136 research outputs found

    Electronics systems test laboratory testing of shuttle communications systems

    Get PDF
    Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail

    Quantization noise analysis of a closed-loop PWM controller that includes Σ-Δ modulation

    Get PDF
    Σ-Δ modulation is a popular noise shaping technique which is used to move the quantization noise out of the frequency band of interest. Recently, a number of authors have applied this technique to a pulse width modulation (PWM) controller for switching power converters. However, previous analysis has not incorporated the effects of analog-to-digital converter (ADC) resolution or feedback control on the Σ-Δ modulator. In this work, quantization due to ADC resolution and PWM resolution are analyzed, considering the effects of noise-shaping and feedback. A number of simulations have been performed to explore the impact of various design choices on output noise. The study variables included the order of the Σ-Δ modulator, resolution of ADC, resolution of DPWM, the plant and the compensator. The theoretical model developed is used to generate the expected system Power Spectral Density (PSD) curves for each design choice and simulations techniques are used to validate the analysis. Experimental analysis has been performed on a digital voltage-mode control (VMC) synchronous buck converter and the output voltage PSD curves are generated using the welch method and compared with the theoretical and the simulation results. The experimental PSD curves for the 1st-order modulator match the simulation and theoretical PSD curves. This suggests that the theoretical model is a useful approximation and similar methods can be used to analyze the contribution of the quantizers to the output noise of a closed-loop controller system --Abstract, page iii

    Signal processing using short word-length

    Get PDF
    Recently short word-length (normally 1 bit or bits) processing has become a promising technique. However, there are unresolved issues in sigma-delta modulation, which is the basis for 1b/2b systems. These issues hindered the full adoption of single-bit techniues in industry. Among these problems is the stability of high-order modulators and the limit cycle behaviour. More importantly, there is no adaptive LMS structure of any kind in 1b/2b domain. The challenge in this problem is the harsh quantization that prevents straightforward LMS application. In this thesis, the focus has been made on three axes: designing new single-bit DSP applications, proposing novel approaches for stability analysis, and tacking the unresolved problems of 1b/2b adaptive filtering. Two structures for 1b digital comb filtering are proposed. A ternary DC blocker structure is also presented and performanc e is tested. We also proposed a single-bit multiplierless DC-blocking structure. The stability of a single-bit high-order signma-delta modulator is studied under dc inputs. A new approach for stability analysis is proposed based on analogy with PLL analysis. Finally we succeeded in designing 1b/2b Wiener-like filtering and introduced (for the first time) three 1b/2b adaptive schemes

    K-Delta-1-Sigma Modulators for Wideband Analog-to-Digital Conversion

    Get PDF
    As CMOS technology scales, the transistor speed increases enabling higher speed communications and more complex systems. These benefits come at the cost of decreasing inherent device gain, increased transistor leakage currents, and additional mismatches due to process variations. All of these drawbacks affect the design of high-resolution analog-to-digital converters (ADCs) in nano-CMOS processes. To move towards an ADC topology useful in these small processes a first-order K-Delta-1-Sigma (KD1S) modulator-based ADC was proposed. The KD1S topology employs inherent time-interleaving with a shared integrator and K-quantizing feedback paths and can potentially achieve significantly higher conversion bandwidths when compared to the traditional switched-capacitor delta-sigma ADCs. The shared integrator in the KD1S modulator settles over a half the clock period and the op-amp is designed to operate at the base clock frequency. In this dissertation, the first-order KD1S modulator topology is analyzed for the effects of the non-idealities introduced by the K-path operation of the switched-capacitor integrator. Then, the concept of KD1S modulator is extended to higher-order modulators in order to achieve superior noise-shaping performance. A systematic synthesis method has been developed to design and simulate higher-order KD1S modulators at the system level. In order to demonstrate the developed theory, a prototype second-order KD1S modulator has been designed and fabricated in a 500-nm CMOS technology. The second-order KD1S modulator exhibits wideband noise-shaping with an SNDR of 42.7 dB or 6.81 bits in resolution for Kpath = 8 paths, an effective sampling rate of ƒs,new=800 MHz, effective oversampling ratio Kpath•OSR=64 and a signal bandwidth of 6.25 MHz. The second-order KD1S modulator consumes an average current of 3.0 mA from the 5 V supply and occupies an area of 0.55 mm2
    • …
    corecore