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Preface

The well-known multi-bit digital signal processing (DSP) suffers mainly from

the complexity of the multipliers and the inefficient chip area utilization in

VLSI technology. In the last two decades, single-bit and ternary processing

systems, based on sigma-delta modulating (SDM), have been presented as po-

tential alternatives to the conventional DSP. The increased effective speed ex-

pected for the new short word-length techniques should translate into massive

cost savings and increased flexibility for many electronic systems. Unfortu-

nately, there are many issues in the above alternatives that are unresolved.

This thesis is primarily concerned with the development of an efficient DSP

using ternary and single-bit techniques which would hopefully be equivalent to

the conventional DSP in future. It is expected that developments in this area

would result in VLSI chip economy and reduced cost for electronics consumers.

I hope that this work will help researchers working in DSP, communications,

and related topics and inspire further research in these fields.

Amin Z. Sadik

Melbourne

July 2006
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Abstract

R ecently, short word-length (often single-bit) processing has become a

very promising technique as it can implement many important DSP

tasks with significant efficiency. The increased effective speed expected for the

new short word-length techniques should translate into massive cost savings

and increased flexibility for many electronic systems. Short word-length sys-

tems have already made a huge impact on industry. The core element in these

systems is the single-bit sigma-delta modulator (SDM). Sigma-delta devices

are based on oversampling techniques and have the capability of quantization

noise shaping.

Despite the large body of work that has been done so far, there are many ill-

understood and unresolved issues in sigma-delta modulation, and consequently

in single-bit systems. These issues hindered the full adoption of single-bit

techniques in industry. Among these problems are the stability of high-order

modulators and their limit cycle behaviour. More importantly, there is no

adaptive LMS structure of any kind for short-word length (ternary or single-

bit) systems. The challenge in this problem is the harsh quantization that

prevents straightforward LMS application.

In this thesis, the focus has been made upon three axes, namely, designing

new single-bit DSP applications, proposing novel approaches for stability anal-

ysis, and tackling the unresolved problem of single-bit and short-word length

adaptive filtering.

Two structures for single-bit digital comb filtering are proposed. The first

xxiii
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structure is based on ternary filtering, however, the output of the filter is in

single-bit format. The second structure is based on second-order sigma-delta

modulation SDM. These filters can be utilized in a wide range of promising

applications.

Another design technique for single-bit digital comb filter is presented. The

proposed filter response and performance are assessed in terms of signal-to-

quantization-noise ratio (SQNR) and stability. It is found that the comb filter

possesses a distinct frequency response in broadband signal applications. The

same technique is utilized to design and simulate a single-bit N-period digital

resonator. Feedback loop filters can be used to tune the frequency response of

the sigma-delta modulators.

The DC content in single-bit domain is both undesirable and hard to re-

move. A ternary DC blocker structure is presented. This type of filtering is

useful in practice to improve the stability and dynamic range of single-bit sys-

tems. The DC blocker is essentially a ternary filtering structure whose input

and output are both assumed to have single-bit format. Performance is tested

for different kinds of input signals, including sinusoidal, FM, and AM-FM

signals.

We also proposed a single-bit multiplierless DC-blocking structure. The

input is assumed to be a sigma-delta modulated bitstream. This DC-blocker

is designed using a delta modulator topology with sigma-delta modulation

embedded in its feedback path. Its performance is investigated in terms of the

overall signal-to-noise ratio, the effectiveness of DC removal and the stability.

The above proposed structures would be very efficient to realize (as they

contain no multi-bit multiplication) in hardware and can easily be implemented

with FPGA.

On the second axis of this thesis, we considered the stability of a single-

bit high-order sigma-delta modulator under dc input. A new approach for

stability analysis is proposed. A nonlinear circle map is suggested to model the

dynamics of the modulator. An analogy between the dynamics of the sigma-
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delta modulator and the sinusoidal digital phase-locked loop (DPLL) is studied

and an approximate fixed point solution is presented with stability criteria.

Suggestions for designing stabilized high-order systems are also presented.

Despite their major advantage of hardware simplicity, ternary and single-

bit systems have limited useability in practice due to their unresolved problem

of adaptivity. The conventional LMS family of adaptive algorithms fail to

converge if translated to the single-bit domain.

On the third axis of this work we tackled this challenging problem by

introducing three short-word length LMS-Like adaptive filtering schemes.

First, an adaptive ternary LMS-like algorithm is proposed. Performance

assessment using a sinusoidal input distorted by additive white Gaussian noise

showed that the proposed algorithm is comparable to the traditional multi-bit

Wiener-Widrow LMS algorithm.

Second, a single-bit-domain LMS adaptive filtering structure for noise can-

celling is proposed, where all input, output, and filter coefficients are in single-

bit format. The proposed structure is designed and analyzed, and its perfor-

mance has been evaluated (and compared to the conventional Widrow-Hoff

multi-bit LMS algorithm) in terms of convergence properties, signal-to-noise

improvement, and computational complexity. Simulation results showed that

the proposed adaptive structure exhibits performance that is equivalent to the

infinite-precision LMS algorithm.

Finally, a 2-bit LMS-Like structure is introduced and its performance is

compared with the ternary and single-bit adaptive algorithms. The reason

behind presenting this structure is to find out the optimal word-length in the

tradeoff between complexity and performance. As long as noise-cancelling

adaptive filtering is concerned, the 2-bit adaptive filter outperforms the other

algorithms. We expect that these adaptive algorithms will open the door for

short word-length systems to be ready as a practical alternative for multi-bit

signal processing systems.

Twelve papers have been published/ submitted during this candidature.



Chapter 1
Introduction

1.1 The Conventional Multi-Bit DSP

In traditional PCM technique, the input analog signal is sampled at the Nyquist

rate and then represented by a multi-bit word through multi-bit quantization

process (8 bit, 16 bit, or more). This technique, however suffers mainly from

the complexity of the multipliers and the inefficient chip area utilization in

VLSI technology. In the last two decades, sigma-delta modulation (Σ∆ M)

technique has been presented as an alternative approach to conventional PCM

techniques. In Σ∆ approach, the input analog signal is oversampled (many

times greater than Nyquist rate) and coarsely quantized to short-length word,

often single-bit. The output of the Σ∆M is a high-rate bit-stream -1, +1 and

can be decimated and filtered to extract a good approximation to the input.

Σ∆M is an efficient technique to quantize an analog signal and has been

used recently in a growing number of DSP applications. However, a compre-

hensive understanding of Σ∆M behavior is not achieved yet due to the presence

of a non-linear element within its structure, i.e., the quantizer.

A ternary filter, which is an FIR filter with it’s coefficients confined to -1,

0, +1, has been presented, as well, to increase the efficiency of the hardware

implementation and power consumption. Single-bit digital systems based on

Σ∆ modulation and ternary filtering have been found to be extremely efficient

from the hardware implementation viewpoint. Unfortunately, there are many

1
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issues in Σ∆M and ternary filters that are considered unresolved till now.

These issues will be pointed out in the next Sections.

1.2 Thesis Objectives

Despite the revolutionary progress in digital systems in the past two decades,

there is currently a limit to the applicability of digital systems. They can

only be used where digital processing is able to “keep up with” the required

tasks. Processing of very high frequency wideband signals, for example, is

typically out of range of the conventional digital processing. To increase the

range of applications that can be implemented digitally, it is crucial to increase

the effective speed of digital processing. Short word-length (often single-bit)

processing is a very promising technique in this regard, firstly because it lends

itself well to parallel processing realizations, and secondly because short word-

length operations can implement many important DSP tasks with remarkable

efficiency. The increased effective speed expected for the new short word-length

techniques should translate into massive cost savings and increased flexibility

for many electronic systems. Short word-length system implementations have

already made a huge impact on industry. For instance, short word-length A/D

and D/A converters, and increasingly, digital audio systems using short word-

length amplifiers, are common. Very promising applications based on single-

bit Σ∆M systems have already been presented. Examples of such applications

are video A/D conversion [1], wideband applications [2, 97], and ultrasonic

beamforming [46]. Research on these systems is therefore critically important.

Outcomes in this area will result in reduced costs for electronics consumers

and increase the quality of life. It is the aim of this thesis to contribute to the

body of knowledge in this direction.

1.2.1 Research Questions

The proposed PhD program attempts to answer the following questions:
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1. Can single-bit systems be designed to perform or approximate the func-

tions of existing multi-bit systems?

Initial attempts are successful but an extensive research is required.

2. Does a ternary filter possess limit cycles similar to the case of Σ∆M? If

yes, what laws would the limit cycles follow?

3. Is it possible to utilize LMS adaptive techniques (e.g., for communica-

tion channel noise canceling) in ternary filtering?

Adaptivity in ternary and single-bit systems is an unresolved problem

and represents the major practical obstacle towards their wide spread

usage in communications.

4. Can ternary filtering be utilized efficiently in broadband and other com-

munication applications?

5. What is the optimal word-length that makes these systems capable of

replacing existing multi-bit systems?

1.2.2 Research Aims

The specific objectives arising from these questions have been addressed. These

can be summarized as follows:

1. Designing new single-bit (or short word-length) systems using both

ternary filtering and Σ∆ modulation.

2. Investigating the occurrence of limit cycles in ternary filters.

3. Investigating the LMS adaptation of ternary and single-bit filtering.

4. Investigating the optimal (shortest) word-length that suits various DSP

applications.

5. Investigating the stability issues of the designed short word-length sys-

tems.
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1.3 Original Contributions

This thesis makes many original contributions to the body of signal processing

knowledge both in theory and in implementation. A number of novel algo-

rithms and techniques to model and design new short word-length systems

have been presented.

The main contributions of this dissertation are summarized below:

1. Designing new single-bit and ternary DSP applications. A single-bit

ternary and Σ∆M-based comb filtering and DC-Blockers are proposed.

The work led to publications in Eurasip Journal on Applied Signal Pro-

cessing, as well as in APCC 2005 and TENCON 2005 Conferences.

2. The limit cycle behavior in ternary structures has been explored and

shown to exist. This led to a publication in TENCON 2006.

3. A novel approach in the stability analysis of the ternary structure is

proposed, which invokes the analogy between the operation of the Σ∆

and the digital phase-Locked Loop (DPLL) systems. This approach

can be expanded to include higher (>3) Σ∆ modulators. This led to

publication in Digital Signal Processing Journal.

4. The unresolved issue of LMS adaptivity in short-word length digital

filtering has been addressed. Impressive results are obtained and adap-

tive structures (ternary and single-bit) are designed, analyzed and sim-

ulated. It is expected that this achievement would open the door for

the short-word length techniques to replace the traditional multi-bit

PCM counterparts in the near future. This led to a publication in IEE

Electronics Letters.

1.4 Thesis Organization

This thesis is comprised of nine chapters, which can be divided in three parts.

The first part includes development of new single-bit DSP applications as in

Chapters 4 and 5. The second part contains the study of limit cycle behavior
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and stability analysis of ternary topology and higher-order Σ∆ systems in

Chapters 6 and 7. The third part consists of a proposed short-word length

adaptive filtering approach as explained in chapter 8.

The dissertation is organized as follows:

Chapter 2: Literature Review

Literature survey on single-bit processing techniques is made in this chap-

ter. As the single-bit processing techniques almost entirely involve the uti-

lization of sigma-delta modulation at some stage, the single-bit format is in-

herently related to sigma-delta modulators (Σ∆M). The main obstacles that

hindered the full adoption of these techniques in industry and life are ad-

dressed as well. Emphasis has been put on the inherent problems regarding

Σ∆Ms behavior. Issues such as limit cycle behavior and stability of high-order

Σ∆ systems are considered as not fully understandable. The topic of single-bit

adaptivity is quite a challenging task, both in theory and implementation, and

is regarded as an unresolved problem.

Chapter 3:Single-Bit Ternary Filtering Using Sigma-Delta Modula-

tion

In this chapter a bit-stream filtering structure is introduced. It consists

of a ternary FIR filter cascaded with an IIR Σ∆M structure. This structure

is being the basis of many single-bit DSP applications. Since many of the

ternary filter tap values are zero and each non-zero tap requires only very

simple multiplication hardware, the system is very resource efficient and fast, as

no complex mathematical operations are required. Performance enhancement

is possible through increasing the oversampling ratio, however, this requires

increasing the number of taps and the sampling rate of the system, hence,

there is an inherent trade-off between hardware efficiency and performance.

Chapter 4: DSP Applications Using Single-Bit Filtering: Comb Fil-

tering

In this chapter, two structures for single-bit output comb filtering are pro-
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posed and simulated. The first structure is a combination of a ternary fil-

tering stage and a Σ∆M. The second structure which is based on a second-

order Σ∆M, is designed and its performance is evaluated in terms of signal-

to-quantization noise ratio (SQNR), the dynamic range (input signal level),

and stability. Moreover, it is shown that the same design technique can be

used for other single-bit systems, where we used it to design a multi-period

resonator. It was shown that the proposed filters lend themselves very well to

broadband input signals and can be utilized in emerging technologies such as

the Broad-Band Power-line Communication (BPL).

Chapter 5: DSP Applications Using single-Bit Filtering: DC Block-

ing

In this Chapter, two efficient multiplierless structures for DC-canceling in

the single-bit domain has been proposed. The first consists of a ternary filter-

ing stage followed by a sigma-delta modulator stage. Two design techniques

were utilized to generate the ternary taps. For each technique, the associ-

ated ternary filer stage was assessed in terms of DC attenuation and hardware

efficiency. The simulated system response has been studied through the ap-

plication of various DC-biased, noisy signals. The DC content was removed

completely from all kinds of input signals.

The second is a novel single-bit domain DC canceling structure. It is eval-

uated in terms of the overall SNR and the magnitude of DC attenuation. The

role of the gain parameters is investigated and optimal performance has been

reached. The system is examined using different types of signals.

Chapter 6: Limit Cycle Behavior in Ternary Structures

The difference equation and the iterative solution that describe its oper-

ation are developed in this chapter. It is shown that the system exhibits

limit cycle behavior under certain conditions of the system parameters. The

M th-order difference equation of similar Σ∆ topologies are also developed.

Moreover, a general formula for obtaining the average output of these systems
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is derived. The system was then simulated extensively and a random search

method is utilized to discover and extract the limit cycles and identify their

features. It seemed that this topology, which is a third-order Σ∆ modulator,

possesses a highly non-linear behavior.

Chapter 7: A Stability Analysis Approach for Sigma-Delta Modula-

tors in Ternary Structures

In this chapter, we attempt to set out a comprehensive analysis to the

third-order Σ∆ topology utilized in ternary filters, both mathematically and

by simulation. This is done by utilizing the circle map dynamics to accurately

model the operation of the Σ∆ structure, which is treated as a third-order

sinusoidal digital phase-locked loop system. Accordingly, the stability topic is

addressed using the fixed point techniques. This analysis would be of remark-

able importance to other higher-order Σ∆ structures after some appropriate

modifications.

Chapter 8: Short-Word Length LMS Adaptive Filtering

In this chapter we tackle the unresolved problem of ternary and single-bit

LMS adaptive filtering. We propose an approach for LMS adaptive ternary

filtering. Despite the simple structure, simulation results showed that the

proposed algorithm is parallel in performance to the standard multi-bit LMS

algorithm. We expect that this approach will open the door for a wide range

of applications for ternary systems.

In addition, a single-bit-domain LMS adaptive filtering structure for noise

canceling is presented, where all input, output, and filter coefficients are in

single-bit format. The proposed structure is analyzed and its performance

is evaluated (in comparison to the conventional Widrow-Hoff multi-bit LMS

algorithm) in terms of convergence properties, signal-to-noise ratio improve-

ment, and computational complexity. Simulation results showed that the pro-

posed adaptive structure exhibits performance that is equivalent to the infinite-

precision LMS algorithm.
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Chapter 9: Conclusions and Future Work

This chapter summarizes the main conclusions of this dissertation and

presents possible future directions.



Chapter 2
Literature Review

2.1 Introduction

The short word-length (often single-bit) format generated by sigma-delta mod-

ulator (Σ∆M) makes for greatly simplified arithmetic processing. For hard-

ware implementation, this simplified processing implies reduced silicon space

and reduced power consumption [4].

Processing tasks which are rich in multiplications are particularly strong

beneficiaries of the use of single-bit signal representation. This is so because

multi-bit multiplications require complex hardware implementation, whereas

in the single-bit domain, multiplications can simply be implemented using

a couple of gates or a very simple look-up table [5]. An efficient hardware

implementation of Σ∆ systems can be attained if both the input signal and

the transverse FIR filter impulse response representations are in binary or

ternary format [6]. Both Σ∆M and ternary filters use coarse quantization to

enable simple hardware implementation. Ternary filters have an architecture

similar to FIR transversal filters, however, the tap values are limited to {-1, 0,

+1}.

Although there are several algorithms presented to design ternary filters

[7, 8, 9, 10, 11], the design techniques are particularly difficult to implement.

Moreover, techniques to predict the performance of a ternary filter are not

often presented. Developing an easily implemented, optimal ternary filter de-

9
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sign algorithm will allow signal processing designers to get the best possible

performance from ternary filters, causing them to become more widely used

and offering more possibilities for increased hardware efficiency [12].

Unlike ternary filters, Σ∆Ms have been extensively analyzed using different

techniques. Yet, Σ∆M system understanding is far from complete [13]. Issues

related to Σ∆M such as noise performance, instability, integrator spans, idle

tones, limit cycle behavior, chaos, and adaptation have been often addressed.

Ternary filters, on the other hand, have undergone very limited analysis and

there are many unresolved issues that should be addressed. Some of these

issues, which are to be investigated in this research, are listed below. First of

all, it is unknown whether ternary systems have limit cycles similar to those

in Σ∆M, and if they have, what is the law that these limit cycles may follow?

Second, adaptive ternary filtering is an unresolved issue. Adaptive filtering

is a vital topic in modern signal processing and digital systems. However,

due to the short word length nature of single-bit systems, this issue is quite a

challenging task, both in theory and implementation. Third, there is a need to

investigate the possibilities of designing new single-bit Σ∆M ternary systems

suitable for broadband applications such as RF and the promising technology

of Broadband Power-Line Communication (BPLC). This is a promising avenue

because ternary filters lend themselves well to low frequency applications.

In this chapter, we attempt to conduct a comprehensive literature survey on

the single-bit processing techniques and, as the single-bit processing techniques

almost entirely involve the utilization of sigma-delta modulation at some stage,

the single-bit format inherently related to sigma-delta modulators (Σ∆M). The

main obstacles that hindered the full adoption of these techniques in industry

and theory are addressed as well.
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2.2 Sigma-Delta Modulation

Oversampled Σ∆ modulators are becoming a standard high-resolution data

conversion element [14]. These oversampled data convertors have several ad-

vantages over conventional Nyquist-rate convertors, including insensitivity to

analog component imperfections [15], their high linearity, reduced complexity

of the anti-aliasing filter, and lower cost of implementation. Σ∆Ms have fast

become one of the dominant data conversion elements in the low frequency

range of the market. They come in one of two varieties: digital to analog

(DAC) and analog to digital (DAC) conversion elements. A typical trademark

that provides evidence of a Σ∆ data converter in consumer audio equipment

is the “1-bit” advertisement.

Typically, Σ∆M’s are used to convert a signal from multi-bit resolution to

a single-bit resolution with little or no loss of dynamic range. This conversion,

or modulation, is achieved through oversampling and noise shaping techniques

[16]. The Σ∆M trades resolution in time for resolution in amplitude. Since

these modulators can convert multi-bit signals to single-bit signals, they are

at the cornerstone of single-bit digital signal processing [17, 18]. The general

structure of a basic Σ∆M is shown in Fig.(2.1).

+
 H(z)

Loop Filter


+


-


Quantizer


Multi-Bit

Single-Bit


X(z)
 Y(z)


(1-bit)


Figure 2.1: Block diagram of the basic Σ∆M.

This structure must be operated at an oversampled rate. The oversampling
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ratio R is defined as R = fs

2fB
, where fs is the sampling frequency and fB

represents the input signal bandwidth. Oversampling decreases the non-shaped

in-band noise by 3 dB for every doubling of the sampling frequency (fs) [19].

By increasing the sampling rate from fs to fs1 = 2fs, the in-band quantization

noise, previously spread over [−fs

2
, fs

2
], is now spread over a larger frequency

range [−fs1

2
, fs1

2
], reducing the noise power spectral density to half the previous

value. In addition to this reduction, there is a more significant attenuation in

the in-band quantization noise power due to the inherent noise-shaping filtering

action in Σ∆M. This is obvious from the in-band noise approximation which

results from the white-noise assumption [20], that is

SB ≈ (
π2M

2M + 1
)(

1

R2M+1
)
∆2

12
(2.1)

where SB is the power of the in-band noise, M is the order of modulator, R is

the oversampling ratio, and ∆ is the quantization step. Equation (2.1) reveals

that the attenuation of the in-band quantization noise due to increasing he

oversampling ratio is exponentially improved as the modulator order increases.

It is noteworthy that the above approximation has a practical limitation as it

suggests that the precision can be improved indefinitely by increasing the order

of noise shaping [20].

Given that Σ∆Ms can only provide a relatively small bandwidth in com-

parison to the sampling frequency, noise shaping can result in significant reduc-

tions in quantization noise over the bandwidth of the interest. This is evident

as Σ∆Ms are typically operated with oversampling ratios ranging from 32 to

256. However, high oversampling ratios are a major obstacle towards the uti-

lization of Σ∆ systems in broadband applications. Three different approaches

have been proposed for obtaining good noise attenuation with low oversam-

pling ratios [20]. The first approach is based on adopting higher-order transfer

functions to increase the order of noise shaping (see equation 2.1). Utilizing

a multibit quantizer is the second approach, while the third approach is the
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cascading of multiple stages.

There are many Σ∆Ms architectures for different orders; a good summary

of these architectures can be found in [16] and [21].

In general, the quantizer utilized within Σ∆Ms is a single-bit quantizer.

Hence, the only possible outputs of such a quantizer are { 1,-1}. This single-bit

quantizer has superior linearity qualities as compared to multi-bit quantizers,

making it an extremely desirable quantization element in Σ∆M’s [16]. This

highly linear quantizer does not come without limitations. As only two output

levels are possible, the quantization noise introduced is usually large.

The use of negative feedback in Σ∆M’s is central to their operation. Σ∆M’s

typically operate by using negative feedback to suppress the quantization errors

in the region of the loop filters passband. This negative feedback has also

been found to provide some insensitivity to manufacturing imperfections within

ADC’s, unlike traditional multi-bit ADC’s [16, 22].

The loop filter for low frequency applications such as audio have lowpass

functions. Bandpass modulators can be created also through manipulation

of the loop filter [22, 23]. Increasing the loop filter order in Σ∆M’s can sig-

nificantly improve the noise shaping capabilities. Such increases can lead to

higher dynamic ranges at lower oversampling ratios and wider passband widths

[16, 21].

Since the single-bit quantizer is a non-linear element within a negative feed-

back loop, the design and subsequent stability analysis of Σ∆M’s is inherently

complicated. Analysis and design of these structures is further complicated by

increasing the order of the loop filter. This is evidenced by the large body of

literature concerning design rules of thumb and stability issues (e.g. [24]). Sys-

tems with high-order loop filters and non-linear elements (such as the single-bit

quantizer) in the feedback loop can be unstable.

Σ∆M design and analysis can be significantly simplified by linearizing

the quantizer. While this linearization does not properly model the signal-

dependent quantization noise, it has been found insightful [16, 22]. The 1-
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bit quantizer is modelled by an additive white noise source with variance

σq = ∆2/12, where ∆ represents the quantization interval. This white noise

model introduces the quantization error signal q(n) and adds this to the quan-

tizer input as shown in Fig.(2.2). Assuming a uniform distribution between

-1 and +1 for quantization noise, the traditional linear model for M th-order

modulator relates the output spectrum Sy(e
jΩ) to the input spectrum Sx(e

jΩ)

according to [25]

Sy(e
jΩ) = Sx(e

jΩ) +
1

3
[2 sin(

Ω

2
)]2M (2.2)

Assuming that the quantization noise is highly uncorrelated from one sam-

ple to the other and statistically independent of the signal, the ideal in-band

SNR, SNRin, achieved by an M th-order Σ∆M, can be calculated as [21]

SNRin = 10 log10(σ
2
xy)− 10 log10(σ

2
qy)− 10 log10(

π2M

2M + 1
) +

(20M + 10) log10(
fs

2fB

)(dB) (2.3)

where σ2
xy is the signal power (variance) at the output and σ2

qy is the in-band

noise power at the output assuming zero mean. As the signal power is assumed

to occur over the signal band only, it will not be subjected to any modification,

and the signal power at the output σ2
xy is the same as the input signal power σ2

x.

