3,225 research outputs found

    Automata and rational expressions

    Full text link
    This text is an extended version of the chapter 'Automata and rational expressions' in the AutoMathA Handbook that will appear soon, published by the European Science Foundation and edited by JeanEricPin

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Parametrized Stochastic Grammars for RNA Secondary Structure Prediction

    Full text link
    We propose a two-level stochastic context-free grammar (SCFG) architecture for parametrized stochastic modeling of a family of RNA sequences, including their secondary structure. A stochastic model of this type can be used for maximum a posteriori estimation of the secondary structure of any new sequence in the family. The proposed SCFG architecture models RNA subsequences comprising paired bases as stochastically weighted Dyck-language words, i.e., as weighted balanced-parenthesis expressions. The length of each run of unpaired bases, forming a loop or a bulge, is taken to have a phase-type distribution: that of the hitting time in a finite-state Markov chain. Without loss of generality, each such Markov chain can be taken to have a bounded complexity. The scheme yields an overall family SCFG with a manageable number of parameters.Comment: 5 pages, submitted to the 2007 Information Theory and Applications Workshop (ITA 2007

    Computation of distances for regular and context-free probabilistic languages

    Get PDF
    Several mathematical distances between probabilistic languages have been investigated in the literature, motivated by applications in language modeling, computational biology, syntactic pattern matching and machine learning. In most cases, only pairs of probabilistic regular languages were considered. In this paper we extend the previous results to pairs of languages generated by a probabilistic context-free grammar and a probabilistic finite automaton.PostprintPeer reviewe

    Inertial Frame Independent Forcing for Discrete Velocity Boltzmann Equation: Implications for Filtered Turbulence Simulation

    Full text link
    We present a systematic derivation of a model based on the central moment lattice Boltzmann equation that rigorously maintains Galilean invariance of forces to simulate inertial frame independent flow fields. In this regard, the central moments, i.e. moments shifted by the local fluid velocity, of the discrete source terms of the lattice Boltzmann equation are obtained by matching those of the continuous full Boltzmann equation of various orders. This results in an exact hierarchical identity between the central moments of the source terms of a given order and the components of the central moments of the distribution functions and sources of lower orders. The corresponding source terms in velocity space are then obtained from an exact inverse transformation due to a suitable choice of orthogonal basis for moments. Furthermore, such a central moment based kinetic model is further extended by incorporating reduced compressibility effects to represent incompressible flow. Moreover, the description and simulation of fluid turbulence for full or any subset of scales or their averaged behavior should remain independent of any inertial frame of reference. Thus, based on the above formulation, a new approach in lattice Boltzmann framework to incorporate turbulence models for simulation of Galilean invariant statistical averaged or filtered turbulent fluid motion is discussed.Comment: 37 pages, 1 figur
    corecore