1,880 research outputs found

    A Systematic Classification and Analysis of NFRs

    Get PDF
    The main agenda of Requirements Engineering (RE) is the development of tools, techniques and languages for the elicitation, specification, negotiation, and validation of software requirements. However, this development has traditionally been focused on functional requirements (FRs), rather than non-functional requirements (NFRs). Consequently, NFR approaches developed over the years have been fragmental and there is a lack of clear understanding of the positions of these approaches in the RE process. This paper provides a systematic classification and analysis of 89 NFR approaches

    A semantically-enriched goal-oriented requirements engineering framework for systems of systems using the i* framework applied to cancer care

    Get PDF
    In recent years, monolithic systems are being composed into bigger systems as Systems of Systems (SoSs). This evolution of SoS raises several software engineering key challenges, such as the management of emerging inconsistent goals and requirements, which may occur among the various Constituent Systems (CSs) themselves, as well as between the entire SoS and the participating CSs. Another significant challenge is that Systems of Systems Engineering (SoSE) involves more stakeholders than traditional systems engineering, i.e. stakeholders at the SoS-level and the CS-level, where each CS has its own needs and objectives which establish a complex stakeholder environment. To respond to these challenges, this research is aimed at investigating the implications of applying a goal-oriented requirements engineering approach in identifying, modelling and managing emerging goals and their conflicts in SoS context. The key artefact of this research is the development of a Semantically-Enriched Goal-Oriented Requirements Engineering Framework for Systems of Systems using the i* framework, namely the OntoSoS.GORE framework.The OntoSoS.GORE is a three-layered framework designed, developed, demonstrated and then evaluated through following multiple iterations of the Design Science Research Methodology (DSRM) phases, to accomplish the following main objectives: (1) identifying and modelling the SoS global goals and the CSs local goals at different levels of an SoS using the i* framework, in which a new process to extract i* modelling elements from existing user documentation is proposed; (2) maintaining the consistency and integrity of SoS goals at multiple levels through developing a semantic Goals Referential Integrity (sGRI) model in SoS context which consists of an SoSGRI model and an ontology-based model; and (3) managing any conflicts that may occur amongst goals at both the SoS-level and the CS-level, by developing and applying a new goal conflict management approach in SoS context, which consists of two main processes: goal conflict detection and goal conflict resolution.The research framework has been instantiated and validated by applying a real Cancer Care case study at King Hussein Cancer Center (KHCC), Amman, Jordan. Results revealed the effectiveness of applying the framework compared to the current approach applied at KHCC, in terms of addressing higher consistency, completeness and correctness with regard to goal management and conflict management in SoS context. Moreover, the framework provides automation of the processes of following the satisfaction of goals and goals’ conflict management at multiple SoS levels, instead of the manual approach applied currently at KHCC. This automation is accomplished through developing a strategic goal-oriented management tool that is anticipated to be delivered and utilised at KHCC, as well as applying it to other SoS organisations as a proposed solution for goal and conflict management. Another contribution to the Cancer Care and SoS domains is developing a reference i* goal-oriented model for access to Cancer Care which provides a wider system engineering perspective and offers an accessible level of abstraction about Cancer Care goals and their dependencies for stakeholders and domain experts. The reference model provides standardisation of common generic concepts about the domain, in which other Cancer Care organisations can considerably reuse to facilitate the process of capturing and specifying goals and requirements for their practice and validating choices among alternative designs

    Integrating Human Factors with Structured Analysis and Design Methods

    Get PDF
    Current human factors input to system development is effected through methods, tools and guidelines. Although the input prompts the consideration of human factors concerns during system design, reports have highlighted inadequacies with respect to the scope, granularity, format and timing of the contributions, e.g. Smith, 1986; Chapanis and Burdurka, 1990; Sutcliffe, 1989; etc. The thesis argues that such problems are obviated if design needs of both Software Engineering and Human Factors are appropriately represented within an overall system design cycle. Intersecting concerns may then be identified for explicit accommodation by the design agenda. To derive an overall design cycle, current conceptions for the individual disciplines should be examined. Since these conceptions are expressed at a lower level as methods, an overall design cycle may be instantiated more specifically by integrating compatible methods from the two disciplines. Methodological integration is desirable as design inter-dependencies and roles may be defined explicitly. More effective inter-disciplinary communication may also accrue from the use of a common set of notations. Methodological integration is facilitated if the design scope, process and notation of individual methods are well defined. Such characteristics are found in a class of Software Engineering methods commonly referred to as structured analysis and design methods. Unfortunately, the same are not currently to be found for human factors since its methods are generally unstructured and focus only on later design stages. 1 Thus, a pre-requisite for integration is the derivation of a reasonably complete and structured human factors method. Since well developed Software Engineering methods already exist, it would be appropriate (for the purposes of methodological integration) to structure human factors methods around specific structured analysis and design methods. The undertaking is exemplified by the present research for the Jackson System Development method. In other words, the scope of the thesis comprises the derivation, test and integration of a structured human factors method with the Jackson System Development method. In conclusion, the research contributes to the Human Factors discipline in two respects. Firstly, it informs the research community on how similar work with other structured analysis and design methods may be set up. Secondly, it offers designers an extended Jackson System Development method that facilitates the incorporation of human factors during system development

    Requirements engineering for business workflow systems: a scenario-based approach