The achieved SNRin depends on the noise-shaping function of the modulator,

which can be described in terms of z-domain poles pi and zeros zi. For an

M th-order modulator, the noise-transfer function NTF can be expressed as

NTF(z) =

∏M
i=1(z − zi)∏M
i=1(z − pi)

=
1

1 + H(z)
. (2.4)

A well-known choice for the noise-shaping pole locations is to arrange them

in Butterworth configuration, whereas improved SNRs are achieved if noise

shaping zeros are distributed across the baseband in conjugation pairs [26]. A

Σ∆ structure with controllable SNR has been reported in [27, 28].

If we now return to Fig.(2.1) to mathematically describe the general Σ∆M
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Figure 2.2: Linear model of a quantizer.

output using the linear model in the z-domain, the system can be described

by:

Y (z) =
H(z)

1 + H(z)
X(z) +

1

1 + H(z)
Q(z) (2.5)

where X(z), Y (z), H(z) and Q(z) represent input, output, loop filter and

quantization signals and functions in the z-domain, respectively.

From equation 2.5, we can obtain signal and noise transfer functions (ab-

breviated as STF and NTF) as shown below.

STF(z) =
H(z)

1 + H(z)
(2.6)

NTF(z) =
1

1 + H(z)
(2.7)

It is clear from equations 2.5 and 2.7 that the quantization error Q(z) is

spectrally filtered. To illustrate this spectral filtering we will now analyze the

first-order Σ∆M shown in Fig.(2.3). For convenience we have replaced the

quantizer with its equivalent linear model.

The loop filter H(z) for the first-order Σ∆M is given by:

H(z) =
z−1

1− z−1
(2.8)

which is an integrator. If we then substitute the integrator of equation (2.8)

into the STF and NTF of equations (2.6) and (2.7), we obtain the first-order
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Figure 2.3: Block diagram of the first-order Σ∆M with a linear model for the
quantizer.

Σ∆M transfer functions:

STF(z)1st = z−1 (2.9)

NTF(z)1st = 1− z−1 (2.10)

where STF(z)1st is a pure delay that doesn’t change the form of the input

signal, whereas the quantization noise is filtered with the differentiator 1−z−1.

As the differentiator has a high-pass frequency response as shown in Fig. 2.4,

the quantization error or noise will be shaped away from the low frequency

region. Hence, if the input signal is in the low frequency region, then it will be

modulated into the single-bit format with reduced quantization error. It can

be shown [29] that, for every doubling of the oversampling ratio in a first-order

Σ∆M, SQNR improves by 9 dB (or equivalently, the resolution improves by 1.5

bits), where a 3-dB is due to the reduction in the power spectral density of the

quantization noise and an extra 6-dB due to the noise shaping characteristic.

Increasing the number of integrals in the analog part of the modulator

will improve the noise shaping performance and, consequently, give a higher

resolution for the overall system. This is evident since the the noise-transfer
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function for M th-order modulator will be given as

NTFM(z) = (1− z−1)M (2.11)

For instance, the noise transfer function in the frequency domain for first-

and second-order Σ∆ systems is shown in Fig.(2.4). The vertical line illustrates

the band limit of a signal, where fB = 0.02fs.
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Figure 2.4: A comparison between the NTF for a first- and second-order Σ∆M.

Of course, the output signal from the modulator is in the single-bit for-

mat. Currently, the philosophy is to filter this single-bit signal to remove

the quantization noise and then to sample decimate to the Nyquist frequency.

This produces the pulse-code-modulated (PCM) format that is traditionally

provided at the output of a ADC.

The traditional IIR and FIR filtering operations inherently produce multi-

bit outputs. Hence, once the Σ∆M output is filtered using one of these tradi-

tional techniques, the signal is again in a multi-bit format.
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2.2.1 The Limit Cycle Behavior in Σ∆M

Σ∆M’s are known to exhibit spurious oscillations (tones) in the single-bit

output sequence, called limit cycles, and are present for both low and high

order modulators [30].

Limit cycles oscillations in sigma-delta modulated signals are usually re-

garded as a performance-degrading feature [32].

With conventional linear filtering, such limit cycles produce idle tones that

may be audible to the listener when Σ∆M’s are used for audio signal process-

ing. However, one should recognize the difference between limit cycles and

idle tones [33]. A Limit cycle is a sequence of L output bits which repeat it-

self indefinitely, while an idle tone represents a discrete peak in the frequency

spectrum of the output of a Σ∆M such that it superimposed on a background

of noise as illustrated in Fig.(2.5)and Fig.(2.6).

Frequency

Po
w

er

Figure 2.5: Limit cycles consist of discrete lines in the frequency spectrum.

Various approaches have been proposed to address the limit cycle phe-

nomenon in nonlinear systems. For example, the describing function approach

for computing the limit cycle points of uncertain nonlinear systems has re-

cently attracted the attention of researchers. An algorithm proposed in [34]

that makes use of the describing function analysis technique and tools of in-

terval analysis for predicting the limit cycle behavior.
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Figure 2.6: Idle tones are peaks in the frequency spectrum but superimposed on a
noise background.

Considerable work has been done on the identification of limit cycle in first-

and second-order Σ∆M’s and on their elimination, (e.g. [35]-[39]), there exist

no comprehensive analysis procedure for higher-order systems which might

allow a designer to anticipate the spectral and power distributions of possible

limit cycles. However, useful attempts have been published recently which

were successful in gaining more insight into the limit cycle behavior in higher-

order (> 3) Σ∆ systems. For instance, in [40], a framework for the analysis of

a family of high-order Σ∆ systems was proposed. This analysis had facilitated

the stability analysis through the reduction of a large number of high-order

architectures to a diagonal form. That is, by transforming the state space

into a coordinate system where the state variables interact only through the

quantizer function.

In [41], state space matrices were utilized to describe high-order single-stage

single-bit Σ∆M operated under the condition of a constant zero input signal.

In this work a procedure was established for characterizing and validating po-

tential limit cycles. A more generalized approach to describe 1-bit feedforward

Σ∆ with constant input can be found in [33] which proved that, under almost

all circumstances limit cycle behavior is observed in the output if and only if

a limit cycle occurs in state space.
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A common way of linearizing the modulator is to dither the quantizer with

an independent noise signal [42]. Other remedies are: making the modulator

chaotic (to break up simple oscillations [43, 44]) and using wavelet decompo-

sition [45].

Almost all works regarding the limit cycle issue are done using constant in-

put signal which is a highly relevant case. In actual practice, Σ∆M’s are used

for A/D conversion of band-limited signals and not with dc signals. Constant

input signals are apparently the worst case for such modulators, and engineer-

ing practice recommends adding a high-frequency dither signals to make the

input vary [14]. The dynamic behavior of Σ∆M under noisy or periodic inputs

is still an unresolved topic [33].

2.2.2 Problems with Σ∆M Analysis

Σ∆M is an inherently non-linear system. The non-linearity is wholly contained

within the representation of the quantizer element. However, sigma-delta mod-

ulators are often analyzed using linear techniques [47]. In these approaches,

the quantizer is replaced by an additive white noise source and then a standard

linear system analysis is applied. This approach can provide a good estimate of

the noise performance, but it is unable to explain many aspects in the behavior

of Σ∆M’s, especially such phenomena as instability, integrator spans, quan-

tizer switching frequency, idle tones, strong limit cycle behavior and chaos,

which are inherently non-linear.

The non-linear nature of the Σ∆ system makes the stability analysis dif-

ficult [48]. Numerous methods have been attempted to solve this problem.

For instance, Tsypkin’s method [49], norm technique [50], and describing func-

tion analysis [51]. However, all of these techniques can only achieve a limited

success and each suffers from limitations and/or deficiencies.

On the other hand, modeling the modulator is a challenging task as there

are inherent sources of errors which arise from the modulator itself, mainly from

the discrete-time integrator of each first-order loop [52]. This is so because
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the integrators are the modulator stages where the analog signals exist and

therefore, the component values have the most significant impact on the signal

distortion. Practically, these discrete-time integrators are mainly based on

switched-capacitor circuits acting as resistors. These switched-capacitors based

integrators suffer from five error sources, namely: limited bandwidth, finite

open-loop gain, limited output slew rate, mismatched capacitors, and voltage

dependent capacitors [52].

2.2.3 The Alternative Analysis Approaches

To address these problems, it will be necessary to utilize some of the many non-

linear analysis techniques available. A full rigorous non-linear analysis of these

systems using any one technique would be very difficult, if not impossible [53].

An alternative approach is to identify specific problems, such as stability, and

apply the most suitable non-linear analysis technique to that issue. Generally,

three main approaches have been applied to the non-linear analysis of Σ∆Ms:

spectral analysis (noise and signal performance), geometric analysis (stability

and integrator spans), and non-linear dynamics (limit cycle behavior).

1. Spectral Analysis. In this form of analysis [54, 55, 56, 57], equivalence

is established between first-order Σ∆M (with constant input) and the

circle map. The circle map is a well-known function in non-linear dy-

namics and ergodic theory. Using this equivalence it would be possible

to explain some basic aspects of the system behavior, for instance, the

fact that rational inputs lead to limit cycles.

2. Geometrical Analysis. In this approach the trajectories of the integra-

tor outputs are analyzed. This approach is primarily concerned with

stability and identifying the integrator spans of second-order systems

[58, 49], and some third-order systems [57]. Extension on this approach

has been made by including the class of inputs consisting a constant

input of magnitude less than 1 and of an arbitrary sum of finite ampli-

tude sinusoids [59]. This approach is further extended to consider the
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trajectories as discrete points along a parabolic curve [60].

3. Non-Linear Dynamics. This approach has found an increasing interest.

The strength of non-linear dynamics is that it provides insightful infor-

mation into the behavior of non-linear systems and thus can give useful

information about limit cycle effect and idle tones [61, 62]. It has been

shown that a single ellipse or a finite number of ellipses are equivalent

to the limit cycle behavior in the low-pass modulators [36].

2.2.4 Adaptive Scaling Schemes in Σ∆M’s

Two significant advantages of high-order low oversampling Σ∆M’s over lower-

order ones. Firstly, the amplitudes of the idle tones and noise modulation

are minimized. Secondly, when reducing the oversampling ratio, better perfor-

mance will be achieved as compared to lower-order systems [63]. Unfortunately,

higher-order Σ∆M’s are only stable for relatively low maximum stable input

beyond which the system becomes unstable. one approach to eliminate this

drawback is to make the modulator capable of adaptive scaling.

One of the essential issues of Σ∆M design is to properly scale the inte-

grators to avoid clipping, which may cause information loss and hence severe

degradation in signal-to-noise ratio (SNR) [64]. Adaptive Σ∆M (AΣ∆M) at-

tempts to increase the dynamic range of sigma-delta modulators while keeping

the quantization noise as low as possible [65]. AΣ∆M achieves this objective

by scaling either the input signal or the step-size of the quantizer through an

estimation of the input signal strength. This estimation can be done from the

input signal itself or from the modulator output as shown in Fig.(2.7) and

Fig.(2.8), respectively. Using the input signal to perform the estimation is

known as ’forward estimation’ while using output signal is known as ’back-

ward estimation’. Adaptation can be done continuously or sporadically in

time. Several adaptation techniques have been investigated in the literature

[66, 67, 68, 69, 70, 73]. Another scheme based on estimating the amplitude of

the quantizer input instead of the input signal itself has also been proposed
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[71, 72]. For instance, in [73], a method for improving the SNR of Σ∆M with

single-bit quantization is introduced. However, this is done at the expense of

two drawbacks. First, a moderate slew rate limitation of the input signal oc-

curs. Second, the feedback signal is a multilevel sequence, and hence a multibit

D/A converter is required in the feedback loop with particular demands on the

linearity.

An adaptive scheme has been presented in [74] which reduces the order of

the loop filter of high-order single-bit Σ∆M in order to stabilize them and also

to improve their performance in the unstable region. The apparent drawback

of this adaptive technique is the additional number of comparators and digital

logic circuitry which are needed for its hardware implementation.

SDM
x(n)


y(n)
input

estimation


d(n)


SDM
x(n)


input

estimation


d(n)


Figure 2.7: Adaptation schemes used in AΣ∆: Input scaling.

Although the discussion has already concentrated on the Σ∆M’s, it can

be generalized to include ternary filtering systems. The Σ∆M shares many

features with other discrete-time processes in digital signal processing, for ex-

ample, digital filters and digital phase-lock loops [75], etc. No one approach

will yield all the required results, so it is important to have an understand-

ing of which approach is useful for the specific problem under investigation.

As the ternary filter suffers from several unresolved issues, one would think

that these issues can be addressed through extension and/or modification of

the approaches already utilized with the Σ∆M to tailor them to the case of
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Figure 2.8: Adaptation schemes used in AΣ∆: output scaling.

ternary filter. However, as Σ∆M understanding is still far from complete, this

task seems to be quite challenging.

2.3 Efficient Filters

Many signal processing tasks can be done via a microprocessor or a digital

signal processor. Typically these hardware devices contain built-in multiplica-

tion circuits. Within digital signal processors it is not uncommon for several

multiply-and-accumulate (MAC’s) to be implemented in the integrated circuit.

Such hardware can provide significant data throughput increases in digital fil-

ters as both the FIR and IIR structures shown in Fig.(2.9) and Fig.(2.10)

require many multiply-and-accumulation operations per sampling period.

An alternative growing in popularity is to use programmable logic devices

such as field programmable gate arrays (FPGA’s) to undertake the digital

filtering tasks. These devices have the advantage that operations can occur

in parallel. This parallelism greatly increases the data throughput of digital

filters, however, this speed increase comes at the cost of requiring large amounts

of gates as compared to serial implementations. Again it is not uncommon

for such FPGA devices to contain many built-in multipliers, however, these

multipliers still require large amounts of silicon space within the FPGA.

As the speed of the processing elements and FPGA devices increases, the
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Figure 2.9: Block diagram of a traditional FIR filter.

applications that require increased filter complexity and speed are created.

Limitations of processing speed dictate the maximum data throughput, and

hence the maximum sampling rate that a given processing element can operate

at [76]. Some obvious applications that require fast and efficient digital filters

are decimation filters in Σ∆M [16], audio filter banks, charge-coupled-device

filters, and software radio.

Each of the above applications is required to provide filtering with high

data throughput and in some cases at high speed. For instance, software

radio applications require complex hardware to be able to realize filters with

different bandwidths and stopband attenuations. Audio filter banks require

many different channels of varying complexity, and charge-coupled devices that

operate in digital image capturing equipment require vast amounts of filtering.

Each of these items would benefit from fast and efficient filtering techniques.

To achieve efficient and fast implementations, many techniques have been

proposed. The theme in many of these techniques is to try to reduce the

complexity of the multiplication operation so that simple and fast filter imple-

mentations can be achieved.
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Figure 2.10: Block diagram of an IIR direct form II filter.

One popular method of reducing the complexity of the multiplication oper-

ation is to reduce the word length in both the input and the filter coefficients.

The preferred method of word reduction is generally sigma-delta modulation,

hence, this thesis will focus on these methods.

There are many techniques that use some form of sigma-delta modulation

or the like to improve the efficiency of the digital filtering operations. An

example of such techniques were reported in [11, 6, 5, 77, 78].

2.3.1 Fast FIR Filters

Fast and efficient filters generally fall into two categories: sigma-delta based

and optimization techniques. Interestingly enough, all of these techniques use

oversampling and single-bit or ternary formats to reduce either the input signal

word length or the filter coefficients word length or both.

The optimization techniques generally use either dynamic programming

[8, 9] or mini-max techniques [12, 79] to reduce the filter coefficients word

length to the ternary format. The ternary library {+1,0,-1} is used because

it adds almost no more complexity to the multiplication operation than the
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single-bit word but it provides an improved stopband attenuation [12].

These optimization techniques focus on oversampling the signal and using

ternary filter coefficients. While both of these techniques can provide some

useful filters, they require the use of a reconstruction filter to completely define

the spectral filtering response and to remove the quantization noise introduced

by the harsh ternary filter coefficients. The filter coefficient generation methods

were found to be very complex. They also require many iterations of converging

algorithms that can take long periods of time to converge to a solution, if they

converge at all.

There are many published works on sigma-delta based FIR filtering tech-

niques, amongst which [80, 18, 81, 77, 82] are just a few. Most of these tech-

niques use some form of sigma-delta modulation to reduce the word length of

the filter coefficients or the input signal or both to either single-bit format or

ternary format.

In [80] and [81] efficient FPGA narrowband filter implementation is dis-

cussed. The authors recognize that the precision, or number of bits, in the

MAC operation can be reduced if the input signal to the FIR filter is reduced

in precision. This filtering operation requires the input signal to be oversam-

pled. This input signal is then resampled using a digital error feedback Σ∆M.

The error feedback Σ∆M is shown in Fig.(2.11). This modulator uses a pre-

diction filter in the negative feedback path. This prediction filter has a flat

passband over the bandwidth of interest and is generally implemented with an

FIR filter. The paper also discusses optimum prediction filter design based on

statistics and a minimum-mean-squared error calculations.

Once the input signal has been resampled down to three or four bits, a full

precision digital FIR filter is used to filter the signal. Overall, this resampling

operation has shown over 50% reduction in logic resources as compared to

traditional FIR filter implementation using FPGA. This filter shows a great

promise for FIR filter implementations, however, further reduction in complex-

ity can be achieved through harsher requantization to lower precision words.
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Figure 2.11: Block diagram of the error feedback Σ∆M.

In [77] and [6], fast and efficient digital filters are presented. These publi-

cations present two slightly different variations on sigma-delta filtering. In the

first case the filter coefficients are modulated into a single-bit format. As a

result, the input signal must be interpolated and zero-padded to R times the

sampling frequency. The block diagram of this filter is shown in Fig.(2.12).

The decoder for this filter is used to reconstruct the signal by resampling to

the Nyquist rate and filtering out the quantization noise. As discussed in [83],

the use of two cascaded comb filters makes for simple implementation whilst

removing any alias introduced into the system from the FIR filter. A block

diagram of the decoder used is shown in Fig.(2.13).

The second structure that was proposed in [77] and [6] is shown in Fig.(2.14).

This structure makes use of sigma-delta modulation of the input signal. No

interpolation is required in this setup as the signal will be oversampled at the

input of the modulator as the signal has already passed through a Σ∆M.

To perform filtering, this structure uses a zero-padded FIR filter with full

precision filter coefficients. The filter is zero-padded R times to match the

oversampling ratio of the Σ∆M. This eliminates many taps from the filtering
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Figure 2.12: Block diagram of the FIR filter with Σ∆ modulated filter coefficients.
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Figure 2.13: Block diagram of the decoder used in FIR filter with Σ∆ modulated
filter coefficients and with Σ∆ modulated input signal.

operation, however, R aliases are generated from the FIR filter. As discussed

earlier, the cascaded comb filters and the baseband filter effectively work to-

gether to remove these aliases and quantization noise. The outputs of this

decoder and the FIR filters in these schemes are in a multi-bit format.

These publications (i.e.[77] and [6]) also discuss the use of a fully sigma-

delta-encoded FIR filter. In this instance both the input signal and the filter

coefficients are modulated into single-bit format. A similar structure as in

Fig.(2.12) was utilized except that the interpolater was replaced with a sigma-

delta modulator. This structure was found to further reduce the complexity

of the filter.

Finally, in [6] ternary modulators were used in Σ∆M’s, where an extra
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Figure 2.14: Block diagram of the FIR filter with Σ∆ modulated input signal.

symbol is added to the filters and input signals alphabets. This was found

to improve the stopband attenuation of the filter and also the dynamic range

of the Σ∆M. These works show a great promise; in particular, the benefit of

ternary encoded filter taps may be useful. The use of a decoder though, is not

conducive of single-bit processing because it produces a multi-bit output that

requires complex hardware to process.

A few remaining efficient and fast filter implementations use modified quan-

tizers within sigma-delta structures or modified sigma-delta structures to en-

code the filter coefficients into varying formats.

In [11], a look ahead decision feedback (LADF) sigma-delta architecture

is used to encode the filter coefficients into a single-bit format. The authors

found that cascaded Σ∆M architectures provide overall lower quantization

noise than LADF, but argue that the LADF structure has far more simpler

and less complex implementation and provides lower quantization noise than

other sigma-delta architectures. Therefore, it is desirable for filter coefficient

encoding. However, the LADF architecture and quantizer are a great deal

more complex than simple single-bit quantizers and there associated Σ∆M



Chapter 2. Literature Review 31

structures.

The last group of fast and efficient filters use canonic signed digit (CSD)

quantizers. In [84] and [85], CSD or singed powers of two were used as the

output of a quantization element within a sigma-delta modulator. The CSD

output obtained from the Σ∆M can be used as FIR filter coefficients. In

this case the multiplication operations become simple shifts. Another similar

scheme, however, more promising, is in [86] which uses a slightly more complex

system but essentially the same technique.

2.3.2 Single-Bit Filtering Techniques

As the name suggests, single-bit filters produce single-bit outputs. Despite the

large number of publications on filtering methods that involve Σ∆M’s, only a

few (e.g., [87, 88]) of these publications involve the development of a single-bit

output. In this section we introduce and describe the techniques that have

been used to filter whilst maintaining a single-bit output.

In all publications on single-bit filtering, the authors have only found one

method for single-bit FIR filtering [78, 82] and one method for single-bit IIR

filtering [89, 90].

The single-bit FIR filtering technique is similar to that in [77] and [6].

However, the decoder in [6] has been replaced by a Σ∆M that has a lowpass

signal transfer function. The single-bit FIR filter as proposed in [78] and [82]

is shown in Fig.(2.15).

In this method the filter input is assumed to be in a single-bit format,

while full precision filter coefficients are generated at the Nyquist rate. This

newly generated impulse response is then interpolated R times, where R is

the oversampling ratio of the input signal, via zero-interleaving. This zero-

interleaving interpolation introduces R aliases that in previous works were

removed by a decoder containing a cascade of comb filters and a baseband

filter.

In the single-bit works of [78] and [82], a Σ∆M is utilized in place of the
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Figure 2.15: Block diagram of the single-bit FIR filter.

comb and baseband filters. This Σ∆M does two things: firstly, the Σ∆M used

has a lowpass signal transfer function that is capable of removing the aliases

created by the zero-interleaving process, secondly, the Σ∆M remodulates the

multi-bit output signal from the FIR filter back into the single-bit domain.

This structure is claimed to be more efficient in silicon resources that a

PCM digital filter up to about 80 taps. The structure still has the complexity

of a full precision filter coefficients, this can also increase the word length of

the FIR filter output.

The remodulation Σ∆M complexity is discussed by the same authors in

[91]. Digital Σ∆M that have lowpass responses are typically not easy to find in

the literature. Hence, the authors created their own digital Σ∆M that could be

used in the single-bit filter. This digital Σ∆M has a fourth-order architecture

and various powers of two multiplications. In [91] even more complex lowpass

modulators are presented for the single-bit filter.

The final structure that we look at in this survey is a single-bit IIR filter,

first presented in [89, 90]. In these works IIR filters were used to remodulate

internal filter states to the single-bit format before multiplication operations
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take place. This greatly simplifies the multiplication operation. The structure

of the first order IIR filter is shown in Fig.(2.16).
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Figure 2.16: Block diagram of the first order single-bit IIR filter.

Originally, the integrator (accumulator) within the feed-forward loop was

not present in the system. The Σ∆M is acting as a unit-delay element, hence,

the system is a basic first-order recursive filter. However, the system was found

to produce only noise in this configuration. The addition of the integrator, as

shown in Fig.(2.16), reduces the quantization noise gain in the system while

maintaining the same STF and NTF [89, 90].

This system was not further studied by its creators as its spectral shaping

capabilities are rather limited and the stopband attenuation is poor. Instead,

a new structure of IIR filter was required, a structure that could provide better

spectral shaping abilities at high oversampling ratios (OSR’s). This was found

in the form of a quasi orthonormal state-space structure by the same authors

as outlined in [92].

This quasi orthonormal state space IIR architecture was shown to have

good filtering abilities with good stopband attenuations. The downside of this

structure is that it requires N Σ∆M for an N th-order IIR filter and the structure

becomes very complex as the number of Σ∆M increases. This proliferation of

Σ∆M only adds to the quantization noise in the band of interest and makes

any stability analysis very difficult [89].
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2.4 Summary

A brief literature survey is conducted in this chapter on the single-bit and

ternary digital filtering. One of the recent trends in DSP systems is to re-

place the conventional multi-bit PCM systems with short-word length (usu-

ally ternary or single-bit) counterparts. Short-word length filtering techniques

inevitably include a Σ∆ modulation at some of their stages. The main fea-

tures of Σ∆M are presented and discussed. Unfortunately, Σ∆ modulators

are inherently non-linear structures and suffer from many intriguing and unre-

solved problems. This is mainly due to the harsh quantization process at their

outputs.

In this chapter, an emphasis has been made on these drawbacks, especially,

the limit cycle phenomenon and stability. Despite the large body of work that

has already been done, neither of these topics is well-understood and till now

cannot be put in a closed-form. On the other hand (and more importantly),

the LMS-like adaptivity in short-word length systems is an unresolved issue.

