

mance is still not well-studied for action recognition, this should be investigated in the

future.
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