    Get PDF
    Workflow implementations require a deep understanding of business and human cooperation. Several approaches have been proposed to address this need for understanding, but largely in a descriptive way. Attempts to use them in software development have had mixed results. The work reported here proposes that these approaches can be used in a generative way, as part of the requirement engineering process, by (a) extending requirements engineering modelling techniques with underlying cooperation properties, (b) integrating these techniques through the use of a derivation modelling approach, and (c) providing pragmatic heuristics and guidelines that support the real-world requirements engineering practitioner to ensure a high probability of success for the business workflow system to be developed. This thesis develops and evaluates a derivation modelling approach that is based on scenario modelling. It supports clear and structured views of cooperation properties, and allows the derivation of articulation protocols from business workflow models in a scenario-driven manner. This enables requirements engineering to define how the expectations of the cooperative situation are to be fulfilled by the system to be built - a statement of requirements for business workflow systems that reflects the richness of these systems, but also acts as a feasible starting point for development. The work is evaluated through a real-world case study of business workflow management. The main contribution of this work is a demonstration that the above problems in modelling requirements for business workflow systems can be addressed by scenario-based derivation modelling approach. The method transforms models through a series of properties involving cooperation, which can be addressed by using what are effectively extensions of current requirements engineering methods

    Project risk management using multiple criteria decision-making technique and decision tree analysis:a case study of Indian oil refinery

    Get PDF
    This study proposes an integrated analytical framework for effective management of project risks using combined multiple criteria decision-making technique and decision tree analysis. First, a conceptual risk management model was developed through thorough literature review. The model was then applied through action research on a petroleum oil refinery construction project in the Central part of India in order to demonstrate its effectiveness. Oil refinery construction projects are risky because of technical complexity, resource unavailability, involvement of many stakeholders and strict environmental requirements. Although project risk management has been researched extensively, practical and easily adoptable framework is missing. In the proposed framework, risks are identified using cause and effect diagram, analysed using the analytic hierarchy process and responses are developed using the risk map. Additionally, decision tree analysis allows modelling various options for risk response development and optimises selection of risk mitigating strategy. The proposed risk management framework could be easily adopted and applied in any project and integrated with other project management knowledge areas

    Uncertainty analysis in product service system: Bayesian network modelling for availability contract

    Get PDF
    There is an emerging trend of manufacturing companies offering combined products and services to customers as integrated solutions. Availability contracts are an apt instance of such offerings, where product use is guaranteed to customer and is enforced by incentive-penalty schemes. Uncertainties in such an industry setting, where all stakeholders are striving to achieve their respective performance goals and at the same time collaborating intensively, is increased. Understanding through-life uncertainties and their impact on cost is critical to ensure sustainability and profitability of the industries offering such solutions. In an effort to address this challenge, the aim of this research study is to provide an approach for the analysis of uncertainties in Product Service System (PSS) delivered in business-to-business application by specifying a procedure to identify, characterise and model uncertainties with an emphasis to provide decision support and prioritisation of key uncertainties affecting the performance outcomes. The thesis presents a literature review in research areas which are at the interface of topics such as uncertainty, PSS and availability contracts. From this seven requirements that are vital to enhance the understanding and quantification of uncertainties in Product Service System are drawn. These requirements are synthesised into a conceptual uncertainty framework. The framework prescribes four elements, which include identifying a set of uncertainties, discerning the relationships between uncertainties, tools and techniques to treat uncertainties and finally, results that could ease uncertainty management and analysis efforts. The conceptual uncertainty framework was applied to an industry case study in availability contracts, where each of the four elements was realised. This application phase of the research included the identification of uncertainties in PSS, development of a multi-layer uncertainty classification, deriving the structure of Bayesian Network and finally, evaluation and validation of the Bayesian Network. The findings suggest that understanding uncertainties from a system perspective is essential to capture the network aspect of PSS. This network comprises of several stakeholders, where there is increased flux of information and material flows and this could be effectively represented using Bayesian Networks

    Decision support for choice of security solution: the Aspect-Oriented Risk Driven Development (AORDD)framework

    Get PDF
    In security assessment and management there is no single correct solution to the identified security problems or challenges. Instead there are only choices and tradeoffs. The main reason for this is that modern information systems and security critical information systems in particular must perform at the contracted or expected security level, make effective use of available resources and meet end-users' expectations. Balancing these needs while also fulfilling development, project and financial perspectives, such as budget and TTM constraints, mean that decision makers have to evaluate alternative security solutions.\ud \ud This work describes parts of an approach that supports decision makers in choosing one or a set of security solutions among alternatives. The approach is called the Aspect-Oriented Risk Driven Development (AORDD) framework, combines Aspect-Oriented Modeling (AOM) and Risk Driven Development (RDD) techniques and consists of the seven components: (1) An iterative AORDD process. (2) Security solution aspect repository. (3) Estimation repository to store experience from estimation of security risks and security solution variables involved in security solution decisions. (4) RDD annotation rules for security risk and security solution variable estimation. (5) The AORDD security solution trade-off analysis and trade-o¤ tool BBN topology. (6) Rule set for how to transfer RDD information from the annotated UML diagrams into the trad-off tool BBN topology. (7) Trust-based information aggregation schema to aggregate disparate information in the trade-o¤ tool BBN topology. This work focuses on components 5 and 7, which are the two core components in the AORDD framework

    The application of knowledge based systems to the abstraction of design and costing rules in bespoke pipe jointing systems

    Get PDF
    This thesis presents the work undertaken in the creation of a knowledge based system aimed at facilitating the design and cost estimation of bespoke pipe jointing systems. An overview of the problem domain is provided and the findings from a literature review on knowledge based systems and applications in manufacturing were used to provide initial guidance to the research. The overall investigation and development process involved the abstraction of design and costing rules from domain experts using a sub-set of the techniques reviewed and the development and implementation of the knowledge based system using an expert system approach, the soft systems methodology (SSM) and the system development lifecycle methodology. Based on the abstracted design and costing rules, the developed system automates the design of pipe jointing systems, and facilitates cost estimation process within third party configuration software. The developed system was validated using two case studies and was shown to provide the required outputs
    • …
    corecore