In fact, the adaptivity is the major reason behind the abortion of the attempts

to present the single-bit filtering techniques as an alternative to the existing

multi-bit ones.

Our task is quite challenging, but this will not forbid us from trying inno-

vative approaches and algorithms to tackle these problems.



Chapter 3
Single-Bit Ternary Filtering Using
Sigma-Delta Modulation

3.1 Introduction

Recently a number of techniques for single-bit processing of Σ∆M single-bit

streams have been presented [6, 90, 78]. In [78], the author makes use of a

fourth-order Σ∆M and a zero-interleaved multi-bit FIR filter. However, this is

not as efficient as the Σ∆M based IIR filter in [90]. The latter technique needs

only multiplexors, without the parallel multi-bit multipliers that are required

by the former technique. On the other hand, the IIR based filter suffers from

the disadvantages that the phase is no longer linear, and that the filter is much

more vulnerable to coefficient quantization errors than standard FIR filters. To

alleviate problems due to the IIR filter coefficient quantization it is proposed

in [90] that higher order IIR filters be implemented with quasi-orthonormal

structures. These structures require N Σ∆Ms if an N th-order IIR filter is to

be realized. This proliferation of Σ∆Ms greatly reduces the implementation

efficiency. In addition, increasing the number of modulators adds to the in-

band noise in these structures because, the modulators are the main source of

noise in these filters.

35
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3.2 Ternary FIR Filter

The ternary filter is a FIR filter with ternary taps (i.e., +1, -1, or 0). The

ternary nature of the taps allows a simple implementation of the FIR filter.

This filter is extremely efficient when the input signal to the filter is in single-

bit format; each multiplication in the FIR filtering operation can be then

implemented in hardware with either a couple of logic gates or a very simple

look-up table [6]. The structure of the ternary filter is shown in Figure 3.1.

   x(k)  z−1

   1

 z−1

  −1

 z−1

   0   −1

 z−1

   1

 z−1

   0   −1

   Summation

    y(k)

   Legend:    Multi−Bit

   Single−Bit

Figure 3.1: Block diagram of a ternary FIR filter.

The FIR filter output y(k) can be described by a convolution of the ternary

taps hi and the input signal x(k). If M is the order of the filter, the output of

the filter is:

y(k) =
M∑
i=0

hixk−i, hi ∈ {1, 0,−1} (3.1)

The tap values are generated via Σ∆ modulation of a target impulse re-

sponse [11, 77, 6], or by using optimization techniques discussed in [9] and [5].

These various methods have their advantages and disadvantageous. Through-

out this thesis, it will be assumed that Σ∆ modulation is adopted.

The first step in generation of ternary encoded taps is to generate a tar-
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get impulse response. The target impulse response should have a low-pass

frequency response. Standard FIR coefficient techniques such as the Remez

exchange method [19, 96] can be used to attain such an impulse response.

Before a target impulse response is encoded to a ternary format, it must be

scaled so that the maximum input to the Σ∆M is operating at its maximum

signal-to-quantization-noise ratio. This scaling produces a magnification of the

input signal, but this magnification can easily be removed, as will be discussed

later.

The digital Σ∆M used to generate the ternary filter taps must meet two

criteria. Firstly, a ternary quantizer is required to generate a tri-level output;

this has the advantage of higher signal-to-noise ratio (SNR) than the common

single-bit quantizer [6]. The second criteria is that the Σ∆M have a flat signal

frequency response over the bandwidth fB of the signal. That is, the Σ∆M

should not unduly modify the shape of the impulse response; it should only

add quantization noise which is largely confined to the out-of-band region.

The ternary filter requires operation at an oversampled rate (OSR), a re-

quirement that will be met since the input signal is assumed to be a Σ∆-

modulated bit-stream. The structure of the typical second order Σ∆M which

can be used to encode the ternary taps is shown in Figure 3.2.

 x ( k )

  _

  +

  z−1
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  +

  z−1

 u(k)

 sgn [ ⋅]    y(k)

   Legend:    Multi−Bit

   Single−Bit

Figure 3.2: Block diagram of the 2nd-order Σ∆ modulator.

The z-domain analysis of the linear system model, the output of the Σ∆M

shown in Figure 3.2 is given by:
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Y (z) = X(z)z−1 + Q(z)(1− z−1)2 (3.2)

where X(z) represents the target impulse response and Q(z) represents the

quantization noise transfer functions. The noise shaping effect of the Σ∆M is

evident from the presence of the filtering term, (1− z−1)2, acting on the noise

term, Q(z).The frequency response of the above Σ∆M is given by:

HΣ∆T (ejΩ) = X(ejΩ)e−jΩ + Q(ejΩ)(1− e−jΩ)2 (3.3)

where Ω = 2π f
fs

is the normalized radian frequency.

One advantage of a low-bit resolution system is that the coefficient quan-

tization noise falls in the same spectral region outside fB as the input signal

quantization noise and the remodulating filter quantization noise.
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    β
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  _

  +

  z−1

   Σ ∆
   u(k)

   y(k)

        α

   Legend:    Multi−Bit

   Single−Bit

Figure 3.3: Block diagram of the digital Σ∆ FIR-like bit-stream filter proposed in
[4].

The ternary FIR filter suffers from two disadvantages. It still contains

some high frequency noise due to the coarse quantization of both the impulse

response and the input signal. Second it also produces a multi-bit output.

Such outputs are not as conducive to efficient hardware processing as single-

bit output. To put the output in single-bit format, and to reduce some of the
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high frequency noise, a recursive remodulating filter is used as shown in Figure

3.3 [93].

The tasks of remodulating the output of the ternary filter and reducing the

high frequency noise cannot by achieved efficiently by the using conventional

digital Σ∆M. These modulators generally have an all-pass signal frequency

response, hence these modulators may be vulnerable to stability problems

caused by high frequency components at the input. This is due to the fact that

the high frequency energy components increase the quantizers input variance.

As a result, the AC loop gain and stability margin may be reduced [78]. To

overcome this difficulty, a structure with a low-pass signal transfer function

and a single-bit output are required.

In [90], several remodulating structures are proposed. These structures

contain an IIR filter with embedded Σ∆M. The simplest such a recursive filter

has a first-order IIR structure. The digital Σ∆M used in this filter must only

introduce a single delay throughout the system. This arises because the Σ∆M

is used as a delay element in the IIR filter, and as such this limits the selection

of Σ∆M’s. The best choice of Σ∆M should provide good noise shaping at

low OSRs. The requirement for a relatively low OSR stems from the fact

that, as the OSR increases, the number of ternary taps (i.e., the order of

the FIR ternary filter) should be increased to maintain the same frequency

response. Hence, a second-order multiple feedback Σ∆M is suited to the task

of re-modulation in the IIR Σ∆M filter.

Figure 3.2 shows a second-order Σ∆M used in this filter. This Σ∆M has the

same structure as the modulator used to encode the impulse response except

that it utilizes a single-bit quantizer. The transfer function of the IIR Σ∆

filter is given below:

HIIR(z) = HIIRS(z) + HIIRN(z) (3.4)

where HIIRS is:
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HIIRS(z) =
βz−1

1− (1− α)z−1
(3.5)

and HIIRN is:

HIIRN(z) =
(1− z−1)3

1− (1− α)z−1
(3.6)

Note that HIIRS and HIIRN represent the signal and noise transfer functions

respectively.

The IIR filter coefficient α was set so as to give the transfer function

HIIRs(z) a cut-off frequency corresponding to the desired cut-off frequency

of the system. The coefficient β is a gain parameter and should be set so that

the overall filtering system has a gain of one. Recall that a ternary filter has

a gain factor due to the scaling of the impulse response before modulation.

This method of determining the IIR filter coefficients is extremely simple. A

more accurate (but more complex) method of obtaining the coefficients of the

ternary and the IIR filters can be found by optimization (in a least-square

sense) to closely approximate a desired frequency response (see [5, 9]).

To determine the spectral filtering abilities of the single-bit IIR filter, a plot

at various feedback gains were simulated. A white Gaussian noise signal was

input to the first order single-bit IIR filter. The resulting data at the filters

output was recorded. A 8192 point fast Fourier transform (FFT) of this output

was performed and recorded for three gain "α" values of 0.1, 0.01 and 0.001.

An estimate of the filters frequency response was calculated by taking the

average of the FFT’s for 1000 realizations. The results are shown in Fig.(3.4).

Whereas Fig.(3.5) illustrates the theoretical filter frequency responses for the

same values of α (i.e., 0.1, 0.01, and 0.001).

As expected, the stopband attenuations deviate from the theoretical re-

sponse. This is due to the coarse quantization introduced by the double loop

Σ∆M. The stopband attenuation is reduced in the simulated results because it

becomes swamped by the shaped quantization noise. This reduction in stop-

band attenuation can also be seen as the filter passband is increased.
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Figure 3.4: Simulated frequency response of the single-bit IIR filter for different
values of α = 0.1, 0.01, and 0.001.

The only parameter that can be changed in the filtering system is the feed-

back gain parameter α. This parameter controls the filters passband. Larger

values of this gain parameter provide larger passbands. However, the stop-

band attenuation is reduced as the filters passband is increased; this is again

caused by the shaped quantization noise from the Σ∆M swamping the filters

transition and stop bands.

3.3 Summary

In this chapter a bit-stream filtering structure is introduced. It consists of a

ternary FIR filter cascaded with an IIR Σ∆M structure. This structure is be-

ing the basis of many single-bit DSP applications. Since many of the ternary

filter tap values are zero and each non-zero tap requires only very simple multi-

plication hardware, the system is very resource efficient and fast as no complex

math operations are required. Performance enhancement is possible through
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Figure 3.5: Theoretical frequency response of the single-bit IIR filter with α = 0.1,
0,01, and 0.001.

increasing the oversampling ratio, however, this requires increasing the num-

ber of taps and the sampling rate of the system, hence, there is an inherent

trade-off between hardware efficiency and performance.



Chapter 4
DSP Applications Using Single-Bit
Filtering: Comb Filtering

4.1 Introduction

Comb filters found a wide range of applications such as the suppression of

clutter from fixed objects in moving-target indicator radars and the rejection

of power-line harmonics in the promising technology of using the power line

communication (PLC) as a third pipe to deliver broadband access to home and

business. Comb filters are usually constructed using multi-bit architectures.

Single-bit Σ∆modulation have recently received increased attention be-

cause of their good performances and efficient VLSI implementation.

In this chapter, two structures for single-bit digital comb filtering are pro-

posed. The first structure is based on ternary filtering, however, the output of

the filter is in single-bit format. The second structure is based on second-order

sigma-delta modulation (Σ∆M).

A design method based on the standard Σ∆ topology has been then pre-

sented and used to construct efficient filters in the sense of improved quan-

tization noise reduction. This is done by introducing a gain parameters in

the feedback loop, i.e., introducing poles in the noise transfer function. This

method is used to design a Σ∆-based comb filter. All of the presented filtering

structures contain no multi-bit multiplication, making the comb filters efficient

for implementation. These filters can be utilized in a wide range of promising

43
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applications.
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Figure 4.1: Block diagram of the ternary Σ∆ filter.

4.2 A Proposed Ternary-Sigma-Delta Comb Fil-

ter

The single-bit comb filter is designed according to the configuration shown

in Fig.(4.1), which can accept both multi-bit and single-bit input formats.

The ternary filter is an FIR filter with ternary taps (i.e., +1, 0, -1) [9]. This

ternary format allows a simple implementation of the FIR filter; it is most

efficient when the input signal is in single-bit format. The structure of the

ternary filter is shown in Fig.(4.2). The ternary filter output y(k) is given by

the convolution of ternary taps {h(i)} (or simply {hi}) and the input signal

{x(k)} as follows:

y(k) =
M∑
i=0

hixk−i (4.1)

where M is the order of the filter. The tap values are generated via Σ∆ mod-

ulation of a target impulse response. The digital Σ∆M used for this purpose

must have tri-level output, and must have a flat signal frequency response

over the bandwidth of interest [87]. The ternary filter requires operation at
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Figure 4.2: Block diagram of a ternary FIR filter.
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Figure 4.3: Block diagram of a second-order Σ∆M with ternary quantizer QT[.].

an oversampled rate (OSR), a requirement that will be met since the input

signal is assumed here to be a Σ∆ modulated bit-stream. The structure of

the typical second-order Σ∆M which can be used to encode the ternary taps

is shown in Fig.(4.3). To analyze the performance of Σ∆M, an approximate

quantization noise model, referred to as the input-independent additive white

noise approximation, is normally used. In this linear model, the quantization

noise q(n) is assumed to be uniformly distributed between −δ and δ (where

δ is the quantization step-size) in the band of interest (−fs/2 ≤ f ≤ fs/2).

The larger the OSR is, the better this assumption will be. Theoretically, in
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second-order modulator, each doubling of sampling rate achieves a signal-to-

quantization-noise ratio (SQNR) improvement of about 15 dB [88].

The z-domain transfer function of this Σ∆M model is given by:

H(z) = G(z)z−1 + Q(z)(1− z−1)2 (4.2)

where G(z) and Q(z) represent the signal and the quantization noise transfer

functions, respectively. The noise shaping filter, (1 − z−1)2, attenuates the

quantization noise in the signal band and amplifies it outside the signal band

(higher frequencies). These high-frequency noise components can be elimi-

nated by a subsequent digital filtering that also decimates the sample rate.

From (4.2), the frequency response is given by:

H(ejΩ) = G(ejΩ)e−jΩ + E(ejΩ)(1− e−jΩ)2 (4.3)

where Ω = 2πf/fs is the normalized radian frequency.

The response of the overall system Hov will be the combination of the

frequency response of the ternary filter HT (ejΩ) and the frequency response of

the IIR-Σ∆M filter HIIR(ejΩ) as follows [93]:

Hov(e
jΩ) = HT (ejΩ) ·HIIR(ejΩ). (4.4)

From (4.3) and 4.4 we get:

Hov(e
jΩ) = HT (ejΩ).[HIIRS(e

jΩ) + HIIRN(ejΩ)] (4.5)

where HIIRS(e
jΩ) and HIIRN(ejΩ) are the signal and noise parts of HIIR(ejΩ),

respectively. Now Hov(e
jΩ) can be expressed as follows:

Hov(e
jΩ) =

G(ejΩ) K(ejΩ)

D(ejΩ)
+

E(ejΩ) P (ejΩ)

D(ejΩ)
(4.6)

where
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K(ejΩ) = e−jΩ + e−2jΩ(β − 3) + 3e−3jΩ − e−4jΩ (4.7)

D(ejΩ) = 1− (1− α)e−jΩ (4.8)

P (ejΩ) = e−jΩ(β − 5) + e−2jΩ(10− 2β) +

e−3jΩ(β − 10) + 5e−4jΩ − e−5jΩ (4.9)

noting that α and β are the multiplication constants shown in Fig.(4.1).

Experimental results in analog-to-digital conversion (ADC) indicate that

the signal-to-quantization-noise ratio (SQNR) can be improved by using a

ternary quantizer in the feed-back loop. The extent of improvement depends

on the quantizer characteristics, the thresholds, and the output level [94].

The IIR-based filter, however, suffers from the disadvantages that the phase

is no longer linear, and that the filter is more vulnerable to coefficient quanti-

zation errors than standard FIR filter.

4.2.1 Design and Simulation of Ternary Sigma-Delta Comb

Filter

The steps to design a ternary filter can be summarized as follows [95]:

1. Generate the FIR filter coefficients that satisfy the required specifica-

tions using Remez Exchange algorithm.

2. Interpolate the FIR filter coefficients by a factor of OSR (to oversample

the target impulse response to the desired OSR). Several techniques

can be used, such as spline, FFT, linear, and cubic. Spline method is

adopted here.

3. Ternary encode the filter coefficients, where a set of ternary-valued co-

efficients are generated from the interpolated filter coefficients.

4. Upsample the input signal by a factor of OSR.

5. Remodulate the output of the ternary filter to single-bit format using

Σ∆ M.
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The ternary filter requires operation at an oversampled rate (OSR), and

this will be met as the input signal is assumed to be a Σ∆ modulated bit-

stream. The number of taps, M , is usually the same as the upsampling ratio,

OSR, times the Nyquist rate filter order. However, a higher value of M could

also be selected at the expense of increasing the delay of the filter, which

is inversely related to the bandwidth. If M is too large, the high frequency

contents of the signal will be attenuated.
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Figure 4.4: Frequency response of the ternary filter in the proposed comb structure.

In our simulation, the proposed single-bit comb filter is designed, as an

example, to attenuate the effect of the 10th-order harmonics in narrow-band

signals transmitted over power-lines. A direct form FIR filter is designed for

this purpose and used as a target impulse response.

Fig.(4.4) shows the frequency response of the FIR filter with full precision

and the oversampled ternary precision coefficients (OSR=128). The simulated

frequency response of the single-bit comb filter is shown in Fig.(4.5). The gain

factor β is out of our interest here and is assumed to be constant equal to

0.001. The phase response of the filter system can be seen in Fig.(4.6). The

non-linear effect of the Σ∆M stage on the phase performance of the overall

combination is apparent.
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Figure 4.5: Frequency Response of the proposed ternary-Σ∆ single-bit comb filter
with OSR = 128.
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Figure 4.6: Phase response of the proposed single-bit ternary-Σ∆ comb filter.
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4.3 A Proposed Sigma-Delta Comb Filter

A comb filter can be created by taking an FIR filter with the following system

function [96]

H(z) =
M∑

k=0

h(k)z−k (4.10)

then replacing z by zp, where p is a positive integer. Thus, the new FIR filter

has a system function as follows:

Hc(z) =
M∑

k=0

h(k)z−kp. (4.11)

If the frequency response of the original FIR filter is H(ejω), the frequency

response of the new FIR in (4.11) is given by

Hc(e
jω) =

M∑

k=0

h(k)z−jkpω (4.12)

i.e.,

Hc(e
jω) = H(ejpω). (4.13)

Consequently, the frequency response Hc(e
jω) is simply p-order repetition

of H(ejω) in the range 0 ≤ ω ≤ 2π. Hence, if we replace z−1 by z−M directly

in the second-order Σ∆M shown in the Fig. (4.7), the transfer function of the

corresponding discrete-time linear model can be given as follows [97]

H(z) = X(z) + Q(z)(1− z−M)2. (4.14)

The noise-shaping filter, (1 − z−M)2, is a comb filter with notches at fre-

quencies 2πk/M , where k = 0, 1, 2, · · · ,M − 1. This filter can be used for any

signal that has narrow-band frequency components in these locations. Fig.

(4.8) shows the signal transfer function, X(z), and the noise transfer function,

Q(z), according to (4.14).

The simulated frequency response of this structure (using the same sam-
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Figure 4.7: Block diagram of the proposed Σ∆M structure.
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Figure 4.9: Frequency Response of the proposed Σ∆ single-bit comb filter.

pling rate and design requirements as in the ternary-Σ∆ structure) is shown

in Fig. (4.9). Fig. (4.10) depicts the phase response of this structure.

The proposed structures lend themselves well in broad-band applications

such as PLC, as they are efficient in hardware implementation with high per-

formance.

From a hardware viewpoint, both of the proposed structures for digital

comb filtering have the advantage of simple implementation, as there are no

multi-bit addition or multiplication operations in their structure, however, the

second structure is even simpler to construct.

4.4 A Proposed Design Approach

In this section, an alternative design method is introduced to design Σ∆-

based comb filter with optimized noise-shaping effect. The main idea behind

this technique is to introduce poles into the noise transfer function in such

away to improve SQNR. It should be emphasized that the proposed method

is a general approach and can be used to design various single-bit Σ∆-based

system as well.

Single-bit processing has been attracting interest due to the promise of ef-
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Figure 4.10: Phase Response of the proposed Σ∆ single-bit comb filter.

ficient and simple implementation. Sigma-delta modulators (Σ∆M’s) are the

main single-bit modulators or analog-to-digital converters (ADC’s). However,

a drawback of the Σ∆M system is that high resolution can only be obtained

for low to medium bandwidths [2]. This is so because the oversampling ratio

(OSR) should be high for better resolution (might be several orders of magni-

tude higher than the Nyquist rate). Hence, It is difficult to handle broadband

applications, such as broadband power-line communication (BPC), using an

ordinary Σ∆M.

The signal-to-quantization-noise (SQNR) can be improved by either in-

creasing the order of the Σ∆M or increasing the OSR. Therefore, one approach

to alleviate the low bandwidth bottleneck is to use a higher order Σ∆M with

a reduced OSR. However, this will introduce the problem of unpredictable

instability that is seemingly inherent in such high-order Σ∆ systems [98].

When designing a Σ∆M, the noise-transfer function (NTF) should be given

significant consideration. In general, it is designed as a high-pass function

so that the quantization noise can be moved to higher frequency bands. In

general, NTF can be classified into two classes:

1. Pure differentiation of order M : In this case the noise-shaping function

(noise transfer function) can be expressed as follows:
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Figure 4.11: Block diagram of a second-order Σ∆M.

N(z) = (1− z−1)M . (4.15)

As the order M increases, more noise power will move to high frequency

bands, hence, noise in the low frequency bands will be reduce and,

consequently, SNQR in the baseband is increased. Moreover, SQNR

can be improved by increasing OSR. Due to the characteristics of this

type of NTF, its usage is usually limited in mid and low bandwidth

applications such as audio applications.

2. non-monotonic transfer function: Pure differentiation response can be

modified by introducing poles into NTF as follows:

N(z) =
(z − 1)M

D(z)
. (4.16)

In this case the NTF is an M th-order polynomial with a leading coef-

ficient of 1. It is simply a high-pass function, where the coefficients of

the Σ∆M can be designed using analog filter techniques.
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4.4.1 Theory and Design

The design of single-bit Σ∆M is a non-trivial task. Many works in the literature

have reported methods to estimate the performance of Σ∆M analytically [54].

However, these methods only approximate the actual behavior of Σ∆M.

To characterize the modulator it is common to look at the STF and NTF. The

STF describes how the modulator alters the original input signal spectrum

and it is ideally, STF is unity. In a similar manner the NTF describes how

the modulator shapes noise away from the center frequency, fc. For a low-pass

modulator, fc = 0 Hz (DC), and for a band-pass modulator fc is often equal

to fs/4 for simpler design.

The NTF is the main design task which determines the amount of baseband

noise shaping performed by the modulator.

Fig.(4.11) shows a general second-order Σ∆M which contains two M th-

order FIR filters (can be assumed of different order as well)in its feedback

loop to tune its response. Based on the linear model of Σ∆M, the z-transfer

function of the above system can be found as follows:

Y (z) =
X(z) + Q(z)

H1(z)H2(z)

D(z)
(4.17)

where D(z) is given by:

D(z) = A(z) + B(z)
1

H1(z)
+

1

H1(z)H2(z)
(4.18)

with A(z) and B(z) being the transfer functions of the FIR filters (whose

coefficients are {ai|i = 0, · · · , M} and {bi|i = 0, · · · ,M} as follows:

A(z) =
M∑
i=0

aiz
−i (4.19)

B(z) =
M∑
i=0

biz
−i. (4.20)
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From above the signal and noise transfer functions can be expressed re-

spectively as follows:

S(z) =
1

D(z)
(4.21)

N(z) =
1

H1(z)H2(z)D(z)
. (4.22)

Now, depending on the corresponding topology required for the standard

second-order Σ∆M, the transfer functions H1(z) and H2(z) can take any of

the following forms:

H1(z) = H2(z) =
z−1

1− z−1
(4.23)

H1(z) = H2(z) =
1

1− z−1
(4.24)

H1(z) =
1

1− z−1
; H2(z) =

z−1

1− z−1
. (4.25)

These topologies were found to have identical characteristics regarding

noise shaping [99]. The only difference among them is the delay factor (z−1)

and the scaling gain. For instance, if we adopt the first form, D(z) will be

given as follows [25]:

D(z) = 1 + (ao − 2)z−1 + (1− bo + b1 + ao)z
−2 + G(z) (4.26)

where G(z) is given by:

G(z) =
M−1∑
i=1

bi+1z
−i−2 +

M∑
i=1

(ai − bi)z
−i−2. (4.27)

For ao = 1 and bo = 2, the structure will be reduced to the standard

Σ∆ topology, i.e., D(z) = 1, which implies two poles at z = 0. For coefficient

values other than ao = 1 and bo = 2, D(z) will be a second-order polynomial in

z−1, providing M equations with 2M unknown coefficients. These coefficients

can be found using different approaches [100]. However, D(z) will not increase
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the order of noise shaping in the transfer function of the Σ∆M, but it may

improve the stability of the system if it is well-designed.

