227 research outputs found

    Two-Scale Kirchhoff Theory: Comparison of Experimental Observations With Theoretical Prediction

    Full text link
    We introduce a non-perturbative two scale Kirchhoff theory, in the context of light scattering by a rough surface. This is a two scale theory which considers the roughness both in the wavelength scale (small scale) and in the scales much larger than the wavelength of the incident light (large scale). The theory can precisely explain the small peaks which appear at certain scattering angles. These peaks can not be explained by one scale theories. The theory was assessed by calculating the light scattering profiles using the Atomic Force Microscope (AFM) images, as well as surface profilometer scans of a rough surface, and comparing the results with experiments. The theory is in good agreement with the experimental results.Comment: 6 pages, 8 figure

    Local Isometric immersions of pseudo-spherical surfaces and evolution equations

    Full text link
    The class of differential equations describing pseudo-spherical surfaces, first introduced by Chern and Tenenblat [3], is characterized by the property that to each solution of a differential equation, within the class, there corresponds a 2-dimensional Riemannian metric of curvature equal to −1-1. The class of differential equations describing pseudo-spherical surfaces carries close ties to the property of complete integrability, as manifested by the existence of infinite hierarchies of conservation laws and associated linear problems. As such, it contains many important known examples of integrable equations, like the sine-Gordon, Liouville and KdV equations. It also gives rise to many new families of integrable equations. The question we address in this paper concerns the local isometric immersion of pseudo-spherical surfaces in E3{\bf E}^{3} from the perspective of the differential equations that give rise to the metrics. Indeed, a classical theorem in the differential geometry of surfaces states that any pseudo-spherical surface can be locally isometrically immersed in E3{\bf E}^{3}. In the case of the sine-Gordon equation, one can derive an expression for the second fundamental form of the immersion that depends only on a jet of finite order of the solution of the pde. A natural question is to know if this remarkable property extends to equations other than the sine-Gordon equation within the class of differential equations describing pseudo-spherical surfaces. In an earlier paper [11], we have shown that this property fails to hold for all other second order equations, except for those belonging to a very special class of evolution equations. In the present paper, we consider a class of evolution equations for u(x,t)u(x,t) of order k≥3k\geq 3 describing pseudo-spherical surfaces. We show that whenever an isometric immersion in E3{\bf E}^3 exists, depending on a jet of finite order of uu, then the coefficients of the second fundamental forms are functions of the independent variables xx and tt only.Comment: Fields Institute Communications, 2015, Hamiltonian PDEs and Applications, pp.N

    On C2^2-smooth Surfaces of Constant Width

    Full text link
    A number of results for C2^2-smooth surfaces of constant width in Euclidean 3-space E3{\mathbb{E}}^3 are obtained. In particular, an integral inequality for constant width surfaces is established. This is used to prove that the ratio of volume to cubed width of a constant width surface is reduced by shrinking it along its normal lines. We also give a characterization of surfaces of constant width that have rational support function. Our techniques, which are complex differential geometric in nature, allow us to construct explicit smooth surfaces of constant width in E3{\mathbb{E}}^3, and their focal sets. They also allow for easy construction of tetrahedrally symmetric surfaces of constant width.Comment: 14 pages AMS-LATEX, 5 figure

    Extension of geodesic algebras to continuous genus

    Get PDF
    Using the Penner--Fock parameterization for Teichmuller spaces of Riemann surfaces with holes, we construct the string-like free-field representation of the Poisson and quantum algebras of geodesic functions in the continuous-genus limit. The mapping class group acts naturally in the obtained representation.Comment: 16 pages, submitted to Lett.Math.Phy

    Bayesian Estimation of Intensity Surfaces on the Sphere via Needlet Shrinkage and Selection

    Get PDF
    This paper describes an approach for Bayesian modeling in spherical datasets. Our method is based upon a recent construction called the needlet, which is a particular form of spherical wavelet with many favorable statistical and computational properties. We perform shrinkage and selection of needlet coefficients, focusing on two main alternatives: empirical-Bayes thresholding, and Bayesian local shrinkage rules. We study the performance of the proposed methodology both on simulated data and on two real data sets: one involving the cosmic microwave background radiation, and one involving the reconstruction of a global news intensity surface inferred from published Reuters articles in August, 1996. The fully Bayesian approach based on robust, sparse shrinkage priors seems to outperform other alternatives.Business Administratio

    Discrete asymptotic nets and W-congruences in Plucker line geometry

    Full text link
    The asymptotic lattices and their transformations are studied within the line geometry approach. It is shown that the discrete asymptotic nets are represented by isotropic congruences in the Plucker quadric. On the basis of the Lelieuvre-type representation of asymptotic lattices and of the discrete analog of the Moutard transformation, it is constructed the discrete analog of the W-congruences, which provide the Darboux-Backlund type transformation of asymptotic lattices.The permutability theorems for the discrete Moutard transformation and for the corresponding transformation of asymptotic lattices are established as well. Moreover, it is proven that the discrete W-congruences are represented by quadrilateral lattices in the quadric of Plucker. These results generalize to a discrete level the classical line-geometric approach to asymptotic nets and W-congruences, and incorporate the theory of asymptotic lattices into more general theory of quadrilateral lattices and their reductions.Comment: 28 pages, 4 figures; expanded Introduction, new Section, added reference
    • …
    corecore