1,135 research outputs found

    Weighted interlace polynomials

    Full text link
    The interlace polynomials introduced by Arratia, Bollobas and Sorkin extend to invariants of graphs with vertex weights, and these weighted interlace polynomials have several novel properties. One novel property is a version of the fundamental three-term formula q(G)=q(G-a)+q(G^{ab}-b)+((x-1)^{2}-1)q(G^{ab}-a-b) that lacks the last term. It follows that interlace polynomial computations can be represented by binary trees rather than mixed binary-ternary trees. Binary computation trees provide a description of q(G)q(G) that is analogous to the activities description of the Tutte polynomial. If GG is a tree or forest then these "algorithmic activities" are associated with a certain kind of independent set in GG. Three other novel properties are weighted pendant-twin reductions, which involve removing certain kinds of vertices from a graph and adjusting the weights of the remaining vertices in such a way that the interlace polynomials are unchanged. These reductions allow for smaller computation trees as they eliminate some branches. If a graph can be completely analyzed using pendant-twin reductions then its interlace polynomial can be calculated in polynomial time. An intuitively pleasing property is that graphs which can be constructed through graph substitutions have vertex-weighted interlace polynomials which can be obtained through algebraic substitutions.Comment: 11 pages (v1); 20 pages (v2); 27 pages (v3); 26 pages (v4). Further changes may be made before publication in Combinatorics, Probability and Computin

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    Relations between cumulants in noncommutative probability

    Full text link
    We express classical, free, Boolean and monotone cumulants in terms of each other, using combinatorics of heaps, pyramids, Tutte polynomials and permutations. We completely determine the coefficients of these formulas with the exception of the formula for classical cumulants in terms of monotone cumulants whose coefficients are only partially computed.Comment: 27 pages, 7 figures, AMS LaTe

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur

    Cyclic Critical Groups of Graphs

    Full text link
    In this note, we describe a construction that leads to families of graphs whose critical groups are cyclic. For some of these families we are able to give a formula for the number of spanning trees of the graph, which then determines the group exactly

    A simple formula for the series of constellations and quasi-constellations with boundaries

    Full text link
    We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. The formula naturally extends to pp-constellations and quasi-pp-constellations with boundaries (the case p=2p=2 corresponding to bipartite maps).Comment: 23 pages, full paper version of v1, with results extended to constellations and quasi constellation

    Around matrix-tree theorem

    Full text link
    Generalizing the classical matrix-tree theorem we provide a formula counting subgraphs of a given graph with a fixed 2-core. We use this generalization to obtain an analog of the matrix-tree theorem for the root system DnD_n (the classical theorem corresponds to the AnA_n-case). Several byproducts of the developed technique, such as a new formula for a specialization of the multivariate Tutte polynomial, are of independent interest.Comment: 13 pages, no figure
    • …
    corecore