4.4.2 The Proposed Structure

To improve system performance, D(z) should be designed as an FIR low-pass

filter to reduce the height of voltage steps at the output of the integrators [25],

i.e., the input signal to D(z) should not be attenuated at low frequency (when

z → 1). If we assume D(z) as an (M + 1)st-order FIR filter with coefficients

{di|i = 0, · · · ,M} as follows:

D(z) =
M∑
i=0

diz
−i, (4.28)

Then, (in a semi-digital implementation, where the coefficients are imple-

mented by analog means) a comb filter can be produced if the coefficients

are equal, i.e., d0 = d1 = · · · = dM = 1
M+1

. This means that we impose the

following condition on the coefficients of D(z):

M∑
i=0

di = 1. (4.29)

In this section, our main intention is to design a single-bit digital comb

filter for the purpose of efficient hardware implementation .

Now, the next step is to select proper functions to represent H1(z) and H2(z).

As the z-transfer function of the comb filter is basically composed of equally

spaced zeros around the unit circle circumference, then refereing to eqn.4.17

we should chose H1(z) and H2(z) such that they match the required frequency

response of the NTF as follows:

H1(z) = H2(z) =
1

(1− z−M)
. (4.30)

We choose H1(z) and H2(z) to have the same transfer function for conve-
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Figure 4.12: Block diagram of the proposed single-bit Σ∆ based digital comb filter.

nience but not necessarily. Then, the output of the Σ∆M will be as follows:

Y (z) =
X(z) + Q(z)(1− z−M)2

D(z)
(4.31)

where D(z) is now given by:

D(z) = A(z) + B(z)(1− z−M) + (1− z−M)2 (4.32)

with A(z) and B(z) as defined earlier. For simplicity, we propose A(z) = B(z),

but of course this is not the case always, it depends on the application to be

achieved. Therefore, if
∑M

i=0 di = 1 as we proposed earlier, then after a few

arithmetical manipulations we can find A(z) as follows:

A(z) = B(z) = z−M . (4.33)

This implies that in this case both
∑M

i=0 ai = 1 and
∑M

i=0 bi = 1 and these

functions are represented by a pure M -delay line.

Now, we re-design D(z) such that it introduces some poles into the noise

transfer function to comply with the non-monotonic noise transfer function

type mentioned above (item-2). This can be carried out simply by putting

A(z) = B(z) = 1 as is the case with a standard Σ∆M, where D(z) will be
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given by:

D(z) = 3− z−M + z−2M . (4.34)

In this case D(z) will introduce 2M poles into the NTF. These poles are

distributed uniformly as conjugate pairs around a circle inside the unit circle

on the z-plane. The radius r of this circle is r = 0.577. Therefore, it is expected

that D(z) will contribute to shaping the noise as well as to changing the STF

in such away that converts the frequency response into M -period resonator.

The designed single-bit digital comb filter is shown in Fig.(4.12) which

is identical to that previously designed structure in Section 4.2. While the

structure of the designed M-period resonator is shown in Fig.(4.13)

Fig.(4.8) shows the same signal and noise frequency transfer functions

STF(ejΩ) and NTF(ejΩ) obtained from equations (4.31) and (4.33) with M =

10 as compared to those obtained from equations (4.31) and (4.34) with M =

10 which can be seen at Fig.(4.14). From these two figures we can expect the

role that the NTF can play in tuning the Σ∆ system response.

4.4.3 Simulation and Discussion

To verify the above analytic results, the proposed single-bit comb filter and

multi-period resonator are simulated using MATLAB. To avoid redundancy,

the frequency response of the single-bit Σ∆M based comb filter for M = 10

and OSR, R = 64 can be seen in Fig.(4.9).

Fig.(4.15) depicts the frequency response of the M -period single-bit res-

onator for M = 10 and OSR, R = 64.

The signal-to-quantization-noise ratio (SQNR) is an essential performance

measure for Σ∆M. The in-band SQNR is given in [101] as follows:

SQNRin−band =

2

∫ 0.5

0

|X(ej2πv)|2dv

∫ 1/(2 R)

−1/(2 R)

|N(ej2πv)|2dv

(4.35)
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where X(ej2πv) is the Forier transform of the (oversampled) input signal x(i).

The SQNR can be estimated empirically. To do this, first the input signal

spectrum must be removed from the output and replaced by interpolating

the end points. Second the actual noise transfer function should be found

to evaluate the SQNR as given by the expression above using Hannining-

windowed FFT’s. Sinusoidal inputs are used in this test. The input signal

spectrum is chosen such that its spectral energy lies within a single FFT bin.

Fig.(4.16) shows the simulated SQNR as a function of OSR for sinusoidal

inputs. As expected [80], doubling the sampling frequency reduces the noise

power, theoretically, by about 15 dB, of which 3 dB is due to the reduction

in power spectral density of the quantization noise, with the additional 12 dB

due to the action of the NTF.

This Σ∆M topology lends itself well to broadband frequency applications,

such as Broad-Band Power-line Communication (BPL). This also suggests that

the proposed single-bit Σ∆ comb filter can be utilized with relatively low OSR

if the input frequency is high. In [97], we noticed that a similar structure has

been proposed for UWB-OFDM applications.

Fig.(4.17) shows the SQNR as a function to the amplitude of the input

signal for different OSRs. It can be seen clearly that the SQNR collapses at

an absolute input level less than 0.3dB. This gives a boundary of the input

dynamic range for stable operation.

4.5 Stability of the Proposed Structures

Linear analysis has been used to model the quantization noise in Σ∆ systems

[6]. Though useful, the linear model is unable to model the system well enough

to predict the stability and performance for a given design. This is due to the

non-linear behavior of the Σ∆ systems. However, attempts to better pre-

dict the behavior of Σ∆M using non-linear analysis techniques have produced

promising results [102]. Initial simulation results showed that the proposed
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structures are stable, however, full analysis based on non-linear analysis will

be handled in chapter 7

The stability of the system is decided by the poles in its transfer function.

The single-bit comb filter does not contain prominent poles since D(z) = 1

implies two trivial poles at the center. Moreover, all zeros lies on the unit

circle. On the other hand, the M -period resonator possesses 2M poles and all

these poles are located inside the unit circle, in addition to the same zeros as

in the NTF of the comb filter.

The stability of the modulator is assessed by looking at the quantizer input

xq(n) Knee plot proposed in [103]. These were used to find which input values

would result in the divergence of the quantizer input towards infinity. From

which we may expect that this Σ∆M comb filter is to be stable as long as the

input signal amplitude is limited by |xq| < 2. Fig.(4.17) reveals this situation.

4.6 Summary

Two structures for single-bit digital comb filtering are proposed and simulated.

In the first structure (Section 4.2), a comb filter is designed based on ternary

filtering such that both the input signal and the target impulse response are

encoded using a Σ∆ modulator. The second structure (Section 4.3) is based on

a second-order Σ∆ modulator. The frequency response obtained in both cases

is very near to the required response of a comb filter. The proposed filters

can be built using simple hardware, and hence they are potentially suitable for

VLSI implementation. They are also suitable for broadband applications such

as power-line communications.

In Section 4.4 a design technique for single-bit systems using a feedback

path filter to tune the response of the Σ∆ modulator was proposed. A single-

bit digital comb filter is designed and its performance is evaluated in terms

of signal-to-quantization noise ratio (SQNR), the dynamic range (input signal

level), and stability. Moreover, we showed that the same design technique can
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be used for other single-bit systems, where we used it to design a multi-period

resonator. It was shown that the proposed filters lend themselves very well to

broadband input signals and can be utilized in emerging technologies such as

the Broad-Band Power-line Communication (BPL).
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Figure 4.13: Block diagram of the designed M-period resonator.
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Figure 4.14: Noise transfer function, NTF(ejΩ) and signal transfer function,
STF(ejΩ) for the designed single-bit M-period resonator
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Chapter 5
DSP Applications Using Single-Bit
Filtering: DC Blocking

5.1 Introduction

Single-bit hardware implementations have found increasing application in au-

dio and other digital signal processing (DSP) systems as single-bit systems

possess very attractive properties as compared to their multi-bit counterparts.

The rising popularity of these single bit implementations is due to i) the fact

that they can shape unwanted quantization noise out of the spectral region of

interest and ii) their hardware resource efficiency (as compared to multi-bit

systems). There are, however, a number of complex design issues associated

with single-bit systems. One of the issues complicating the design is the fact

that Σ∆ modulators (which are critical components in many single bit systems)

deteriorate in performance when they are driven by DC-biased signals. The

DC-bias affects the dynamic range of Σ∆ modulators and enhances unwanted

limit cycles. The overall system stability is thus compromised.

It should be acknowledged that some of these limit cycles do not adversely

affect operation of Σ∆ modulator. These “benign” limit cycles are known as

idle patterns, which usually correspond to frequencies located faraway from

the baseband, and can therefore easily be disturbed by applying an input to

the system [32]. On the other hand, there are other large signal limit cycles

which have steady or diverging amplitudes at frequencies often located near

66
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the baseband. Therefore, it is very difficult, if not impossible, to disturb these

cycles, which are audible in audio applications [43]. Of course, the DC content

can easily be removed from multi-bit signals by using traditional DC cancellers,

i.e., before encoding in single-bit format. Subsequent processing may, however,

re-introduce DC components, and it is often critical to remove these.

Unfortunately, the design in the single-bit domain has been suffering from

two obstacles. First, there are still several unresolved problems such as adap-

tivity and stability. Second, the design itself is not straightforward as in multi-

bit techniques. However, we do expect that, ultimately, these pitfalls would

be tackled in no far future, and the single-bit or at least the short word-length

signal processing (DSP) systems would become very popular.

Several relevant previous works have studied and proposed different single-

bit structures (e.g., [87],[104]). Among the problems that one might face prac-

tically is the development of DC component at various stages in the signal

bitstream. A DC biased bitstream has a highly undesired impact on the per-

formance of the single-bit system, as the DC content bears no information and

enhances unwanted limit cycles (which may in turn affect system stability).

This chapter introduces two different approaches to eliminate DC content

from a Σ∆ modulated bitstream. In the first approach, a single-bit digital

ternary filtering DC-blocker is designed, simulated and evaluated via simula-

tions. The evaluation is performed with respect to the effectiveness of DC

removal and computational complexity.

A novel DC canceller structure is presented in the second approach. Both

the input and the output are assumed to be in single-bit format. The pro-

posed structure contains no multi-bit multipliers and would be very simple to

implemented in Field Programmable Gate Arrays.

Both types of blocker are useful in practice to improve the stability and

dynamic range of single-bit systems. Their performance is tested for different

kinds of input signals including sinusoidal, FM, and AM-FM signals.
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5.2 Σ∆-Ternary DC Blocker: System Design

5.2.1 The Ternary Filtering Stage

The DC blocker proposed in this Section is essentially a “ternary filter”. This

filter is an FIR structure as shown in Fig.(4.2), with coefficients confined to

the ternary set: {-1, 0, +1}.The simplicity of the coefficients means that the

multiplications within the filter can be implemented with great efficiency in

hardware. As the input to the ternary filter is in single-bit format and the

coefficients are in ternary format, each multiplication operation (or scaling)

can be implemented with either a couple of logic gates or a simple look-up

table [104].

There are a number of algorithms which can be used to generate suitable

ternary tap coefficients. Typically one starts with a multi-bit “target” impulse

response designed in a standard fashion (say with the Remez Exchange Al-

gorithm). Then a design procedure is applied so as to obtain a ternary filter

impulse response whose transfer function closely matches that of the target

filter in the spectral band of interest. One can use design procedures based on

dynamic programming, mini-max optimization or Σ∆M of the target impulse

response [9], [12]. In this work, the tap values are designed using Σ∆ mod-

ulation of a target impulse response. The digital Σ∆M used for this purpose

must satisfy two conditions. Firstly, it must have a tri-level output {-1, 0, +1}.

Secondly, the Σ∆ modulator must have a flat signal frequency response over

the bandwidth of interest [4]. This implies that the Σ∆ modulator should not

modify the specifications of the target impulse response in the band of interest.

There are three important points to note about the ternary filter shown in

Fig.(4.2). Firstly, the filter requires operation at an oversampled rate (OSR).

This requirement is not unduly restrictive as the input signal is assumed to

be in single-bit format and to have been generated by a Σ∆ modulator. Such

single-bit signals almost always have a substantial OSR. Secondly, the output

is in multi-bit format. To restore the output to the same single bit format
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as the input, a re-modulator must be applied. The advantage of having a

single bit format for the output is that further processing (including digital to

analog conversion) can be done efficiently. Thirdly, the ternary filter output

has significant noise levels because of the harsh quantization of both the input

signal and the target impulse response. If one uses an appropriate re-modulator

this output noise can be shaped away from the spectral band of interest. An

example of a suitable re-modulator is given in [56].
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Figure 5.1: Frequency response of ideal multi-bit DC blocker for different values of
the gain parameter α=0.5, 0.9, and 0.995.

Ternary filter design: The transfer function of a standard infinite precision

IIR DC-blocking filter is [105]:

H(z) =
1− z−1

(1− αz−1)
(5.1)

DC blocking occurs with the above transfer function by virtue of the zero in

the above transfer function at z = 1 (0 Hz). The pole at z = α controls

the system bandwidth, and therefore the system transit response. Fig.(5.1)

depicts the frequency response based on eq.(5.1) for various values of the gain

parameter α. As α → 1, the notch at DC gets narrower. This may seem ideal,

however, there is a drawback. When α → 1, the impulse response duration

will increase. Fortunately, as the end of the impulse response gets longer, its
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initial amplitude decreases. When α = 1, however, the pole and zero cancel

each other at all frequencies, and hence, the impulse response shrinks to an

impulse and the notch disappears. In practice, therefore, α cannot be made

equal to 1.

A DC blocker can also be realized with an FIR filter. Although these

filters are usually less efficient than IIR filters, they tend to have better phase

response and are less vulnerable to instability [19]. Various different FIR design

techniques can be employed to generate full-precision impulse responses for a

suitable target filter. The resulting filter will have a series of dominant zeros

in the vicinity of the 0 Hz axis in the z-plane. The full-precision target filter

impulse response can then be interpolated by a factor of OSR (using either

zero interlacing/ low-pass filtering or FFT techniques [96])and finally passed

through a Σ∆ modulator. The output from this Σ∆ modulation process is

the sequence of ternary filter coefficients (taps), h(i), i.e., the ternary filter

coefficients (taps), which are the ternary-quantized and encoded version of the

interpolated impulse response. The ternary filter output u(k) is given by the

convolution of the ternary taps h(i) (or simply hi) with the input signal x(k):

u(k) =
m∗OSR∑

i=0

hixk−i (5.2)

where m + 1 is the order of the full-precision filter (i.e., at Nyquist rate).

It is important to realize that the design in the single-bit oversampling

domain is not as straightforward as in the multi-bit domain. For instance,

in our case where a DC blocker is intended to be designed, the problem of

accurate discrimination between the DC content and the time-varying signal

component will arise. This is due to the large oversampling ratio (32 or more)

that practically pushes the time-varying signal spectrum to the vicinity of

0 Hz in the normalized frequency domain. Ultimate care should be given

(by choosing the appropriate filter-order and design approach) to alleviate

strong attenuation and to avoid the possible differentiation of the varying-
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time signal itself by the DC blocker. Consequently, two ternary filter designs

are investigated to allow for performance comparison.

From an efficiency perspective, it is important to design the filter impulse

response to be as short as possible. A number of possible design techniques

are feasible, and two will be compared in this Section. The first method used

will be the well-known Remez Exchange technique. It will be used to generate

a full-precision, linear phase target FIR filter of order m = 21, with coefficient

symmetry b(k) = b(m+1−k). This symmetry will give rise to good hardware

efficiency. The second method used will be the so-called interpolated FIR

(IFIR) approach [86]. The basis of this method is the fact that according to

multi-rate processing theory, oversampling a signal compresses its spectrum.

Hence, instead of directly designing a filter that satisfies the transition band

specifications (i.e., fpass and fstop, as is the case with the Remez technique),

OSR-times-stretched specifications (i.e., OSR∗fpass and OSR∗fstop ) used for

designing a filter for an oversampled signal[86]. Using this approach, the filter

order required to meet the new “stretched band-edges” is much lower than that

designed to meet the original transition bands. A comparison between the two

design techniques terms of filter performance and hardware efficiency will be

conducted in Section 5.2.4.

5.2.2 The Σ∆ Modulator Stage

Spectral analysis of single-bit Σ∆ modulators with DC input has been ad-

dressed extensively, e.g., [106],[87]. It has been shown that when the input is a

steady-state sinusoid (including a 0 Hz sinusoid), the quantization noise is not

white. Rather it is highly colored. By adopting the linear-model approxima-

tion to represent the Σ∆ modulator, the power spectrum output corresponding

to a DC input η is [56]:

Syy(f) = (
1

3
)[2 sin(πf)]2r + η2δ(f) (5.3)
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where f represents the normalized frequency and r is the order of the modu-

lator. The second term on the righthand side of eq. (5.3) represents the input

signal (assumed to be a DC signal here), whereas the first term represents the

quantization noise introduced by the modulator. The above result indicates

that the Σ∆ modulator transfers the original input DC value to its output

(by regulating the rate at which the output pulses occur, attempting to keep

the average output equal to the average input) along with some highly col-

ored quantization noise. This is true as long as the input signal is within the

modulator dynamic range (and hence the system stability is maintained).

5.2.3 The DC Blocker

Our objective is to design a structure to eliminate the DC content in a time-

varying input signal. Fig.(5.2) depicts the proposed structure, firstly utilized

in [87], to carry out this task. The structure consists of a ternary filter stage

cascaded with an IIR-Σ∆ re-modulator stage. The input to this structure,

which is assumed to be a DC-biased sinusoidal signal, is assumed to be in

single-bit format. The re-modulator stage re-encodes the multi-bit output

of the ternary filter to single-bit format. The ternary filter stage consists of

(m + 1) ∗OSR ternary taps.

Fig.(5.3) shows the linear model that represents the second-order Σ∆ mod-

ulator. The z-transform of the ternary filter output YT (z)), is given as:

YT (z) = X(z)z−1 + Q(z)(1− z−1)2 (5.4)

where X(z) and Q(z) represent the z-transform of the signal and quantization

noise, respectively.

From (5.4), the signal and noise frequency spectra can be obtained:

YT (ejΩ) = X(ejΩ)e−jΩ + Q(ejΩ)(1− e−jΩ)2 (5.5)

where Ω = 2πf/fs is the normalized radian frequency.
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The z-domain transfer function of the IIR stage that follows the ternary

filter [see Fig.(5.3)] is given as follows:

HIIR(z) =
bz−1

1− (1− a)z−1
+

(1− z−1)3

1− (1− a)z−1
(5.6)

The output response of the overall system Yov will be the combined responses

of the ternary filter YT (ejΩ) and that of the IIR-Σ∆ modulator filter HIIR(ejΩ):

Yov(e
jΩ) = YT (ejΩ) ·HIIR(ejΩ). (5.7)

From equations 5.6 and 5.7 we get:

Yov(e
jΩ) = YT (ejΩ).[HIIRS(e

jΩ) + HIIRN(ejΩ)] (5.8)

where HIIRS(e
jΩ) = bz−1/[1 − (1 − a)z−1] and HIIRN(ejΩ) = (1 − z−1)3/[1 −

(1− a)z−1] are the signal and noise parts of HIIR(ejΩ), respectively. The noise

shaping filter, HIIRN, attenuates the quantization noise in the signal band and

amplifies it outside the signal band. These high-frequency noise components

can be eliminated by subsequent digital filtering. Once the quantization noise

is filtered the signal can also be decimated.

Now, the overall output response, Yov(e
jΩ), can be expressed as follows:

Yov(e
jΩ) =

X(ejΩ) K(ejΩ)

D(ejΩ)
+

Q(ejΩ) P (ejΩ)

D(ejΩ)
(5.9)

where

K(ejΩ) = e−jΩ + e−2jΩ(b− 2) + e−3jΩ (5.10)

D(ejΩ) = 1− ae−jΩ (5.11)

P (ejΩ) = e−jΩ(b− 4) + e−2jΩ(6− 2b)

+ e−3jΩ(b− 4) + e−4jΩ. (5.12)

Note that a and b are multiplicative constants. The parameter a can be used
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Figure 5.2: Structure of the proposed single-bit ternary DC blocker.

to control the location of the overall transfer function poles along the real z-

axis and should be carefully set to insure correct operation and stability. The

choice of a should ensure that the pole is located nearer to the origin than the

zero. Also, the pole should not be faraway from the zero to ensure that there

is a sharp cut-off and that suitable gain is obtained.

The parameter b controls the amplitude of the input signal and can be

adjusted to get maximum SNR. Fig.(5.4) depicts the theoretical frequency

response of the signal-transfer function (STF = K(ejΩ)/D(ejΩ)) and the noise-

transfer function (NTF = P (ejΩ)/D(ejΩ)) of the overall structure calculated

from eq.(5.9).

5.2.4 Simulation and Discussion

MATLAB is utilized to simulate the proposed DC blocker. As mentioned in

Section 5.2.1, the ternary filter stage has been designed using two approaches.

Figures (5.5) and (5.6) show the simulated frequency response of the ternary

stage, in comparison with the calculated full-precision target response, using

the Remez and IFIR techniques, respectively.

Note that the signal band of interest is Ω=0 to 0.016π for the OSR of 32

used in this simulation.



Chapter 5. DSP Applications Using Single-Bit Filtering: DC Blocking 75

 g ( k )

  _

  +

  z−1

  _

  +

  z−1

  q(k)

   y(k)

   Legend:    Multi−Bit

   Single−Bit

Figure 5.3: A block diagram of the linear model for a second-order Σ∆ modulator.
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Figure 5.4: Frequency response of the theoretical STF (dotted) and NTF (solid) for
b=10 and a=0.001.
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Figure 5.5: Frequency response of the ternary filter stage using Remez technique,
compared with the target response (dashed line).
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Figure 5.6: Frequency response of the ternary filter stage using IFIR technique.
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Table 5.1: A Comparison between Remez and IFIR techniques (OSR=32).

Filtering Filter Pass-band DC No. of Non-Zero Percent. Phase
Technique Order Ripple Atten. Ternary Ternary of zero Response

(dB) (dB) Taps Taps Taps
Remez 21 2 50 672 212 68% Linear
IFIR 6 5 35 193 84 56% Piece-wise

Linear

Table 5.1 compares the performance of these ternary filters in terms of

signal and DC-content attenuation as well as the number of non-zero filter taps

required (OSR=32). It is interesting to find out that the required transition

band of the DC-blocker can be realized using only 84 ternary taps when the

IFIR design method is utilized. The price paid for this hardware simplicity is

the increase in pass-band ripple. It is worth noting that the zero-valued taps

(no hardware connection) constitutes the majority of the total number of taps

(56%-68%) for both filter design methods.

The resulting ternary filter has an anti-symmetric impulse response. This

anti-symmetry gives a linear phase response; also it can be utilized to halve

the number of the coefficient multipliers [96]. Although ternary multipliers are

simple in structure, the reduced hardware requirement is very pleasing.

It is important to note that as OSR increases, the signal spectrum ap-

proaches the frontier of the DC. In this case, the need for a larger order FIR

filter becomes a vital demand. This can be deduced from Fig.(5.7), which

shows the attenuation versus the OSR.

Fig.(5.8) shows the simulated overall filter frequency response as compared

to the target response, using the Remez ternary filter. It is clear that the pro-

posed structure presents good DC-blocking characteristics. Fig.(5.9) depicts

the overall phase response along with that of the target phase response, where

the overall phase response is deformed. This is expected due to the nonlinear
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Figure 5.7: Signal attenuation in ternary filter stage against the OSR for b = 1.6
and a = .01. (*) Remez. (o) IFIR.

behavior of the Σ∆ modulator stage [107]. However, in the baseband, the

phase response seems almost linear (apart from modulo 2π jumps).

In Fig.(5.10), the input and the output spectra of the DC-blocker are shown.

It is evident that the DC component in the input signal is removed. The

input is taken as: ADC + A sin(ωot) + ν(t), where ADC = 0.5, A = 0.5, ωo =

8192π rad/sec (chosen to be in the audio band), and ν(t) is an additive white

Gaussian noise (AWGN). Hence, the input signal contains a DC power twice

in magnitude as the sinusoidal power. To meet the minimum requirement

for audio applications, the signal-to-noise ratio (SNR) is made 20 dB. Several

different input types has also been used in testing the DC-blocker, such as

sawtooth, FM, and AM-FM as can be shown in Fig.(5.11) and Fig.(5.12),

respectively. In all cases, the responses are comparable to those shown for the

sinusoidal input.

