1,496 research outputs found

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Autonomous agents and avatars in REVERIE’s virtual environment

    Get PDF
    In this paper, we describe the enactment of autonomous agents and avatars in the web-based social collaborative virtual environment of REVERIE that supports natural, human-like behavior, physical interaction and engagement. Represented by avatars, users feel immersed in this virtual world in which they can meet and share experiences as in real life. Like the avatars, autonomous agents that may act in this world are capable of demonstrating human-like non-verbal behavior and facilitate social interaction. We describe how reasoning components of the REVERIE system connect and cooperatively control autonomous agents and avatars representing a user

    A low-cost, flexible and portable volumetric capturing system

    Get PDF
    Multi-view capture systems are complex systems to engineer. They require technical knowledge to install and intricate processes to setup related mainly to the sensors’ spatial alignment (i.e. external calibration). However, with the ongoing developments in new production methods, we are now at a position where the production of high quality realistic 3D assets is possible even with commodity sensors. Nonetheless, the capturing systems developed with these methods are heavily intertwined with the methods themselves, relying on custom solutions and seldom - if not at all - publicly available. In light of this, we design, develop and publicly offer a multi-view capture system based on the latest RGB-D sensor technology. For our system, we develop a portable and easy-to-use external calibration method that greatly reduces the effort and knowledge required, as well as simplify the overall process

    Proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET 2013)

    Get PDF
    "This book contains the proceedings of the International Workshop on EuroPLOT Persuasive Technology for Learning, Education and Teaching (IWEPLET) 2013 which was held on 16.-17.September 2013 in Paphos (Cyprus) in conjunction with the EC-TEL conference. The workshop and hence the proceedings are divided in two parts: on Day 1 the EuroPLOT project and its results are introduced, with papers about the specific case studies and their evaluation. On Day 2, peer-reviewed papers are presented which address specific topics and issues going beyond the EuroPLOT scope. This workshop is one of the deliverables (D 2.6) of the EuroPLOT project, which has been funded from November 2010 – October 2013 by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission through the Lifelong Learning Programme (LLL) by grant #511633. The purpose of this project was to develop and evaluate Persuasive Learning Objects and Technologies (PLOTS), based on ideas of BJ Fogg. The purpose of this workshop is to summarize the findings obtained during this project and disseminate them to an interested audience. Furthermore, it shall foster discussions about the future of persuasive technology and design in the context of learning, education and teaching. The international community working in this area of research is relatively small. Nevertheless, we have received a number of high-quality submissions which went through a peer-review process before being selected for presentation and publication. We hope that the information found in this book is useful to the reader and that more interest in this novel approach of persuasive design for teaching/education/learning is stimulated. We are very grateful to the organisers of EC-TEL 2013 for allowing to host IWEPLET 2013 within their organisational facilities which helped us a lot in preparing this event. I am also very grateful to everyone in the EuroPLOT team for collaborating so effectively in these three years towards creating excellent outputs, and for being such a nice group with a very positive spirit also beyond work. And finally I would like to thank the EACEA for providing the financial resources for the EuroPLOT project and for being very helpful when needed. This funding made it possible to organise the IWEPLET workshop without charging a fee from the participants.

    Cloud manufacturing architecture for part quality assessment

    Get PDF
    In this work, a cloud manufacturing architecture aimed at offering on-demand services for part quality assessment is presented and demonstrated with reference to an aeronautical industry application. The developed architecture is based on a three-level structure and considers two non-contact metrological procedures to be integrated via cloud service: laser-based 3D metrology and ultrasonic non-destructive inspection. The combination of these two techniques allows to measure part features and detect possible defects associated with the outer part geometry as well as the inner material structure. The data coming from the two metrological procedures and pre-processed at fog level are sent to the cloud that performs their integration with the aim to allow for the 3D visualization and manipulation of the heterogeneous metrological data into a single-user interface for the holistic part quality evaluation. The validation of the cloud manufacturing architecture for part quality assessment is performed on a composite material component employed in the aeronautical industry. Through the cloud platform, the heterogeneous data from the two non-contact metrological techniques are integrated, and the newly developed user interface allows for the simultaneous visualization and analysis of the 3D metrology and ultrasonic information for detecting geometrical defects and internal flaws of the inspected component

    Virtuālās Realitātes mācīšanās taksonomija

    Get PDF
    Promocijas darbs tika izstrādāts izglītības zinātņu nozarē, vispārīgās pedagoģijas apakšnozarē Latvijas Universitātes Pedagoģijas, psiholoģijas un mākslas fakultātē, profesores, Dr. paed. Lindas Danielas vadībā. Darba apjoms ir 147 lpp., ieskaitot 30 attēlus un 16 tabulas, kā arī literatūras un avotu sarakstu ar 114 nosaukumiem. Darbam papildus pievienoti arī 2 pielikumi uz 21 lpp. Pētījuma mērķis ir informēt pedagogus un mācīšanas dizaina izstrādātājus, kā arī VR tehnoloģiju izstrādātājus, un potenciālos izglītojamos par VR mācīšanās principiem, tostarp, to sinerģijām un mijsakarībām, piedāvājot pamatotu teoriju virtuālās realitātes mācīšanās taksonomijai. Šī pētījuma nozīmīgākais devums ietver esošo, bet sadrumstaloto zināšanu apkopošanu un sistematizēšanu, pierādījumos balstītas teorētiskās bāzes izstrādi virtuālās realitātes mācīšanās taksonomijai, kā arī praktisku VR mācīšanas pieredžu dizaina un izvērtēšanas rīku izstrādiThe doctoral thesis by Lana Frančeska Dreimane titled “Taxonomy of Learning in Virtual Reality” was developed in the field of Education at the Faculty of Education, Psychology and Arts of the University of Latvia, under supervision of Dr. paed., professor Linda Daniela. The volume of the thesis is 147 pages, 30 figures and 16 tables in the main text, as well as list of bibliographic sources with 114 titles and 2 appendices. This research aims to inform educators and instructors, as well as VR technology developers and potential learners, about the alignment synergies and interconnections of VR learning principles by generating a substantive theory for the taxonomy of learning in Virtual Reality. The most important contribution of this inquiry is in systemising already existing but fragmented knowledge, and presenting evidence for theoretical basis for the taxonomy, as well as developing VR learning experience design and evaluation tools for practical applications

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    corecore