The time-domain reconstructed DC-biased signal is shown in Fig.(5.13) for

sawtooth input. The reason behind utilizing the sawtooth input signal is to

check for correctness of the system response by ensuring that differentiating of

the input signal has not been taken place.
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Figure 5.8: The overall frequency response of the ternary-Σ∆M single-bit DC
blocker.
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(solid), compared with the phase response of the target impulse response (dashed).
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Figure 5.10: Spectra of the single-bit input and the single-bit output of the proposed
DC blocker. Above: noisy sinusoid input spectrum. Below: output spectrum.
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Figure 5.11: Spectra of the single-bit input FM and the single-bit output of the
proposed DC blocker. Above: input spectrum. Below: output spectrum.
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Figure 5.12: Spectra of the single-bit input AM-FM and the single-bit output of
the proposed DC blocker. Above: input spectrum. Below: output spectrum.
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blocker.
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5.3 A Proposed Structure for DC Canceling in

Single-Bit Domain

5.3.1 Design and Analysis

A simple multi-bit DC-Blocker can be seen in [80]. The transfer function of a

traditional infinite precision IIR DC-blocking filter is given in eq. (5.1).

The DC cancelation is due to the transfer function having zero at z = 1 (0

Hz). The pole at z = 1−α adjusts the system bandwidth. Our objective is to

design a structure that eliminates the DC content which is encoded in single-bit

format along with a time-varying input signal. The design of single-bit systems

is a non-trivial task. To characterize single-bit systems, it is common to look

at both the signal transfer function (STF) and the noise-transfer function

(NTF). The STF describes how the modulator alters the original input signal

spectrum, and for the DC blocking application must be a a high-pass function.

The NTF indicates how effectively the modulator shapes noise away from the

signal band of interest. The NTF is the main design task which determines the

amount of baseband noise shaping performed by the modulator. In general, the

NTF is designed to be one of two types; either a pure M th order differentiator,

[NTF(z) = (1− z−1)M ], or "non-monotonic" transfer function which has poles

in addition to zeros, NTF [NTF(z) = (z − 1)M/D(z)]. For either type, as the

order M increases, more noise power typically moves to unwanted frequency

bands and noise in the wanted frequency bands is reduced. Consequently,

signal-to-quantization-noise ratio (SQNR) in the band of interest is increased.

Fig.(5.14) shows the proposed single-bit DC-blocker system. This structure

is comprised basically of a delta-modulator with sigma-delta modulation em-

bedded in its feedback loop. We denote x(n) as the single-bit input, y(n) as the

bitstream output, u(n) as the input of the signal path quantizer [P1(.)], s(n)

as the feedback signal, and v(n) as the input of the feedback path quantizer
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Figure 5.14: The proposed DC-blocker.
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Figure 5.15: Linear model approximation of the system quantizers.

[P2(.)]. In this case y(n) and s(n) are given as follows:

y(n) =





+1 for u(n) ≥ 0

−1 for u(n) < 0
(5.13)

s(n) =





+1 for v(n) ≥ 0

−1 for v(n) < 0
(5.14)

We adopt the well-known linear system approximation approach [16], in

which the 1-bit quantization process is represented by a unity gain summing

element, and the quantization noise is modeled as an additive, white, and
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signal-independent noise source with variance σ2 = δ2/12 (δ represents the

quantization interval). Fig.(5.15) shows the linear models of the proposed

system quantizers, where qy(n) and qs(n) represent the quantization noise of

the quantizers P1(.) and P2(.), respectively. It is worth mentioning that the

linear model approach is unable to explain many aspects of the SDM behavior

such as integrator spans, stability, limit cycles, and chaos [107]. Nonetheless,

the linear approach provides a good approximation to the noise performance

of 1-bit systems.

Now the system function H(z) can be represented as a linear combination of

the signal transfer function [STF(z)] and the noise transfer function [NTF(z)],

i.e., H(z) = STF(z)+NTF(z). From Fig.(5.14), the z-transform of the output

Y (z) can be described as follows:

Y (z) = X(z)
B(z)

D(z)
+ Qs(z)

z−1(1− z−1)2

D(z)
+ Qy(z)

B(z)

D(z)
(5.15)

where,

B(z) = (1− z−1)[1− (1− β)z−1] (5.16)

D(z) = [1− (2− β)z−1 + (1− β + α)z−2] (5.17)

α and β being gain parameters. From (5.15) we have STF(z) = B(z)/D(z),

whereas two separate noise-shaping functions are in effect: NTFs(z)=z−1(1−
z−1)2/D(z) and NTFy(z)=B(z)/D(z), which high-pass filter the quantization

noise Qs and Qy, respectively.

In order to remove the DC content from the bitstream input, the STF

of the system should operate as a high-pass filter. Based on equation (5.15),

Fig.(5.16) depicts the theoretical frequency response of STF(ejΩ) and NTFy(e
jΩ).

It is obvious from (5.15) that the system function, Y (z), contains two zeros
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Figure 5.16: Signal and noise transfer functions, STF(ejΩ) and NTFy(ejΩ), of the
DC blocker using first-order SDM with α = 0.0205 and β = 0.2705.

z1,2 and two poles p1,2 as follows:

z1 = 1, z2 = 1− β (5.18)

p1,2 = (1− 0.5β)∓
√

(1− 0.5β)2 − (1− β + α). (5.19)

The above poles will take real values for β ≥ 2
√

α, and form a conjugate

pair when β < 2
√

α. The gain parameters α and β play an important role

in characterizing the performance of the DC-blocker through the control of

pole-zero locations. Accordingly, their combination will specify the system

bandwidth. However, it should be noted that for α=0, the three poles occupy

the locations of the three zeros, and hence cancel each other. For that α is the

critical parameter in this regard, as its value determines how much the poles

and zeros are separated.

The performance of the proposed structure can be evaluated in terms of

the overall signal-to-noise ratio (in the band of interest) plus the signal-to-

quantization-noise ratio, SNRov. From (5.15), SNRov can be calculated as [14]

[106]:

SNRov =

∫ ΩB

−ΩB

|X(ejΩ)STF(ejΩ)

G(ejΩ)
|2 dΩ (5.20)
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where ΩB ∈ (0, π) denotes the normalized desired signal bandwidth (Ω = π

corresponds to half the sampling rate, Ωs), and G(ejΩ) is given by:

G(ejΩ) = Qy(e
jΩ)NTFy(e

jΩ) + Qs(e
jΩ)NTFs(e

jΩ). (5.21)

Note that X(ejΩ) represents the input bit-stream spectrum, assumed to

contain quantisation noise as a result of a previous SDM encoding process in

addition to white Gaussian noise.

5.3.2 Simulation and Discussion

MATLAB is utilized to simulate the proposed structure. We denote by SNRovi

the overall input SNR. To meet the standard audio specifications, we suggest

SNRovi = 20 dB. To assess the performance of the DC-blocker, we define the

parameter ρ = 10 log10(SNRovo/SNRovi), where SNRovo stands for the output

SNRov. The optimal values for the gain parameters α and β are specified in

the sense of maximum attainable SNRovo, i.e., maximum ρ (or ρm). Fig.(5.17)

illustrates ρ as a function of the gain parameters α and β such that both span

the interval (0,0.1]in a step-size of 2−10. Simulation shows that the optimum

operating point ρm(αm, βm) for the DC blocker in Fig.(5.14) occurs when αm =

0.0205 and βm = 0.2705 such that maximum ρ equals about -1.51 dB. The

resolution of the multi-bit region in the DC blocker is assumed to be 10-bit in

this simulation. The resolution can be changed according to the application

requirements.

The degradation in SNRovo can be removed by replacing the first-order

SDM in the feedback path of the DC-blocker with a higher-order one. Fig.(5.18)

depicts the improvement in ρm when a second-order SDM stage is embedded in

the proposed structure. In this case ρm=3.6 dB for αm=0.0127 and βm=0.0508,

where significant improvement in the performance is achieved over the first-

order SDM-based DC blocker.

A comparison between the simulated frequency response curves of the DC-
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Figure 5.17: The ratio ρ = SNRovo/SNRovi (in dB) versus the gain parameters α
and β using 10-bit resolution.



Chapter 5. DSP Applications Using Single-Bit Filtering: DC Blocking 88

0 0.02 0.04 0.06 0.08 0.1

0

0.05

0.1
−35

−30

−25

−20

−15

−10

−5

0

5

αβ

ρ
, 
d

B

Figure 5.18: The ratio ρ versus the gain parameters α and β (10-bit resolution) of
the DC blocker using a second-order SDM.

blocker for first- and second-order SDM stages for optimum ρ is depicted in

Fig.(5.19). The dotted vertical lines indicate the desired signal band for OSR

= 32.

In Fig.(5.20), the input and the output spectra of the DC-blocker are shown.

It is evident that the DC component in the input signal is removed. Moreover,

an improvement in the SNR of more than 2 dB is obtained. The input is taken

as: ADC + A sin(ωot) + ν(t), where ADC = 0.5, A = 0.5, ωo = 8192π rad/sec

(chosen to be in the audio band), and ν(t) is an additive white Gaussian noise

(AWGN) process. Hence, the input signal contains a DC component that is

twice in magnitude as the sinusoidal component. To meet the minimum re-

quirement for audio applications, the overall signal-to-noise ratio (SNRovi) is

made as 20 dB. Different input types have also been used in this test, in-

cluding sawtooth, FM, and AM-FM signals. In all cases, the response curves

are comparable to those shown for the sinusoidal input, as can be seen in
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Figure 5.19: Frequency response of the simulated DC-blocker: (solid) using second-
order SDM (αm = 0.0127, βm = 0.0508); (dashed) using fist-order SDM (αm =
0.0205, βm = 0.2705).

Fig.(5.21) and Fig.(5.22) for FM and AM-FM input, respectively. To check

the performance of the DC-blocker against introducing undesirable differenti-

ation, Fig.(5.23) shows the output spectrum in response to a noisy sawtooth

input (with SNR=20dB).

From hardware implementation viewpoint, the proposed DC blocker is very

simple, as it contains no multi-bit multipliers. The gain parameters α and β

can be realized using conventional voltage dividers or simple digital scalers.

For FPGA implementation, these two gains can be achieved by using two

multiplexers, each of them multiplexes two fixed multi-bit numbers (that rep-

resent α and -α or β and -β), where the multiplexer output is dependent on

the quantiser output as shown in Fig.(5.24).

5.3.3 Stability

The proposed structure is a linear system except for the single-bit quantizers

which are non-linear elements. As mentioned earlier, using the linear approx-

imation is inadequate to model this system accurately. However, the linear

model does reveal some valuable analytical results when using a low order (≤ 2)
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Figure 5.20: Input and output spectra of the DC blocker (using a second-order
SDM) for an FM input.
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Figure 5.21: Input and output spectra of the DC blocker (using a second-order
SDM) for an FM input.



Chapter 5. DSP Applications Using Single-Bit Filtering: DC Blocking 91

−0.1 −0.05 0 0.05 0.1 0.15
−30

−20

−10

0

10

−0.1 −0.05 0 0.05 0.1 0.15
−30

−20

−10

0

10

Normalized frequency

M
ag

ni
tu

de
, d

B

Figure 5.22: Input and output spectra of the DC blocker for a noisy AM-FM input.
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Figure 5.23: Input and output spectra of the DC blocker for a noisy sawtooth input.
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Figure 5.24: Multiplication of a single-bit signal by a multi-bit constant.

SDM stage in the feedback loop. The stability problem would be complicated

when using a third (or higher)- order SDM as these high-order topologies are

prone to the instability problem [98]. A detailed non-linear stability analysis

is beyond the scope of this chapter, however, investigating the root-locus of

the system would be useful to approximate its stability criteria.

Considering the system with first-order SDM as shown in Fig.(5.14) with

zeros and poles as given by eq.(5.18) and eq.(5.19), the parameter β determines

the locations of one zero (z2) and the two poles p1,2 (noting that for α=0, zeros

and poles will cancel each other), while α controls the pole-zero separation in

each pole-zero pair. Fig. (5.25) can be used to clarify the root-locus behavior

of this system as follows when β = 0.8. Starting with α = 0, each pole will

occupy (cancel) a zero, i.e., p1 = z1 = 1 and p2 = z2 = 1 − β. The distance

between these two initial poles is β. Let the mid point between the two initial

poles be represented by pc, then pc = 0.5(p1 + p2) = 1− 0.5β. As α increases,

the two poles will travel horizontally in opposite directions on the real axis

until they meet at pc when α = (0.5β)2. The point pc will remain as mid point

between the two poles as they move. Further increase in α beyond (0.5β)2

will drive the two poles to be a complex conjugate pair tracing a vertical line
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centered at pc (where the right pole moves upwards, while the other moves

downwards). The intersection points between the unit circle and this vertical

line will reveal the stability criteria of the system. Denoting the real axis as

µ and the imaginary axis as ν, the intersection of the root locus with the unit

circle occurs at

ν =

√
β − β2

4
. (5.22)

Moreover, the poles equation (5.19) will give

∣∣∣∣∣ (1− β

2
)∓

√
(1− β

2
)2 − (1− β + α)

∣∣∣∣∣ = 1 (5.23)

Now using (5.22) and (5.23), the following conditions for the complex con-

jugate poles can be reached:

(
β

2
)2 < α < β < 2 (5.24)

while for real poles the following conditions are obtained:

α < min{(β
2
)2, β} ; β < 2 (5.25)

which can be reduced to

α < (
β

2
)2 < 1. (5.26)

The poles will exit the unit circle circumference if α > β.

Fig.(5.26) shows the pole-zero plot of the system shown in Fig.(5.14) at

the optimum operating point ρm, with α=0.0205 and β=0.2705. From an LTI

system viewpoint, this plot confirms that the designed DC-blocker is always

stable. This is so because all poles are located within the unit circle in the

z-domain. However, since our system is nonlinear, this condition from linear

analysis is considered sufficient for stability but not necessary [108]. Simulation

results confirms this claim.



Chapter 5. DSP Applications Using Single-Bit Filtering: DC Blocking 94

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 Real (poles)

 I
m

a
g

in
a

ry
 (

p
o

le
s
)

 p
1
 ≡ z

1
  p

2
 ≡ z

2
 

   p
c
  

 β = 0.8

Figure 5.25: Root-locus of the proposed DC blocker with β=0.8.
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Figure 5.26: Pole-zero plot of the DC-blocker with first-order SDM at ρ = ρm using
α=0.0205 and β=0.2705.
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5.4 Summary

In this Chapter, two efficient structures for DC-blocking in the single-bit do-

main has been proposed. The first consists of a ternary filtering stage followed

by a sigma-delta modulator stage. Two design techniques were utilized to

generate the ternary taps. For each technique, the associated ternary filter

stage was assessed in terms of DC attenuation and hardware efficiency. The

simulated system response has been studied through the application of various

DC-biased, noisy signals. The DC content was removed completely from all

kinds of input signals.

The second is a single-bit multiplierless DC-blocker. The structure is com-

prised of a delta-modulator structure with a sigma-delta modulating (SDM)

stage in its feedback loop. The proposed system is evaluated in terms of the

overall SNR and the magnitude of DC attenuation. It is shown that using

a second-order SDM improves the overall system SNR as compared to using

a first-order one. However, using higher-order SDM (> 2) would complicate

the stability issue as higher-order SDM topologies inherently suffer from insta-

bility problems. The role of the gain parameters is investigated and optimal

performance has been reached assuming 10-bit resolution. Stability criteria

have been derived. The system is examined using different types of signals.

Both of these proposed structures are very efficient in hardware realization

and can be easily implemented with FPGA.



Chapter 6
Limit Cycle Behavior in Ternary
Structures

6.1 Introduction

One of the intriguing aspects in the behavior of Σ∆ modulators (Σ∆M’s) is the

generation of periodic patterns (or limit cycles) at its output when the input is

a dc signal. The existence of those periodic modes (limit cycles) is due to the

nonlinear nature of Σ∆Ms [31]. Such a cyclic output produces discrete noise

components. Studies have been made on the limit cycle nature of the first- and

second-order Σ∆ modulators and on the appropriate techniques to eliminate

them [32][42][109]. Similar behavior has been reported in digital IIR filters

[110]. Despite the various attempts to identify the limit cycle mode of higher

order (more than 2) Σ∆ systems [40] [33], a comprehensive analysis has not

been achieved yet. Understanding the limit cycle phenomenon in higher order

systems is becoming more crucial because of their improved performance at

oversampling ratios similar to those ratios utilized by the first and second-order

systems, which makes them attractive to the Σ∆ system designers. Moreover,

due to their instability problem (which is the main drawback in these topolo-

gies), the limit cycle behavior should be thoroughly investigated as it has a

strong impact on the issue of instability [111].

Recent works have shown that ternary filtering structures (which utilize a

finite-impulse-response (FIR) filter, whose coefficients ∈ {±1, 0}, followed by

96
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a Σ∆ system) are promising in performing significant digital signal processing

(DSP) tasks. In these structures, a third-order Σ∆ topology has been suc-

cessfully utilized (see, for example, [87][93][104]). As limit cycles may occur

in the Σ∆ part of the system, we expect that ternary filters will consequently

experience limit cycles as well.

The focus of this chapter will be on a third-order Σ∆ system. However, the

same approach can be easily extended to analyze higher-order systems (> 3).

The chapter is organized as follows. In Section-6.2, the difference equation

of an 3rd order Σ∆ modulator is developed, and a solution to the difference

equation of a third-order system is obtained along with a general expression

for the average output of this third order system is determined. In Section

6.3 the M th-order difference equation is developed and a discussion of how to

generalize the results from third order to higher order systems is presented.

The system’s limit cycle behavior is elaborated in Section 6.4. Conclusions are

presented in Section 6.5.

6.2 Analysis of a Third-Order Σ∆ Topology

Fig.(6.1) illustrates the topology for a third-order Σ∆ modulator which has

been considered in several works (e.g., [87][104][121]).

Assuming the input to be a dc signal of amplitude x, u(k) to be the final

integrator output (which is also the quantizer input), and y(k) is the quantizer

output such that y(k) = sgn[u(k)] and is given by:

y(k) =





+1 for u(k) ≥ 0

−1 for u(k) < 0
(6.1)

This system shown in Fig.(6.1), can be described using a third-order dif-
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Figure 6.1: Structure of the third-order Σ∆ modulator under consideration.

ference equation as follows:

u(k) = 3u(k−1)−3u(k−2)+u(k−3)−(α+2)y(k−1)+3y(k−2)−y(k−3)+x.

(6.2)

The above equation may be re-expressed recursively, with the right hand

side using just the initial conditions and the DC input value as follows:

u(3) = 3u2 − 3u1 + uo − (α + 2)y2 + 3y1 − yo + x. (6.3)

u(4) = 6u2 − 8u1 + 3uo − 3(α + 1)y2 + 8y1 − 3yo − (α + 2)y(3) + 4x. (6.4)

and so on. This re-expression is derived in Appendix A to be:

u(k) =
1

2
k(k − 1)u2 − k(k − 2)u1 + b(k)uo − b(k)yo +

k(k − 2)y1 − [(k − 1)− αb(k)]y2 − g(k, α) + d(k)x (6.5)

where uo = u(1), u1 = u(2), and u2 = u(2) are the initial conditions of the

final integrator output, with yo, y1, and y2 being the corresponding quantizer

output values [i.e., yi = sgn(ui)|i ∈ {0, 1, 2}]. The functions b(k), g(k), and
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d(k) are given as follows:

b(k) =
(k − 1)(k − 2)

2
(6.6)

g(k, α) =
k−3∑
n=1

[(
α

2
n + 1)(n + 1)]y(k − n) (6.7)

d(k) =
kb(k)

3
. (6.8)

An asymptotic solution for the Σ∆ dynamical system is now considered. If

(6.5) is divided by d(k) and then the limit as k →∞ is taken, one obtains:

x ← g(k, α)/d(k) =
6

k(k − 1)(k − 2)

k−3∑
n=1

(
α

2
n+1)(n+1)sgn(uk−n), as k →∞

(6.9)

It is difficult to find an analytic solution for this equation, largely because

of the signum term. However, one can find an asymptotic solution (as k →∞)

by replacing the k - dependent term 1/[(k− 1)(k− 2)] outside the summation

by an n - dependent term inside the summation, i.e.,

1

(k − 1)(k − 2)

k−3∑
n=1

a(n) →
k−3∑
n=1

a(n)

f(n)
as k →∞ (6.10)

where a(n) = (α
2
n + 1)(n + 1)sgn(uk−n). The function f(n) can be given as

(see Appendix B)

f(n) → 3(n +
2

α
)(n + 1) as k →∞. (6.11)

Now (6.9) can be written as:

x ← α

k

k∑
n=1

sgn(uk−n) +
2

k

k∑
n=1

sgn(uk−n)

(n + 2/α)
as k →∞. (6.12)

It can be proved that the second term on the right-hand side of (6.12) tends

to zero since we have:
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2

k

k∑
n=1

1

(n + 2/α)
sgn(uk−n) <

2

k

k∑
n=1

1

(n + 2/α)
(6.13)

knowing that the signum function sgn(uk−n) ∈ {1,−1}. Now, since the limit

of the right-hand side of the inequality (6.13) is zero as k → ∞, then the

left-hand side will go to zero more rapidly (it is a transient term that decides

the rate at which the system converges to the steady-state). Accordingly, for

stable operation, the sequence g(k, α)/d(k) in (6.12) converges to x as k →∞,

and in fact it is the average output if the equation is divided by α, i.e., average

= x
α

= 1
k

∑k
i=1 sgn(ui). We re-arrange this equation as follows:

x

α
k =

k∑
i=1

sgn(ui), k →∞. (6.14)

Since the left-hand term is always a fraction and the right-hand term is

always an integer, one expects (as it is in fact the case) that the system has

no fixed-point or an equilibrium steady-state solution. Alternatively, this dy-

namical system can be characterized by time-varying states, i.e., by a periodic

solution.

A periodic solution is a dynamical solution that is characterized by one ba-

sic frequency f1. The spectrum of a periodic signal consists of a possible spike

at zero frequency and spikes at integer multiples of the fundamental frequency

f1. The amplitudes of some of the harmonic frequency components may be

zero. A periodic solution is called a limit cycle if there are no other periodic

solutions sufficiently close to it. In other words, a limit cycle is an isolated

periodic solution and corresponds to an isolated closed orbit in state space.

Every trajectory near a limit cycle will approach it as k →∞. Consequently,

(6.14) applies quite well when the system traps into stable limit cycles. Hence,

the average output over any limit cycle can be given as:

x

α
=

1

L

L∑
i=1

sgn(ui) (6.15)
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where L is the period length of the stable limit cycle.

6.3 The High-Order Σ∆ Topology

In this Section, the focus is on high-order (> 2) Σ∆ structures as shown in

Fig.(6.2). The general difference equation that describes the operation of the

M th-order topology depicted in Fig.(6.2)is derived in Appendix C to be:

u(k) =
M∑

n=1

(−1)n+1

(
M

n

)
u(k−n) +

M∑
i=1

M−1∑
n=0

(−1)i

(
n

i− 1

)
αny(k− i) +x(k− 1)

(6.16)

where {αn|n = 0, 1, 2, ...,M − 1} are the feedback parameters.

Adopting the same approach for calculating the average as above, we find

that, for any order of the Σ∆ topology under investigation, the average output

is:

Average =
x∑M

i=1 ci

(6.17)

where M is an integer that denotes the system order, and {ci} are the coeffi-

cients of the signum terms that appear in the system difference equation.

A few authors has confirmed a strong link between the limit cycle analysis

and Σ∆M stability analysis. For example, [111, 24, 112] link saddle points in

state trajectories (which constitute limit cycles) to system stability through a

Poincaré map.

There are also hints in the literature that the non-linear dynamics of the

first-order Σ∆ operation can be modelled using the dynamics of the standard

map, and more specifically, the dynamics of the circle map [106, 53]. In this

work, a comprehensive analysis of the third-order system under consideration

is introduced based on circle map modelling and its approximation using fixed

point analysis.
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Figure 6.2: Structure of the M th-order Σ∆ modulator under investigation.

6.4 Behavior of the System’s Limit Cycles

In order to reveal the behavior of the system under investigation, MATLAB is

utilized to develop a random search procedure to detect and extract the limit

cycles from the system output. This is done in both the frequency domain,

using high-resolution FFT, and time domain using autocorrelation function

with variable lag lengths. The results can be compared and confirmed by

inspection to discover the longest limit cycle sequence under specific operating

conditions.

6.4.1 Limit Cycle Notation

Throughout this chapter, the cyclic sequences are described for optimum clar-

ity as follows [41]:

Q(i),j = [q+
1 , q−1 , ...q+

i−1, q
−
i−1, q

+
i , q−i ] where i denotes the number of transitions

from +1 to -1 (or -1 to +1) within the limit cycle period, while the subscript j

represents any integer number. The values between the brackets represent the

number of successive outputs that constitute one cycle, that is the value q+
i

represents the number of consecutive +1s , whereas q−i represents the number



Chapter 6. Limit Cycle Behavior in Ternary Structures 103

50 55 60 65 70 75 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lags, n

R
yy

(n
)

Figure 6.3: The autocorrelation function Ryy(n) of the structure output for zero
input. The initial conditions are: uo = .2, u1 = .4, and u2 = 0, and α = 0.1.
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Figure 6.4: The output frequency spectrum under same parameters.

of consecutive -1s, both at the ith transition. Therefore, the number of values

within the brackets must be even and equals to 2i (i value for each positive

and negative), as the number of positive outputs should equal to the number

of negative ones.

The length of the limit cycle with a maximum number of transitions i (and

hence a maximum length), is termed as Lmax. This is to distinguish the largest

cycle from other limit cycles included inside it. Of course this does not mean

that all possible limit cycles belong to a longer one, as there may exist some

independent cycles.
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sitions within the limit cycle period.
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Figure 6.6: Phase-plane portrait of the third-order structure for x = 0. The initial
conditions are: uo = .2, u1 = .4, and u2 = 0, and α = 0.1 (the diagonal straight line
represents y = x).
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6.4.2 Zero-Input Limit Cycles

The search program carries out the following:

1. Searching the output frequency spectrum |Y (f)| to locate the tones that
are above the quantization noise level. These tones correspond to limit

cycles. The fundamental frequency and its harmonics are located and

then Lmax can be calculated as follows:

Lmax = fs/fo. (6.18)

where fs is the sampling frequency, and fo stands for the fundamental

limit cycle frequency. The other frequency components are just mul-

tiples of fo, i.e., mfo, where m = 1, 2, 3, .. . In other words the term

Lmax = mL is associated with the fundamental frequency. However,

one should be aware, as this is true only for stationary signals.

2. Constructing a sequence array Q by putting the bits of the output y

with similar sign into groups, for example, if y = 1, 1, 1, 1,−1, , 1,−1, ...

then Q(i),j = [4+, 1−, 1+, 1−, ...]. The autocorrelation function of Q,

RQQ(n), gives us information about the transition number i within a

limit cycle.

The following figures illustrate the approach utilized to discover and con-

firm the periodic patterns in the single-bit output by inspection. Fig.(6.3)

shows the autocorrelation function Ryy(n) of the single-bit output y(k) under

the initial conditions: uo = 0.2, u1 = 0.4, u2 = 0, and α = 0.1. The number

of lags n (clock periods) in the autocorrelation function should be increased

each time up to several hundreds to insure that no longer cyclic periods exist.

The figure reveals the maximum limit cycle length, Lmax = 8, for zero input

and under the specified parameters, in the third-order Σ∆ topology shown

in Fig.(6.1). The same result can be obtained from the frequency domain as

shown in Fig.(6.4). Furthermore, the number of transitions i within the limit

cycle is calculated and can be found also by inspection as shown in Fig.(6.5).
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It is obvious that i = 3. The main sequence of the limit cycles can now be

easily found as:

Q(3),1 = [2+, 1−, 1+, 2−, 1+, 1−]

The system phase portrait with the same parameters is calculated using

(6.5) and is depicted in Fig.(6.6). Exactly the same phase portrait is obtained

by simulating the system equation (see (6.1)).

Now we explore the role of the initial conditions and the constant gain

parameter α on the system operation. The constant parameter α has a ma-

jor effect on the limit cycle behavior, as shown in Fig.(6.7) for α = 0.1 and

Fig.(6.8) for α = 0.2 for new different initial conditions. It is obvious that

Lmax = 20 and number of transitions = 14 in Fig.(6.7) with the following se-

quence:

Q(14),1 = [2+, 3−, 3+, 2−, 1+, 1−, 1+, 1−, 1+, 1−,

1+, 1−, 1+, 1−],

while in Fig.(6.8) we have Lmax = 40, number of transitions = 22, and a mother

sequence of:

Q(22),1 = [2+, 3−, 3+, 1−, 1+, 3−, 3+, 2−, 2+, 3−, 3+, 2−,

1+, 1−, 2+, 2−, 1+, 1−, 1+, 1−, 1+, 1−].

To better understand the variation in the limit cycle behavior of the system

that can take place as a result of changing the parameter α, Fig.(6.9) shows the

limit cycle phase plane for α = 1/6. In this case Lmax = 200. We found that for

large values of Lmax, there is a likelihood that the system limit cycle contains

a number of shorter limit cycles with length L such that L is a divisor of Lmax.

Consequently crowded tones in output frequency spectrum will appear.

From the previous phase plane figures, it is evident that for zero-input,

the state trajectories of the system are constructing straight lines in parallel

with the diagonal y = x line and they are critically dependent on the initial

conditions.
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Figure 6.7: The system phase portrait with α = 0.1 and initial conditions: uo = 1.1,
u1 = 1.11, u2 = 1.2.
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Figure 6.8: The system phase portrait with α = 0.2 and initial conditions: uo = 1.1,
u1 = 1.11, u2 = 1.2.
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Figure 6.9: The phase portrait for α = 1/6 and initial conditions of: uo = 1.1,
u1 = 1.11, u2 = 1.2.

6.4.3 Limit Cycles for Non-Zero DC Input

This third-order Σ∆ filter exhibits a highly non-linear behavior. For non-zero

input, the parameter α possesses an important role in determining the system

dynamics. It is evident during simulation that the system stability is extremely

sensitive to the value of α. For certain initial conditions, α controls the input

dynamic range upon which stability is maintained. Consequently there is al-

ways a threshold dc input value xmax beyond which unstable operation occurs.

This can be seen in Fig.(6.10).

On the other hand, as anticipated (see (6.16)), α may alter the limit cycle

behavior through varying both the transient and the steady state conditions of

the system. This alteration extends to include the quantization noise structure

as well.

To take a closer look at the nonlinear limit cycles behavior of the system,

Fig.(6.11) depicts the maximum length of the limit cycles Lmax(that corre-

sponds to the fundamental frequency) as a function of the dc input value for

α=0.1 and under specific fixed initial conditions. The frequencies of these

patterns normally reside in the baseband region, however, their power is rela-

tively very low. This is due to the noise shaping effect of the Σ∆ modulator

in this band of frequencies. While, on the contrary, shorter cycles that in fact
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Figure 6.10: The parameter α versus the maximum threshold dc input beyond
which no stability is guaranteed.

constitute a fraction of Lmax (L = Lmax/m, where m is an integer), and conse-

quently located in a higher frequency band, suffer several orders of magnitude

less from attenuation and therefore, introduce the most sever contributions to

the problem of instability. The value Lmax increases according to the complex-

ity of the fractions that represent the values of the initial conditions and/or

the dc input. For simple fractions (e.g., 1, 1
2
,1
3
, ...), Lmax takes relatively small

values, while for complex fractions (e.g., 111
297

), it will take larger values.

For non-zero input, the state space trajectories are tending to converge

towards the diagonal line at their upper ends forming a semi-ellipsoids, and

therefore they are no longer residing on straight lines as is the case for zero-

input. This can be seen in Fig.(6.12). The sequence of the limit cycle is:

Q(8),1 = [10+, 1−, 1+, 1−, 12+, 1−, 1+, 1−]

Now we summarize our findings regarding the limit cycles in the third-order

structure under investigation:

1. The structure may contain long limit cycles (e.g., Lmax=200, 300, 500,

...) and this depends primarily on how complex the fraction of the

initial conditions, α, and the input values are.

2. We found that the average value of the output when the system traps
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Figure 6.11: The maximum limit cycle length Lmax as a function of the dynamic
range input under fixed initial conditions and for α = 0.1.

into a limit cycle is exactly equal to x
α
, and can be written as follows:

x

α
L =

L−1∑

k=0

sgn(uk) (6.19)

This equation explains the reason behind the conclusion we just inferred

in item 1 above, as on the left-hand side, x
α
is always a fraction, while

the right-hand side is always an integer. Hence, L must adjust the left

side to an integer. So if x = p
q
, where p and q are relatively prime, then

we expect that L must be a integer multiple of qα (since α is a fraction

as we will see later), i.e., L = αqζ. Then, pζ =
∑L−1

k=0 sgn(uk), where p

and ζ are integers.

3. Regardless of the value of the initial conditions and the dc input, it is

evident that the third-order Σ∆ system is driven into instability for the

gain parameter α > 0.5.

It is not the aim here to do an exhaustive limit cycle search. Consequently,

the largest limit cycle Lmax is then dependent on the system parameters and it

is not the absolute maximum length. Our motive for specifying Lmax is to find

out the complete states that constitute the orbit of the system under specific

parameters for the benefit of stability issue. A few authors has confirmed a
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Figure 6.12: The phase plane for x=1/14, α = 0.1 with initial conditions uo = 0.5,
u2 = 0.8, and u3 = 0.8.

strong link between the limit cycle analysis and Σ∆M stability analysis.

There are hints in the literature that the non-linear dynamics of the first-

order Σ∆ operation can be modeled using the dynamics of the standard map,

and more specifically, the dynamics of the circle map [106, 53]. In the next

chapter, we shall introduce a comprehensive analysis of the third-order system

under consideration based on circle map modeling and its approximation using

fixed point analysis.

6.5 Conclusion

The third-order Σ∆ structure which is the core of the ternary structure was

analyzed under dc input. The difference equation and the iterative solution

that describe its operation are developed. It is shown that the system exhibits

limit cycle behavior under certain conditions of the system parameters. The

M th-order difference equation of similar Σ∆ topologies are also developed.

Moreover, a general formula for obtaining the average output of these systems

is derived. The system was then simulated extensively and a random search

method is utilized to discover and extract the limit cycles and identify their

features. It seemed that this topology, which is a third-order Σ∆ modulator,

possesses a highly non-linear behavior.
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The work that has been done in this chapter will be of significant im-

portance to address the stability issue of the ternary structure (and can be

extended to the stability analysis of higher-order Σ∆ modulators as well) as

will be seen in the next chapter.



Chapter 7
A Stability of Sigma-Delta Modulators
in Ternary Structures

7.1 Introduction

Higher-order (> 2) single-bit Σ∆ modulators (Σ∆M’s) are of increasing im-

portance in many applications due to their improved performance as compared

to the first- and second-order structures [40]. A comparison between low-order

and high-order Σ∆ structures is addressed in [113, 80]. However, the stability

of higher-order Σ∆ modulators can be an obstacle to their adoption in digital

signal processing (DSP) applications. Despite the large body of work that has

already been done, the stability issue is still not fully resolved. The approaches

utilized to address the issue fall into one of two categories. The first category is

the linear system approximation approach (e.g., in [114]). This approach suf-

fers from inevitable drawbacks as it is unable to explain important phenomena

such as limit cycles and chaos [112]. The second category incorporates all the

truly non-linear analysis techniques attempts to better model the behavior of

Σ∆ modulators have adopted nonlinear analysis techniques (e.g., in [107] and

[115]). In [115], for example, a first-order Σ∆ modulator along with a bang-

bang phase-locked loop (PLL) system was modelled using the maps of driven

interval shifts.

In this chapter, we attempt to set out a comprehensive analysis to the

third-order Σ∆ topology utilized in ternary filters, both mathematically and

113
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by simulation. In Subsection 7.2.1, we utilize the circle map dynamics to

accurately model the operation of the Σ∆ structure, which is treated as a third-

order sinusoidal digital phase-locked loop system. Accordingly, the stability

topic is addressed using the fixed point techniques in subsection 7.2.3. This

analysis would be of great importance to other higher-order Σ∆ structures

after some appropriate modifications.

7.2 Stability Analysis of the Third-Order Topol-

ogy

In general, an orbit O(uo) of a discrete dynamical system F: Rn → Rn is

said to be stable if for every r > 0 there exists d > 0 such that the Euclidian

distance between the system’s state variables u and y, ‖yo − uo‖ ≤ d implies

‖yn − un‖ ≤ r ∀ n ≥ 1, where u,y ∈ Rn. An orbit that is not stable is called

unstable [116]. In other words, O(uo) is unstable if there exists r(uo) > 0 such

that for every positive number d one can find an initial state yo, ‖yo−uo‖ ≤ d

whose orbit is not contained in the closed ball D(uo, r(uo)). Fig.(7.1) and

Fig.(7.2) depict a stable set of limit cycle points (for different values of x under

certain parameters) which is revealed by the bounded-orbit or the attractor to

which the system evolves after a sufficiently long time.

However, higher-order (> 2) Σ∆ modulators (including the system consid-

ered earlier) suffer from well-known stability problems [111]. In simulation it

was found that for such systems to attain stability, the integrators should be

leaky in the sense that “sub-unity" integration gains should be introduced as

shown in Fig.(7.3). Hence, for the stability analysis, the system in Fig.(7.3)

will be considered, and dynamical system analysis will be utilized to model

its structure with controllable values for d1, d2, and d3 inside (0, 1]. Then the

stability criteria will be determined and there will be an attempt to extend

the stable region of operation by adjusting the state trajectories of the system

integrators.
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Figure 7.1: An attractor of third-order Σ∆ system with x=1/20, α=0.1, and initial
condition set (0,0,-0.3) .
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Figure 7.2: An attractor of third-order Σ∆ system with x=1/50, α=0.1, and initial
condition set (0.7,0.9,1) .
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Figure 7.3: Structure of the single-bit third-order Σ∆ modulator.

7.2.1 Non-Linear Dynamics Modeling

The non-linear dynamics of the Σ∆ operation can be modelled using the dy-

namics of the standard map, and more specifically, the dynamics of the circle

map. Here, the exact circle map is introduced that corresponds to the modified

(arbitrary values for the d’s) third-order system shown in Fig.(7.3). The circle

map, also known as the sine map, is given by [117]:

un+1 = F (un) = [un + Ω− K

2π
sin(2πun)] mod 1 (7.1)

where K and Ω are the map parameters. The term Ω is confined to the interval

[0, 1]. This map is a special case of the two-dimensional standard map. The

state F maps the interval [0, 1) onto itself when the circle map is confined

to the interval [0, 1) by using the mod 1 function. The circle map becomes

piecewise linear when K = 0 and nonlinear when K 6= 0. For 1 > K ≥ 0,

the circle map is an orientation preserving diffeomorphism. At K = 1, the

map is a homeomorphism. For K > 1, the circle map becomes noninvertible

(since it is not one-to-one, which implies the coexistence of different periodic

oscillations) and critically dependent on the initial conditions.
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Inspired by (6.2) and the circle map above, the Σ∆ system dynamics are

formulated by the following non-linear circle map, with the parameters K1,

K2, and K3 taken from 6.2) as follows:

uk+1 = K1un − (α + 2) sin(mγk)−K2uk−1 + (d2 + 2d3) sin(mγk−1) +

K3uk−2 − (d2d3) sin(mγk−2) + x (7.2)

where γk = tan−1(uk), γk−1 = tan−1(uk−1), and γk−2 = tan−1(uk−2) are the

phase angles that correspond to the integrator states uk, uk−1, and uk−2, respec-

tively, while m is an integer and K1 = (d1 +d2 +d3), K2 = (d1d2 +d1d3 +d2d3),

and K3 = (d1d2d3). The d’s are the gain parameters of the system integrators.

As m increases, the behavior of the map approaches the dynamics of the Σ∆

modulator.

7.2.2 Traditional Stabilizing Design Approach

If a vector is defined as Xk = (xk yk zk)
T , then (7.2) can be written alternatively

as:

Xk+1 = AXk + Bk (7.3)

where

A =




0 1 0

0 0 1

K3 −K2 K1


 (7.4)

Bk =




0

0

bk


 ; (7.5)
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with bk = −(α+2) sin{tan−1(zk)}+(d1+d2) sin{tan−1(yk)}−(d1d2) sin{tan−1(wk)}+
x. Taking a Euclidean norm of (7.3) yields

‖Xk+1‖ ≤ ‖AXk‖+ ‖Bk‖ ≤ ‖A‖‖Xk‖+ ‖Bk‖.

First, it is obvious that ‖Bk‖ < MB (where MB > 0 is a constant) given

the boundedness of bk.

If ‖A‖ < 1 (hence, di < 1∀i), then

‖Xk+1‖ ≤ ‖A‖k+1‖X0‖+
k∑

i=0

‖A‖i‖Bk−i‖ (7.6)

≤ ‖A‖k+1‖X0‖+ MB

k∑
i=0

‖A‖i (7.7)

= ‖A‖k+1‖X0‖+ MB
1− ‖A‖k+1

1− ‖A‖ . (7.8)

Obviously, for ‖A‖ < 1 we have

lim
k→∞

‖Xk+1‖ ≤ MB

1− ‖A‖ . (7.9)

That means the trajectory will converge within the boundaries constrained

by (7.9) in the state space.

Note that if the matrix A is Hurwitz (that is, all its eigenvalues are located

within the unit circle), then ‖A‖ < 1. Since K1, K2, K3 are constant, they can

easily be chosen to make ‖A‖ < 1. One way to achieve this result is through

the application of the Routh-Hurwitz stability criteria. This in fact means that

we can stabilize the system by adjusting the location of the system’s poles, i.e.,

confining them within the unit circle.

7.2.3 Fixed Point Approximation: An Analogy with DPLL

We propose here the techniques adopted in analyzing the sinusoidal digital

phase-locked loop (DPLL) to study the stability issues of the high-order Σ∆
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modulator. From this point of view, the IIR loop operates on the principle of

"tracking" the quantizer output, as the DPLL tracks the input frequency. As

the stability of a periodic orbit of a continuous-time system may be determined

by examining the stability of a fixed point of the associated map [117], the first

step in this approach is to choose a suitable fixed point solution for our system.

Intuitively, this would be the average output of the third-order Σ∆ modulator.

This means that, under stable operation, the state trajectories are attracted

to this point in an oscillatory behavior. Recalling (6.17), the proposed fixed

point u∗ is given as:

u∗ = lim
k→∞

uk = tan−1(
x

2 + α− (d1 + 2d2) + d2d3

). (7.10)

Now, that the fixed point solution is obtained, it is necessary to find the

range of filter parameters to meet the conditions that are necessary for the

iterates of equation (6.5) to converge locally to the solution given by (7.10).

For that, Ostrowski’s theorem can be applied [118][119][120] if the function

F (uk), which is given by (7.2) to be tested is continuously differentiable at the

fixed point u∗. In this case, Ostrowski’s theorem says that limk→∞ uk = u∗ if:

ρ[F ′(u∗)] < 1 (7.11)

where F ′(u) is the partial derivative of the n × n matrix F (u), ρ(.) is the

spectral radius of the matrix and is defined as follows:

ρ[F ′(u∗)] = max |λi|, λi ≡ Eigenvalues of F ′. (7.12)

It is worth noting that in the case of nonlinear mappings, the condition

ρ[F ′(u∗)] < 1 is sufficient, but not necessary for convergence. While in the

case of linear mappings, ρ[F ′(u∗)] < 1 is both necessary and sufficient [118].

Now, reconsider (7.2), which models the dynamics of the structure shown

in Fig.(7.3). For convenience, (7.2), which is a third-order equation, is trans-
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formed into a system of three first-order equations in the following form:

uk+1 = F (uk). (7.13)

Let wk = uk, yk = uk+1, zk = uk+2. Therefore, (7.2) can be re-written in a

matrix form as follows:




wk+1

yk+1

zk+1


 =




yk

zk

F (zk)


 (7.14)

where

F (zk) = K1zk − (2 + α) sin{tan−1(zk)} − K2yk + (d2 + 2d3) sin{tan−1(yk)} +

K3wk − (d2d3) sin{tan−1(wk)}+ x.

To define a region of stability for the ternary-Σ∆ topology, consider (7.14).

If F (zk) and F ′(zk) are assumed to be continuous, then the Jacobian matrix

of F (zk) is given by:

F ′(z) =




∂f1

∂w
∂f1

∂y
∂f1

∂z

∂f2

∂w
∂f2

∂y
∂f2

∂z

∂f3

∂w
∂f3

∂y
∂f3

∂z




hence, F ′(z) =




0 1 0

0 0 1

h1(w) h2(y) h3(z)


 (7.15)

where h1(w) = K3[1 − cos(w)], h2(y) = −K2[1 − cos(y)], and h3(z) = K1[1 −
K ′

1 cos(z)]. If we assume the fixed point is β = u∗ = tan−1[ x
(2+α)−(d1+2d2)+(d2d3)

],

then at this point all the eignvalues must be less than one, i.e, |λi| < 1, where
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λi|i ∈ 1, 2, 3| should satisfy the characteristic equation: |F ′(β) − λI| = 0.

Solving for λ, the characteristic equation is given by:

λ3 − h3(z)λ2 − h2(y)λ− h1(w) = 0. (7.16)

To extract the stability bounds from the characteristic equation, the fol-

lowing bilinear transformation [118]that maps the interior of the unit circle to

the left-half plane (one-to-one map), is used:

λ =
ψ + 1

ψ − 1
. (7.17)

Hence, (7.16) will be transformed as follows:

ψ3(1−h3−h2−h1)+ψ2(3−h3+h2+3h1)+ψ(3+h3+h2−3h1)+(1+h3−h2+h1) = 0.

(7.18)

It is now possible to apply the Routh-Hurwitz stability criteria, which

allows a check for stability without computing the roots of the characteristic

equation and can be used to determine the range of parameters that guarantees

stability. One starts by building the Routh-Hurwitz array as shown in Table-

7.1.

Table 7.1: Routh-Hurwitz array

Column-1 Column-2
A = 1− h3 − h2 − h1 C = 3 + h3 + h2 − 3h1

B = 3− h3 + h2 + 3h1 D = 1 + h3 − h2 + h1

E = −(AD −BC)/B 0
D 0

As the number of roots with positive real parts is equal to the number of

sign changes in the first column, the elements of column-1 in the above array
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should be all positive to ensure stability of the system, that is:

(1− h3 − h2 − h1) > 0

(3− h3 + h2 + 3h1) > 0

E > 0

(1 + h3 − h2 + h1) > 0.

(7.19)

Generally, useful conditions can be obtained from these inequalities. How-

ever, the fourth inequality (D > 0) is of particular interest. It provides an

important criterion, that is:

cos(β) <
1 + K1 + K2 + K3

(α + 2) + (d2 + 2d3) + (d2d3)
(7.20)

where K3 = (d1 +d2 +d3), K2 = (d1d2 +d1d3 +d2d3), and K1 = (d1d2d3). This

equation imposes a condition on the input dynamic range x in terms of the

gain parameters (α, d1, d2, d3) such that system stability can be preserved.

It is worth noting that, (7.20) can be generalized to represent any order of

Σ∆ modulators when rewritten as follows:

Average =
|x|∑M
i=1 ci

< tan{cos−1(
1 +

∑M
i=1 |ai|∑M

i=1 |ci|
)} (7.21)

where M stands for the system order, {ai} is the set of the coefficients of the

state space variables (ui), and {ci} is the set of coefficients of their correspond-

ing signum functions [sgn(ui)].

The stable input dynamic range for the third-order Σ∆ modulator shown
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Figure 7.4: The theoretical boundary of the gain parameter α versus the average
output according to (7.23).

in Fig.(7.3) with d1 = d2 = d3 = 1 is given by:

x < α tan[cos−1(
8

6 + α
)]

i.e.,

|x| < α

√
(

8

6 + α
)2 − 1 (7.22)

while the stable feedback parameter range is confined to the interval (0,0.5)

since:

α <
cos(β)

1 + cos(β)
(7.23)

Fig.(7.4) shows the theoretical boundary of the feedback parameter α ver-

sus the average output (x/α) of the system. Fig.(7.5) illustrates the theoretical

stability region (the shaded region) imposed by the intersection of the condi-

tions obtained in (7.22) and (7.23). The boundary of this region is compared

with the simulated boundary. As such we have shown that the fixed-point ap-

proximation that we suggested earlier lines up closely with simulation results.



Chapter 7. A Stability of Sigma-Delta Modulators in Ternary Structures 124

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

The gain parameter, α

M
ax

im
um

 D
C

 th
re

sh
ol

d

 Theoretical
 Simulated

Figure 7.5: Stability region (shaded) of the third-order structure (for zero average
output).

7.3 Summary

The behavior of a third-order Σ∆ structure was analyzed under dc input. The

stability problem was addressed using an analogy between the dynamics of the

Σ∆ structure and the sinusoidal digital PLL system. An approximate fixed

point analysis was presented and a stability criteria was derived. Simulation

results were in accord with the theoretical expectations. This analysis can be

extended to any higher-order Sigma-Delta topology.



Chapter 8
Short-Word Length LMS-Like Adaptive
Filtering

8.1 Introduction

Several recent works have made the theory of ternary filtering nearly mature

and ready for application, e.g. [80, 87, 121]. However, for a new filtering theory

to be of large scale application as a substitute for the traditional multi-bit DSP

systems, efficient adaptive structures are inevitable. This is so because most

applications are challenged by noise, distortion, and time-varying conditions.

In fact, one of the major drawbacks that hindered analog signal processing

(ASP) for decades was the lack of adaptivity.

Now days the demand for adaptive filtering can be found in nearly all

applications, especially in communication systems.

Unfortunately, there is no adaptive LMS structure of any kind for short-

word length (ternary or single-bit) filtering. The challenge in this problem is

the harsh quantization that prevents straightforward LMS application.

The conventional infinite-precision LMS adaptive approach has proved to

be efficient in finding optimal minimum mean-square solution for a wide va-

riety of linear estimation problems. That approach is based on the recursive

application of the steepest descent principle to direct the weight-vector to-

wards the optimal solution predicted by Wiener-Hopf equations [123]-[125].

However, two sources of noise errors can be distinguished here, which degrade

125
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the performance. First, the adaptation error (weight update misadjustment)

is inherent to this approach due to the crude approximations adopted in cal-

culating the instantaneous gradient. Second, the finite-precision noise, which

arises in the practical (digital) implementation of the algorithm. The input

data and internal calculations are all quantized to a finite-precision which is

determined by design and cost considerations [126]. Accordingly, the quanti-

zation process causes the performance of a digital implementation to deviate

from the corresponding theoretical design. The effects of these two sources

of noise errors differ in their impact on the performance of the LMS filtering

algorithms. For instance, gradient noise errors are more considerable than

finite-precision errors during the transient stage; whereas the finite-precision

errors become more significant during steady-state (as the adaptation errors

get smaller) and consequently cause performance degradation in the form of

excess mean-square error [127][128].

Unfortunately, when the LMS adaptive algorithm is applied to a short-

word-length system (single-bit or ternary), the effect of the harsh quantization

process (which is a nonlinear process) has a severe impact on the operation

of the standard LMS algorithm and its variations, where they fail to converge

to the Wiener solution. Single-bit systems enjoy very attractive properties as

compared to their multi-bit counterparts. The single-bit implementation pro-

duces a relatively higher performance with lower hardware complexity; how-

ever, their useability in practice (e.g., in communication systems) is very lim-

ited due to their unresolved adaptivity problem.

To compensate for the reduced number of bits used in the quantization

process, the short-word length systems require operation at an oversampled

rate. The oversampling ratio (OSR) is a key parameter in these systems and

is defined as ratio of the actual sampling rate to the Nyquist rate (normally

OSR>>1). Therefore, although their filter order needs to be interpolated by

a factor of OSR, short-word systems are extremely efficient from hardware

implementation viewpoint [4],[80]. The core element in these systems is the
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Figure 8.1: Adaptive multi-bit noise cancelling.

the sigma-delta (SD) modulator. Several works have addressed the topic of

adaptivity in the single-bit domain (e.g., [129], [63], [73], [130], [74]), either

by attempting to optimize the performance (SNR, stability, etc) or to increase

the dynamic range. However, there has been no attempt towards the topic of

single-bit adaptive filtering. In [131], a SD structure for adaptive LMS filtering

which circumvent the interpolation and decimation requirements is introduced;

however, the LMS algorithm is still achieved using multibit representation.

Moreover, the oversampled SD structure requires more multibit arithmetic

operations per time unit as compared to a PCM system.

A key application of adaptive systems is noise cancelling. For estimation of

narrow-band signals with unknown frequency content, the adaptive realization

of a Wiener filter (using Widrow-Hoff LMS algorithm) can be utilized with the

desired (reference) signal d(k) chosen to be the noisy input sequence x(n) =

s(n) + ν(n) itself, while a delayed version of x(n) is chosen as the filter input

as shown in Fig.(8.1) (n being the sampling index). This structure is based on

the fact that noise ν and original signal s are uncorrelated [132].

In this chapter we attempt to solve this problem by proposing an efficient

structures for adaptive noise reduction. This application is of major signifi-

cance in many applications, such as communication channel equalization. The
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results were quite astonishing as the performance of these structures are com-

parable to that of multi-bit LMS Wiener algorithm. Two short-word length

adaptive structures are proposed, namely, ternary and single-bit adaptive fil-

ters.

In Section 8.2 an adaptive ternary LMS-like algorithm is introduced. Per-

formance assessment using a sinusoidal input distorted by additive white Gaus-

sian noise showed that the proposed algorithm is comparable to the traditional

multi-bit Wiener LMS algorithm. We expect that this approach will open the

door for ternary systems to be ready for replacing multi-bit signal processing

systems.

A single-bit adaptive LMS-like filtering is introduced , analyzed, and sim-

ulated in Section 8.3. The input (noisy) signal, the output (estimated) signal,

and the FIR filter coefficients are all in single-bit (ternary) format; as such

the system would be simple to implement using FPGA technology. The need

for decimators, interpolators, and multibit multipliers is now eliminated. The

proposed adaptive structure is shown to converge in the LMS sense. As the

algorithm processes blocks of input data, it will be called SBLL (Single-Bit

Block LMS-Like) to highlight the similarities with the standard block LMS.

Subsection-8.3.1 outlines the main features of the proposed adaptive filtering

and an approximation to the gradient function is addressed. In Subsection-

8.3.2 a structure is set up and analyzed. In Section-8.4, the convergence prop-

erties are discussed and compared to the conventional infinite-precision LMS

algorithm. Performance evaluation in terms of SNR, stability, and response to

non-stationary inputs is addressed.

8.2 An Adaptive Ternary Algorithm:

To the best of our knowledge, the issue of ternary adaptive algorithm has not

been addressed yet, and is considered as an unresolved problem.

We propose a structure inspired from the well-known LMS adaptive tech-
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niques. Fig.(8.2) illustrates the ternary structure that carries out the proposed

adaptive algorithm. We assume that the received (observed) signal, r(n), is

in single-bit format that represents the digitized original signal x(t) distorted

by white Gaussian noise η(t) ∈ N (σ2, 0). The same scenario in Fig.(8.2) can

be used to represent a baseband version of a digital single-bit communication

system with bandpass modulation [122].

The symbol x̂(i) stands for the multibit estimated signal, and y(i) is the

estimated signal in single-bit format. The operation of this adaptive structure

can be described as follows. The ternary system is comprised of M adapt-

able taps and operates at an oversampling rate R (R = 64, 128, · · · ). This

requirement has already been met as the input signal is assumed to be Σ∆

modulated. The single-bit estimated signal y(i) is loaded sequentially into a

shift register of length M , where the register content can be expressed by the

vector:

y(i) = [y(i), · · · , y(i−M − 1)].

Likewise, the regressor vector of the received single-bit signal will be: r(i) =

[r(i), · · · , r(i−M − 1)], which is assumed to be in the form r = x + η, where

x is the original signal vector in single-bit, and η is the single-bit noise vector.

This structure updates the ternary coefficients (taps) {h(j)|j = 0, 1, 2..,M−
1} once every ∆ samples, where ∆ is dependent on the oversampling ratio R,

i.e., at Nyquist rate. This weights updating can be expressed as follows:

hn =
1

2
(rn − yn). (8.1)

where n = i mod ∆, and ubscripts are used for time indexing instead of the

brackets. The multi-bit estimated signal x̂ at any instant i is given by:

x̂i = αhT
n−1ri (8.2)

where α is a small positive parameter.

As x̂ is in multi-bit format, a second-order standard Σ∆ modulator is used
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Figure 8.2: Structure of the Adaptive ternary filter. Note that "D" represents a
single-bit delay element.

to convert x̂ to a bit-stream (re-modulation). This Σ∆ stage should have a

flat frequency response in the band of interest such that the information in x̂ is

maintained. However, this stage will inevitably introduce noise to the output

yi due to the quantization error Qi. In addition, to preserve stability of the

system, the value of x̂ should be maintained within the dynamic range of the

Σ∆ modulator. This can be guaranteed by introducing the gain parameter

α, which is a small positive number. The parameter α is dependent on the

oversampling ratio (R)and the filter order at Nyquist rate N . This is so because

the number of taps is proportional to R. For simplicity of implementation, α

takes on negative powers of 2.

The instantaneous single-bit estimated output yi is given as follows:

yi = sgn(ui) (8.3)
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where ui is the quantizer input of the Σ∆ given by:

ui = 2ui−1 − ui−2 − 2yi−1 + yi−2 + x̂i−1 (8.4)

From eq.(8.1), the filter coefficients vector can be given as:

hn =
1

2
[rn − sgn(un)] (8.5)

From eq.(8.5), it is evident that elements of hn ∈ {0, +1,−1}.

8.2.1 Simulation and Discussion:

To assess the performance of the proposed adaptive ternary structure in terms

of the improvement in the SNR, we attempt to compare it with that of a

traditional LMS adaptive algorithm under similar circumstances. Fig.(8.3)

illustrates the improvement in terms of the ratio ρ = SNRo/SNRi versus the

SNRi, where SNRo and SNRi denote the signal-to-noise ratio (SNR) at the

output and at the input of the system, respectively. The oversampling ratio is

chosen as R = 128, and the number of ternary coefficients is M = 2560. The

observed signal (input) ri is assumed to be the single-bit digitized version of

the original sinusoid x(t) which is distorted by additive white Gaussian noise

η(t). The sinusoid has an amplitude A = 0.5 and a frequency fo = 2000 Hz.

We assume an adaptive LMS FIR filter with N = M/R = 20 coefficients,

operating on the same input signal. To be in the safe side, we assume the filter

sampling rate as 4× Nyquist rate with infinite bit resolution. Moreover, the

optimum µ (that gives minimum MSE) is used in this comparison as shown in

Fig.(8.4)(µ=0.0003 in this case).

It is obvious from Fig.(8.3) that the adaptive ternary filter shows superior

response (better ρ) when the input SNR, SNRi, is less than 12 dB. On the

other hand, the performance of the adaptive ternary algorithm deteriorates

for SNRi > 22 dB as compared to the multi-bit LMS algorithm which exhibits

better ρ until SNRi = 28 dB.
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Figure 8.3: SNR improvement using adaptive filtering: ternary (solid) versus LMS
(dashed) using a noisy sinusoid.

In Fig.(8.5), the tracking response of the adaptive ternary filter to the noisy

sinusoid with SNRi = 10 dB is depicted. Fig.(8.6) shows the corresponding

spectra of both the received and estimated signals. It is evident that the

SNRo = 24.28 dB which means that an improvement of ρ=14.28 dB has been

achieved.

This adaptive ternary structure is very efficient from hardware implemen-

tation point of view, as the ternary taps can be realized by using simple mul-

tiplexers. Moreover, the updating rate ∆ can be achieved through the use of

a conventional counter.

8.2.2 Discussion:

As per LMS, filter coefficients are updated based on a weighted difference

between the filter output (which is an estimation of the original signal) and the

reference signal (chosen her to be a delayed version of the input signal itself).

This is based on the assumption that noise and signal are uncorrelated; this

is true for sinusoids and all narrow-band signals. The estimation error (versus

iterations) converge in LMS sense as in Fig.(8.7), similar to the conventional

LMS. The system is stable as long as SDM is stable.
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8.3 A Single-Bit Adaptive Approach

The proposed adaptive filtering structure is to be entirely achieved in single-bit

domain and thus has to operate at an oversampled rate. Intuitively, due to

the harsh quantization in the single-bit domain, one might exclude the sample-

by-sample scheme of operation as per the standard LMS algorithm. This

suggests using blocks of samples instead (the LMS algorithm can be viewed as

a special case of the block-LMS with block-length = 1, [133]). Inspired by the

conventional block LMS (BLMS) structure and the noise-cancellation principle

in Fig.(8.1), Fig.(8.8) illustrates a block diagram of the suggested structure.

The input signal is assumed to be a single-bit sigma-delta (SD) modulated

noisy sinusoid shifting into a single-bit delay line of the FIR filter, referred

to here as FIRb to highlight the fact that its coefficients are all in single-bit

format. The FIRb filter order has to be an interpolated version (by a factor

of OSR) of its equivalent Nyquist rate order (m), i.e., M = m × OSR. The

FIRb filter output (estimated signal) will be in multi-bit format; accordingly,

it should be scaled and re-modulated into single-bit format by utilizing a SD

modulator. The single-bit estimated signal is then synchronously shifted into

a separate shift register (output delay line) with same length as that of the

FIRb filter (M). In order to end up with approximated Wiener solution,

the adaptive algorithm has to comply somehow with the conventional LMS

algorithm to adjust the single-bit tap-weights. The weights are updated once

per block of input samples, so they are updated at a rate much lower than the

input signal sampling rate.

The main obstacle to be faced here is that the approximated instanta-

neous gradient will be a switching function since x(n) ∈ {−1, +1}. If this case
happens in the conventional LMS algorithm, it will definitely lead to unsuc-

cessful convergence to the optimal Wiener solution. This is so because The

LMS algorithm relies on a noisy instantaneous estimate for the gradient vector,

with the result that the weight-vector estimate for large number of iterations
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Figure 8.8: A proposed block-diagram for single-bit LMS-like adaptive filtering.

can only fluctuate around the optimum value w* in Brownian-motion manner

(equivalent to the discrete-time version of the Langevin equation) [126]).

8.3.1 Gradient Approximation

In the standard adaptive FIR algorithm, following the same notations, the

output y(k) is equal to the inner product:

y(k) = xT (k)w(k) (8.6)

The error e(k) is defined as

e(k) = d(k)− xT (k)w(k) (8.7)

where d(k) is the desired response. The purpose of the adaptive algorithm

is to adjust the tap weights to optimize the filter response in the sense of

minimum mean-square-error (mse). Assuming the that the observed signal

and the desired response are wide-sense stationary processes, then by squaring

and expanding eq.(8.7) the mean-square error in terms of tap weight values is
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given by:

e2(k) = d2(k)− 2d(k)xT (k)w(k) + wT (k)x(k)xT (k)w(k) (8.8)

Taking the expectation to both sides will give

E[e2(k)] = E[d2(k)]− 2E[d(k)xT (k)]w(k) +

wT (k)E[x(k)xT (k)]w(k). (8.9)

From this equation, one can defineP as the cross-correlation vector between

the desired response and the observed matrix, i.e, P = E[d(k)x]. Moreover,

the input autocorrelation matrix R is defined as R = E[x xT (k)]. Thus, the

mean-square error can be described as

E[e2(k)] = E[d2(k)]− 2PTw(k) + w(k)TR w(k). (8.10)

From eq.(8.10), the mean-square error function can be viewed as a concave

hyperparaboloidal surface which never goes negative [134]. This function can

be represented using gradient method by differentiating eq.(8.10):

H = ∂E[e2]/∂w = −2P + 2R w. (8.11)

The Wiener-Hopf equations is obtained (in matrix form) by setting the

gradient 5 to zero, thus, the optimal tap weight vector w∗ is expressed as

w∗ = R−1P (8.12)

Practically, R−1P can not be found because of the lack of knowledge of the

statistics of both R and P. The LMS adaptive algorithm has overcome this

problem by finding an approximate solutions to (eq.8.12) [124].

The LMS algorithm is an application of the steepest descent method, that
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is, the tap weight vector w is iteratively updated as follows:

w(n + 1) = w(n)− µH(n) (8.13)

where µ is the step-size that controls the rate of convergence and 5(n) is the

gradient vector at time n. According to eq.(8.13), the change in the weight

vector is proportional to the negative gradient. The LMS algorithm performs

an instantaneous gradient descent estimation of the weight vector by assum-

ing E[e2(k)] → e2(k) then differentiating e2(k) w.r.t w(k) (differentiating the

instantaneous squared-error w.r.t weight components) as follows:

H(k) = 2e(k)[∂e(k)/∂wo, · · · , ∂e(k)/∂wM−1]. (8.14)

Thus, the instantaneous gradient will equal to −2e(k)x(k). Substituting

into eq.(8.13), the well-known Widrow-Hoff LMS algorithm [124] is given by:

w(k + 1) = w(k) + 2µe(k)x(k). (8.15)

Now applying the same analysis used in the above standard LMS algorithm

to a single-bit system (with both the input and the output in single-bit format,

i.e., x(k) and y(k) ∈ {+1,−1}) would definitely drive it to divergence due to

the harsh quantization of the input, which will produce a switching instan-

taneous gradient function (∂e2(k)/∂wi) that jumps around large quantities; a

situation that cannot be tolerated by the adaptive algorithm.

In order to maintain the change of the weight vector (in single-bit adap-

tation) in a minimal manner sense [124], it is necessary to suggest a feasible

solution which must manifest the principle of minimum perturbation [127]

which has already been utilized by the existing adaptive algorithms. In addi-

tion to the approximation made by Widrow (i.e., E[e2(k)] → e2(k)), it should

be taken into account that the error is no longer a continuous variable, in fact

e(k) ∈ {−1, 0, 1} hence if we define the function γ(k) ∈ {−1, 0, +1}, the effect
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of ∂e(k)/∂wi would be replaced by γ(k), noting that wi ∈ {−1, 1}.
To comply with the steepest descent method given in eq.(8.13), the partial

differentiation equivalent function γ(k) should undergo a minimum change

during successive iterations. Thus, the only non-zero choice is to use the

approximation γ(k) = 1. The single-bit gradient function will be given as

5(k) = −2e(k). (8.16)

The above formula will be utilized to reach an approximation to the optimal

Wiener solution w* in the single-bit-domain adaptive filter as will be seen in

the next Subsection.

8.3.2 System Design

The input signal is assumed to be a single-bit sigma-delta modulated gaussian

noise corrupted sinusoid. Let the M × 1 single-bit input signal vector at time

index n be expressed as

x(n) = [x(n), x(n− 1), · · · , x(n−M + 1)]T (8.17)

where [.]T indicates transposition. Let ∆ denotes the block length (1/∆ rep-

resents the updating rate), and M represents the length of the interpolated

single-bit FIRb filter (i.e., M = m × OSR, where m is the multi-bit Nyquist

rate equivalent filter order). As per conventional BLMS, one may assume any

of the following cases: ∆ < M , ∆ = M , or ∆ > M . However, the first two

cases (∆ ≤ M) are probably preferred in most applications [133] and hence

adopted throughout this Section. In addition, for a simpler implementation,

it is better to choose power-of-2 values for M and ∆.

Let the single-bit coefficients vector of the FIRb filter at time index n be

denoted by

w(n) = [wo(n), w1(n), · · · , wM−1(n)]T (8.18)
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and the single-bit estimation output vector at time n be denoted as

y(n) = [y(n), y(n− 1), · · · , y(n−M + 1)]T . (8.19)

To proceed in terms of block notation, let k refer to the block index which

is related to the original sampling index n as follows

n = k∆ + i mod ∆, k = 1, 2, 3, ... (8.20)

The single-bit input data for block k is therefore defined by the set {x(k∆+

i)}i=∆−1
i=0 , which can be expressed in matrix form as

A(k) = [x(k∆),x(k∆ + 1), · · · ,x(k∆ + ∆− 1)]. (8.21)

Over this block of input data, the tap-weight vector of the filter is held

constant at the value w(k).

The estimation output, x̂(k∆ + i), produced by the FIRb filter in response

to the input signal vector x(k∆ + i) is given by

x̂(k∆ + i) = wT (k) x(k∆ + i). (8.22)

This signal is in multi-bit format and should be remodulated into single-bit

representation. Practically, this can be done by introducing a sigma-delta mod-

ulation stage. This Σ∆ modulator must have a flat signal frequency response

over the bandwidth of interest. This implies that the Σ∆ modulator should

not modify the specifications of the estimation signal, moreover, it requires

operation at an oversampled rate (OSR). This requirement will be satisfied as

the input signal has already been assumed here to be a Σ∆ modulated bit-

stream. The single-bit version of the estimation output y(k∆ + i) can be then

described as

y(k∆ + i) = sgn[αx̂(k∆ + i)]. (8.23)
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where α is a gain parameter. Using the well-known linear approximation to

model the behavior of the sigma-delta modulator [80][128], the output can thus

be given as

y(k∆ + i) = αx̂(k∆ + i) + Qy(k∆ + i) (8.24)

where Qy(k∆ + i) represents the (shaped) quantization noise due to the mod-

ulation effect; given by the following convolution

Qy(k∆ + i) = α

∆−1∑
j=0

hjq(k∆ + i− j). (8.25)

where hj characterizes the impulse response coefficients of the noise transfer

function of the sigma-delta modulator (note that the term ho is always unity)

and q(k∆+ i) is the quantization noise. Assuming q(k∆+ i) is an i.i.d random

process and also independent of the input signal x̂(k∆ + i). Let the 1 × ∆

quantization noise vector is defined as

Qy(k) = [Qy(k∆), Qy(k∆ + 1), · · · , Qy(k∆ + ∆− 1)]T . (8.26)

Substituting eq.(8.22) into eq.(8.24), the single-bit output is

y(k∆ + i) = αwT (k) x(k∆ + i) + Qy(k∆ + i). (8.27)

or, in matrix form,

y(k) = αAT (k) w(k) + Qy(k), (8.28)

where A(k) is an M ×∆ matrix defined in eq.(8.21).

To develop an adjustment formula for the tap weights vector, we start with

defining the error signal. Recalling eq.(8.16) and taking into consideration the

block nature of operation of the proposed SBLL, the error vector at any time

instant is given by

e(k∆ + i) = x(k∆ + i)− y(k∆ + i), (8.29)
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and is defined at block k as

e(k) = x(k)− y(k). (8.30)

The tap-weights must be restricted to single-bit format, i.e., wj ∈ {−1, +1}.
This task can be carried out by using a single-bit quantizer. Thus, the updating

formula may be described as

w(k + 1) = sgn[w(k) + µe(k)] (8.31)

where µ is a proposed step-size parameter of the SBLL filtering. To this end,

eq.(8.31) can be utilized to construct the proposed SBLL adaptive structure

which is illustrated in Fig.(8.9).

Again, using the linear approach to model the quantizer, the quantizer

output can be represented as a combination of the quantizer input and a white

quantization noise. Thus, by substituting eq.(8.29) into eq.(8.31), the updating

formula can be approximated as

w(k + 1) = w(k) + µ[x(k)− y(k)] + Qw(k). (8.32)

where Qw(k) is an M -by-1 vector which represents the tap-weight quantiza-

tion noise. Now, substituting eq.(8.28) into eq.(8.32) yields the final updating

formula

w(k + 1) = w(k) + µ[x(k)−
αAT (k)w(k) + Qy(k)] + Qw(k). (8.33)

It is convenient here to recall the updating equation of the conventional

BLMS using the same notation as above:

w(k + 1) = w(k) +
µ

∆

∆−1∑
i=0

x(k∆ + i)e(k∆ + i). (8.34)
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Figure 8.9: The proposed single-bit block LMS-like (SBLL) adaptive structure.

The second term of the right-hand side of eq.(8.34) represents the block

gradient, which is a linear correlation between the error signal and the input

vector. That is, the error signal is a single sample (produced by averaging the

most recent ∆ error samples). On the other hand, according to eq.(8.31), the

block gradient in SBLL is represented by a single-bit quantized error vector

which is described in eq.(8.33) as x(k)− αAT (k)w(k) + Qy(k).

8.4 Stability of SBLL

The convergence properties of the SBLL filtering are the required bounds on

the convergence constant (µ), rate of convergence, and the misadjustment.
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These properties are equivalent to that of the standard multi-bit BLMS and

can be found in several works (e.g., [135][136][133]). However, it is expected

that the convergence accuracy (misadjustment) in the SBLL case would be

relatively more noisy because of the crude approximation adopted in the it-

erative calculation of the gradient function. In addition, convergence of the

SBLL is affected by two additional issues: the intolerable harsh quantization

errors imposed on the recursive weight updating formula (see eq.(8.33)), and

the optimum input dynamic range of the SD modulator stage in the sense of

maximum attainable SNR.

8.4.1 Dynamic Range of the SD Modulator

As shown in Fig.(8.9), the input to the SD modulator stage x̂(k) is the convo-

lution between the input x(k) and the FIRb filter coefficients (both are inter-

polated by a factor of OSR). The gain parameter α is introduced to ensure the

stability of the SD modulator and is chosen such that it provides maximum

SNR. This depends on the SD design parameters as well as the block length

(∆), that is,

α =
1

∆
. (8.35)

This may suggest that the performance of the SBLL would be improved

further in terms of SNR when a suitable adaptive SD modulator scheme is

utilized. Adaptive dynamic range single-bit SD modulators can be found in

several works [129]-[73]. The second-order SD modulator shown in Fig.(8.10)

is used in this work.

8.4.2 The Updating Step-Size

The effective step-size µ̂ for the second term of the gradient estimate on the

right-hand side of the updating equation given in eq.(8.33) can be expressed

as

µ̂ = α µ =
µ

∆
. (8.36)
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Figure 8.10: The second-order SD modulator used in Fig.(8.9).

This expression conforms to that utilized in the conventional BLMS. The

convergence properties of the BLMS and LMS algorithms depend heavily on

the eigenvalues of the input autocorrelation matrix. Moreover, the maximum

and minimum eigenvalues can be related to the maximum and minimum values

of the power spectrum. A necessary (but not sufficient) stability bound on the

step-size parameter µ of the LMS filter for large FIR length (M) is given in

[130] as follows

µ̂ =
2

MSmax

, or µ =
2

mSmax

(8.37)

where Smax denotes the maximum value of the power spectral density S(Ω).

However, for a single-bit signal, the eigenvalues of the input autocorrela-

tion matrix would have differen values and a different meaning. It is evident

according to simulation results that the proposed adaptive filter is stable for

0 < µ < 0.5 (for instance, the SBLL is always stable for µ = 0.4999).

8.5 Simulation and Discussion

The SBLL performance has been verified using MATLAB simulation. The

input signal x(n) is assumed, throughout the simulation unless otherwise is
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stated, to be the single-bit (oversampled) digitized version of the original sinu-

soid s(t) which is distorted by additive white Gaussian noise ν(t) ∈ N (σ2, 0).

The sinusoid has an amplitude A = 0.5 and a frequency fo = 2000 Hz. The

Nyquist rate FIR filter order is assumed as m=20, and the oversampling ra-

tio is chosen as OSR = 128, therefore, the number of single-bit coefficients is

M = 2560.

8.5.1 Learning Curves

To assess the performance of the proposed single-bit adaptive algorithm, it is

necessary to construct its ensemble-average learning curve, which is defined as

[127]:

J(k∆ + i) = E|d(k∆ + i)− y(k∆ + i)|2 (8.38)

where E denotes the expectation operator. The ensemble-average learning

curve over the interval 0 ≤ k ≤ N is defined as the average over the L realiza-

tions as:

Ĵ(k∆ + i) =
1

L

L∑

l=1

|e(l)(k∆ + i)|2 (8.39)

where Ĵ(k∆ + i) is the sample-average approximation of the actual learning

curve. The desired response used here is represented by a delayed version of

the input signal x(k∆ + i).

To evaluate the convergence properties of the single-bit adaptive filtering

SBLL, Fig.(8.11) depicts a comparison between learning curves of the over-

sampled SBLL (M = 20× OSR, where OSR = 128) and the conventional

infinite-precision LMS algorithms for a noisy sinusoidal input with Nyquist

rate FIR filter order m = 20 with additive Gaussian noise power of -27.5 dB

and SNRi = 24.6 dB. Whereas Fig.(8.12) compares the learning curve (deci-

mated by a factor of OSR to return to Nyquist rate) of the SBLL with that of

the standard infinite-precision LMS using same parameters as in Fig.(8.11).
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Figure 8.11: A comparison between the (undecimated) learning curves of the single-
bit adaptive filter SBLL and the conventional LMS for a noisy sinusoidal input with
m=20, SNRi = 24.6 dB, and noise power -27.6 dB for both cases.
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= 128).

8.5.2 Signal-to-Noise Ratio (SNR)

This Section is concerned with noise cancellation from narrow-band single-bit

input signals. In order to assess the improvement in the output SNR (SNRo)

as a function of the SNR at the input (SNRi), a performance parameter ρ

is defined as ρ = SNRo(dB)/SNRi(dB). It is noteworthy here that these

SNR terms refer to in-band signal-to-noise ratios, as we are not interested in

frequency bands outside it. Fig.(8.13) shows a performance comparison (in

terms of ρ) between the SBLL and the infinite-precision LMS. It is clear that

the SBLL outperforms LMS for SNRi < 16 dB. According to eq.(8.33), this

phenomenon would be attributed to dithering effects, as the low SNRi would

be compensated by the uncorrelated white noise due to the harsh quantization

as discussed in Sections II and III. On the other hand, the converse occurs

for SNRi > 16. This is expected, using the same argument. However, both

algorithms deteriorate (i.e., ρ < 0 dB) at almost the same value of SNRi.

To emphasize the noise cancelling effect of the SBLL on the original noisy

sinusoid analog input signal (before SD modulation), Fig.(8.14) shows this in-

put with fo=2 kHz and SNR=10 dB (noise power=-19 dB), along with the

demodulated estimation signal (i.e., the decimated and low-pass-filtered ver-
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Figure 8.14: A comparison between the the original analog noisy sinusoid, i.e.,
before SD modulation (above) with SNR = 10 dB, and the output of the SBLL filter
(below).

sion of the estimation signal).

On the other hand, the ρ is also affected by the oversampling ratio (OSR)

which is a decisive design parameter in single-bit systems. Fig.(8.15) depicts

the impact of different OSR (OSR = 64, 128, and 256) on the SNR performance

of the proposed adaptive filter. This result is expected, as increasing OSR

improves correlation, on which this de-noising is based. However, this will

increase the FIRb length M , and therefore, selecting an appropriate OSR

becomes a matter of tradeoff between hardware implementation simplicity and

design requirements.
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Figure 8.16: Tracking response of the adaptive single-bit filter: (dark) estimated
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Figure 8.15: SNR improvement using the SBLL as a function of OSR: (solid) OSR
= 256, (dashed) OSR = 128, (dotted) OSR = 64.

8.5.3 Non-Stationary Inputs

The SBLL is tested using narrow-band time-varying input signals. Simulations

indicate a comparable performance to that of LMS. Fig.(8.16) depicts the

the tracking response of the reconstructed (low-pass filtered) SBLL output
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to an oversampled single-bit non-stationary input signal which is a digitized

version of the AM-FM signal x = A cos(2πf1t) cos[2π(fo + β sin(2πf2))], with

modulation index β=0.05. The in-band power spectra of this signal along with

the adaptive filter output are shown in Fig.(8.17), whereas Fig.(8.18) illustrates

the spectrum of the estimated signal using the SBLL filter in response to the

same single-bit AM-FM input.

8.6 A Two-Bit LMS-Like Adaptive Filtering

One of the thesis objectives is to address the wondering about the the opti-

mum word length that might be adopted in short-word length filtering. Of

course, single-bit digital filtering represents the ultimate limit of hardware im-

plementation simplicity. This feature applies as well to the ternary structure as

long as fixed (non-adaptive) filtering is concerned. This is so because the zero

coefficients are considered as “don’t care” (i.e., no connections are required).

However, this is not the case if adaptive ternary filtering is considered, as the

adaptive coefficients vary with time (nonstationary). Hence, adaptive ternary

filtering should use two wires to represent the binary set {-1,0,+1}, which is

in fact an inefficient usage of the hardware connections. Therefore, moving to

2-bit option seems to be an optimum exploitation to the VLSI chip area as the

resolution will increase for the same hardware complexity.

On the other hand, a comparison between single-bit and 2-bit systems is

a matter of compromise between the cost and performance, since single-bit

adaptive filtering is definitely simpler in hardware realization as compared to

its 2-bit counterpart, whereas 2-bit adaptive filtering is expected to show a

superior performance.

It has been found that the same single-bit adaptive topology shown in

Fig.(8.9) can be utilized after replacing the single-bit quantizers and the con-

nections by their 2-bit counterparts as depicted in Fig.(8.19). That is, the

internal Σ∆M is now with a four-level internal quantizer. The input (ob-
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served) and the estimation output of the adaptive filter are assumed in 2-bit

format, specifically, the set {-1,-0.5,+1,+0.5}.

8.6.1 Performance Comparison

Apart from the 2-bit format, the same analysis technique used in the case of

single-bit adaptive filtering in Section-8.3 can be applied to the 2-bit adaptive

structure shown in Fig.(8.19).

Learning Curve: Fig.(8.20) shows a comparison between the oversampled

learning curve version of the 2-bit adaptivity and the traditional infinite-

precision LMS one. While Fig.(8.21) shows the same comparison using the

decimated learning curve version. It is evident from these two figures that

the conversion rate in the 2-bit LMS-like adaptive filter is comparable to the

ternary and single-bit ones.

SNR Improvement: Simulation shows a remarkable improvement in ρ in

the case of 2-bit adaptivity relative to the other cases, especially in the large

values region of input SNR (SNRi). Fig.(8.22) shows a comparison among

these proposed adaptive schemes. It is quite impressive to find out that the

improvement in SNR achieved in the 2-bit LMS-Like adaptive filter exceeds

that of the conventional infinite-precision LMS algorithm for all values of SNRi.

In the above figure, at SNRi=20 dB point ρ = 14 dB for 2-bit case, ρ = 9 dB

for LMS case, ρ = 6.5 dB for single-bit case, while ρ = 2 dB for the ternary

adaptive filter case. The moderate performance of the proposed ternary adap-

tive structure (compared to that of the single-bit adaptive structure) is due to

the filter taps updating method, which is relatively less optimized in the sense

of LMS algorithm (see 8.5) compared to that of the single-bit adaptive case.

In Fig. (8.23), the effect of OSR on ρ for 2-bit adaptivity is depicted. Three

different values of OSR (64, 128, and 256) are used.

To demonstrate the performance efficiency of the 2-bit adaptive filtering,

Fig. (8.24) shows the input-output power spectra for noisy sinusoid input with

SNRi=10.4 dB. It is evident that SNRo=31.5 dB has been achieved, hence
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Figure 8.19: The proposed 2-bit block LMS-like (SBLL) adaptive structure.

ρ=21.1 dB.

8.7 Summary

The conventional LMS family of adaptive algorithms fail to converge if trans-

lated to the single-bit (ternary) domain. As such the distinctive advantage of

short-word length systems, namely, the hardware implementation simplicity,

has not been put into effect.

In this chapter we introduced an approach for adaptive ternary filtering.

Despite the simple structure, simulation results showed that the proposed algo-

rithm is parallel in performance to the standard multi-bit LMS algorithm. we

expect that this approach will open the door for a wide range of applications

for ternary systems.

In addition, a single-bit-domain LMS adaptive filtering structure for noise

cancelling where all input, output, and filter coefficients are in single-bit for-
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Figure 8.20: A comparison between the (undecimated) learning curves of the single-
bit adaptive filter SBLL and the conventional LMS for a noisy sinusoidal input with
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Figure 8.24: Power spectra of a sinusoid input (above, with SNRi = 10.4 dB) and
the corresponding output (estimation) signal (below).

mat. The proposed structure is designed and analyzed, and its performance

has been evaluated (in comparison to the conventional Widrow-Hoff multi-

bit LMS algorithm) in terms of convergence properties, signal-to-noise im-

provement, and computational complexity. Simulation results showed that

the proposed adaptive structure exhibits performance that is equivalent to the

infinite-precision LMS algorithm.

Finally, a 2-bit LMS-like adaptive filter has been constructed by expanding

the proposed single-bit adaptive filter into 2-bit structure. This attempt is

to search for the optimum word length. Simulation results showed that the

2-bit adaptive filter possesses superior performance over the other two pro-

posed adaptive filters. This is also true for the case of infinite-precision LMS

algorithm as long as noise cancelling application is considered.



Chapter 9
Conclusions and Future Work

9.1 Conclusions

In this thesis the design of single-bit, ternary, and 2-bit systems have been

considered in an attempt to make short word-length digital signal processing

(DSP) ready for general use as an alternative for multi-bit DSP.

Chapters 1 and 2 presented an introduction and a literature survey of

single-bit techniques. Chapter 3 presented an introduction to ternary systems.

In Chapter 4, two structures for single-bit digital comb filtering are pro-

posed and simulated. In the first structure, a comb filter is designed based

on ternary filtering such that both the input signal and the target impulse re-

sponse are encoded using a Σ∆ modulator. The second structure is based on

a second-order Σ∆ modulator. The frequency response obtained in both cases

is very near to the required response of a comb filter. The proposed filters

can be built using simple hardware, and hence they are potentially suitable for

VLSI implementation. They are also suitable for broadband applications such

as power-line communications.

A design technique for single-bit systems using a feedback path filter to

tune the response of the Σ∆ modulator is proposed. This may suggest uti-

lizing ternary filters in the feedback loop in future work. A single-bit digital

comb filter is designed and its performance is evaluated in terms of signal-

to-quantization noise ratio (SQNR), the dynamic range (input signal level),

158
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and stability. Moreover, we showed that the same design technique can be

used for other single-bit systems, where we used it to design a multi-period

resonator. It was shown that the proposed filters lend themselves very well to

broadband input signals and can be utilized in emerging technologies such as

the Broad-Band Power-line Communication (BPLC).

In Chapter 5, a ternary DC blocker structure is presented. This type of

filtering is useful in practice to improve the stability and dynamic range of

single-bit systems. The DC blocker is essentially a ternary filtering structure

whose input and output are both assumed to have single-bit format. Perfor-

mance has been tested for different kinds of input signals, including sinusoidal,

FM, and AM-FM signals.

We also proposed a single-bit multiplierless DC-blocking structure. The

input is assumed to be sigma-delta modulated bit-stream. This DC-blocker

is designed using a delta modulator topology with sigma-delta modulation

embedded in its feedback path. Its performance is investigated in terms of the

overall signal-to-noise ratio, the effectiveness of DC removal and the stability.

In Chapter 6, a ternary-Σ∆ structure was analyzed mathematically with-

out imposing any approximations. It was evident that the system exhibits a

conditional limit cycle behavior. These conditions includes the initial quanti-

zation noise conditions and the constant gain parameter in addition to the dc

input magnitude. The system was then simulated extensively and a random

search method is utilized to discover and extract the limit cycles and identify

their features. It seemed that this topology, which is similar to third order Σ∆

modulator possesses a highly non-linear behavior. The issue of limit cycles in

higher order modulators is vital for studying the instability problem.

In Chapter 7, the stability problem was addressed using an analogy between

the dynamics of the Σ∆ structure and the sinusoidal digital PLL system. An

approximate fixed point analysis was presented and a stability criteria was

derived. Simulation results were in accord with the theoretical expectations.

This analysis can be extended to any higher-order Sigma-Delta topology.
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The lack of adaptive LMS structures in single-bit systems has substantially

limited their useability despite their major advantage of hardware simplicity

over multi-bit systems.

In Chapter 8 of this thesis we introduced an approach for adaptive ternary

filtering. Despite the simple structure, simulation results showed that the

proposed algorithm is parallel in performance to the standard multi-bit LMS

algorithm.

Moreover, a single-bit block LMS-like algorithm that seems to be quite

promising is proposed. It has been shown that the proposed single-bit algo-

rithm is comparable in performance to the multi-bit conventional LMS algo-

rithm.

To study the optimum length of the short-word length, we introduced a

2-bit block LMS-like algorithm that seems to be quite promising. It has been

shown that the proposed 2-bit algorithm has a superior performance compared

to the ternary and single-bit adaptivity. It was quite impressive to find out that

2-bit adaptive scheme outperforms the conventional multi-bit LMS algorithm

as long as the noise cancelling application is concerned.

A comparison among these short-word length adaptive techniques suggests

a compromise between relative complexity and performance, and hence, choos-

ing any one of them depends on the application requirements. However, ac-

cording to the simulation results, we believe that 2-bit systems would be a

reasonable replacement to the conventional PCM systems. We expect these

adaptive approaches to open the door for short-word-length systems to be a

practical alternative to multi-bit signal processing systems.

9.2 Future Work

Every effort has been made in this thesis to tackle the problematic and unre-

solved issues in ternary and single-bit sigma-delta modulator-based systems.

However, as it is the case with all active topics, research will never stop at a
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certain edge.

As the VLSI technology is reaching the physical limit both in speed and

integration level, it is expected that within the next two decades, photonics

will replace the conventional electronics platform. Once this occurred, and it

will, the short-word length era will undoubtedly erupt and short-word length

systems would replace the existing traditional PCM approach.

Apart from the new single-bit and ternary DSP applications as well as

the new stability approach proposed in this Thesis, we think that the most

important achievement in this work is the establishment of adaptive short-word

length (single-bit, ternary and 2-bit) LMS-Like algorithms. This is so because

this problem has been considered as an unresolved issue in DSP. Accordingly,

we strongly recommend further research in the following directions:

1. There are some fundamental adaptive applications that need to be in-

vestigated, specifically, the short-word length equalizer. Also, the short-

word length matched filter is of vital importance. These two systems

should be addressed if we want to utilize single-bit ternary structures

in digital communication systems. However, these tasks are nontrivial

and need a lot of innovative work.

2. Studying the effect of dithering on the performance of the proposed

short-word length adaptive structures.

3. Attempting to design and implement a complete short-word length com-

munication system using FPGAs. This aim is largely dependent on the

progress that may occur in the preceding future research. However,

we think a communication system which is partly implemented using

short-word length subsystems is feasible for the time being.



Appendix A
Recursive Equation of Third-Order Σ∆
Topology

Appendix A: Proof of Equation (6.5)

We are to prove the recursive equation (6.5)

u(k) = 3u(k−1)−3u(k−2)+u(k−3)−(α+2)y(k−1)+3y(k−2)−y(k−3)+x.

(A.1)

Let u(0) = uo, u(1) = u1, and u(2) = u2 denotes the output initial condi-

tions of the final integrator (just before the quantizer), and yo, y1, y2 denote

its corresponding quantizer output values. Then,

u(3) = 3u2 − 3u1 + uo − (α + 2)y2 + 3y1 − yo + x (A.2)

u(4) = 6u2 − 8u1 + 3uo − 3(α + 1)y2 + 8y1 − 3yo − (α + 2)y(3) + 4x (A.3)

u(5) = 10u2 − 15u1 + 6uo − (6α + 4)y2 + 15y1 −
6yo − 3(α + 1)y(3)− (α + 2)y(4) + 10x. (A.4)
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u(6) = 15u2 − 24u1 + 10uo − 5(2α + 1)y2 + 24y1 − 10yo −
(6α + 4)y(3)− 3(α + 1)y(4)− (α + 2)y(5) + 20x (A.5)

u(7) = 21u2 − 35u1 + 15uo − (15α + 6)y2 +

35y1 − 15yo − 5(2α + 1)y(3)− (6α + 4)y(4)−
3(α + 1)y(5)− (α + 2)y(6) + 35x. (A.6)

u(8) = 28u2 − 48u1 + 21uo − (21α + 7)y2 +

48y1 − 21yo − 3(5α + 2)y(3)− 5(5α + 1)y(4)−
(6α + 4)y(5)− 3(α + 1)y(6)− (α + 2)y(7) + 56x. (A.7)

A general recursive formula for u(k) can be found by induction using the

above difference equations. We first arrange the coefficients of the initial condi-

tions and the input x as in Table-A.1. Now we induce the coefficient formulas

for each term as follows:

Table A.1: Coefficients of the initial conditions

n u2 u1 uo y2 y1 yo x
3 3 -3 1 −(α + 2) 3 -1 1
4 6 -8 3 −3(α + 1) 8 -3 4
5 10 -15 6 −(6α + 4) 15 -6 10
6 15 -24 10 −5(2α + 1) 24 -10 20
7 21 -35 15 −(15α + 6) 35 -15 35
8 28 -48 21 −(21α + 7) 48 -21 56
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u2: 1
2
k(k − 1)

u1: −k(k − 2)

uo:12(k − 1)(k − 2)

y2 : −[(k − 1)− 1
2
(k − 1)(k − 2)α]

y1 : k(k − 2)

yo : 1
2
(k − 1)(k − 2)

x : 1
6
k(k − 1)(k − 2)

Then we consider the terms including y(k). Table-A.2 shows a few coef-

ficients of y(k). These terms can be represented by a convolution between

the output sequence {y(n)} and the sequence {ηα(n) = (αn/2 + 1)(n + 1)} as

follows:

−y(k) ∗ ηα(k) = −
k−3∑
n=1

ηα(n)y(k − n). (A.8)

Table A.2: Coefficients of the signum terms

k y(k − 1) y(k − 2) y(k − 3) y(k − 4) y(k − 5)
3 0 0 0 0 0
4 − (α + 2) 0 0 0 0
5 − (α + 2) − 3(α + 1) 0 0 0
6 − (α + 2) − 3(α + 1) − (6α + 4) 0 0
7 − (α + 2) − 3(α + 1) − (6α + 4) − 5(2α + 1) 0
8 − (α + 2) − 3(α + 1) − (6α + 4) − 5(2α + 1) − 3(5α + 2)

Therefore, the overall recursive formula for u(k) can now be given as:

u(k) =
1

2
k(k − 1)u2 − k(k − 2)u1 + b(k)uo

−b(k)yo + k(k − 2)y1 − [(k − 1)− αb(k)]y2

−g(k, α) + d(k)x
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where b(k), g(k), and d(k) are given by

b(k) =
(k − 1)(k − 2)

2
(A.9)

g(k, α) =
k−3∑
n=1

[(
α

2
n + 1)(n + 1)]y(k − n) (A.10)

d(k) =
kb(k)

3
. (A.11)
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Appendix B: Proof of Equation (6.12)

From (6.9) we have:

x = g(k, α)/d(k) =
6

k(k − 1)(k − 2)

k−3∑
n=1

(
α

2
n + 1)(n + 1)sgn(uk−n).

The asymptotic effect of the product (k − 1)(k − 2) in the denominator

(as k → ∞) is to be replaced by a certain function f(n) within the above

summation, that is

1

(k − 1)(k − 2)

k−3∑
n=1

a(n) →
k−3∑
n=1

a(n)

f(n)
as k →∞ (B.1)

where a(n) = (α
2
n + 1)(n + 1)sgn(uk−n). Let the left- and right-hand sides of

(B.1) be denoted as S(n) and H(n), respectively. The rth discrete derivative

(rate of change) of both sides of (B.1) should be

∆rS(k)

∆kr
=

∆rH(k)

∆kr
. (B.2)

At any arbitrary iteration k, the first-order discrete derivative can be found
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as follows. Using Table III we get the first few expressions for S(k)

S(6) =
−1

5× 4
[(α + 2) + 3(α + 1) + (6α + 4)]

S(7) =
−1

6× 5
[(α + 2) + 3(α + 1) + (6α + 4) + 5(2α + 1)]

S(8) =
−1

7× 6
[(α + 2) + 3(α + 1) + (6α + 4) + 5(2α + 1) + 3(5α + 2)]

form which we get the differences

∆S

∆k
= S(7)− S(6) =

1

3
(
α

2
) +

1

60
(B.3)

∆S

∆k
= S(8)− S(7) =

1

3
(
α

2
) +

1

105
. (B.4)

By induction, the first-order discrete derivative of S(k) can be described as

∆S

∆k
= S(k + 1)− S(k) =

1

3
(
α

2
) +

2

k(k − 1)(k − 2)
. (B.5)

The second term of (B.5) represents a transient response and vanishes

rapidly for large values of k, i.e.,

∆S

∆k
→ 1

3
(
α

2
), as k →∞. (B.6)

Using (B.6), it is evident that the second-order discrete derivative of S(k)

is equal to zero. On the other hand, from (B.1) the difference of H(k) is given

as:
∆H(k)

∆k
=

[α
2
(k − 2) + 1](k − 1)

f(k − 2)
. (B.7)

Now f(k) can be determined by equating the asymptotic rate of change of

both functions in (B.6) and (B.7)

f(k) → 3(k +
2

α
)(k + 1) as k →∞. (B.8)
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Finally, substituting (B.8) into (6.9) we get

x → 2

k

k−3∑
n=1

(α
2
n + 1)sgn(uk−n)

(n + 2/α)
as k →∞. (B.9)

Now we reach equation (6.12) as follows

x → α

k

k∑
n=1

sgn(uk−n) +
2

k

k∑
n=1

sgn(uk−n)

(n + 2/α)
as k →∞.
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Difference Equation of M th-Order Σ∆
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Appendix C: Proof of Equation (6.16)

The difference equation that describes the operation of the third-order Σ∆

topology shown in Fig.(6.1) is given by (6.2) and will be rewritten here in its

z-domain form with some rearrangement:

U(z)(1− z−1)3 = Y (z)[−z−1(α + 2) + 3z−2 − z−3] + z−1x. (C.1)

Now, referring to Fig.(6.2), which represents the M th-order system, the

difference equation of the fourth-order Σ∆ topology will be given by:

U(z)(1− z−1)4 = Y (z)[−z−1(αo + α1 + α2 + α3) + 3z−2(α1 + 2α2 + 3α3)

−z−3(α2 + 3α3) + z−4α3] + z−1x. (C.2)

Similarly, we can proceed to higher-orders.

Focusing on the left-hand side of (C.1) and (C.2), we first recall the binomial

expansion

(a + b)M =
M∑

n=0


 M

n


 aM−n bn, (C.3)
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then, the left-hand terms of the M th-order topology will be given as

(1− z−1)M =
M∑

n=0


 M

n


 (−1)nz−n. (C.4)

Therefore, the M th-order system can be expressed in the time-domain as

u(k) =
M∑

n=1


 M

n


 (−1)n+1u(k − n) + R(k) (C.5)

where R(k) denotes the remaining terms of the M th-order system which involve

the output y(k). To find R(k), we reconsider the terms constituting the right-

hand sides of (C.1) and (C.2), where the ith of these terms can be described

in the time-domain as follows

ith term = (−1)iy(k − i)
M−1∑
n=0

(
n

i− 1

)
αn. (C.6)

Thus, R(k) will be expressed as

R(k) =
M∑
i=1

M−1∑
n=0

(−1)i

(
n

i− 1

)
αn y(k − i). (C.7)

Finally, the last integrator output (i.e., the single-bit quantizer input), u(k),

in the M th-order Σ∆ topology under consideration is given as

u(k) =
M∑

n=1

(−1)n+1

(
M

n

)
u(k − n) +

M∑
i=1

M−1∑
n=0

(−1)i

(
n

i− 1

)
αny(k − i) + x(k − 1).
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