
Coalgebraic Characterizations of

Automata-Theoretic Classes

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,

volgens besluit van het college van decanen

in het openbaar te verdedigen op dinsdag 1 juli 2014

om 14.30 uur precies

door

Joost Winter

geboren op 20 maart 1980

te Amsterdam

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301660925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotor:

Prof. dr. J.J.M.M. Rutten

Copromotor:

Dr. M.M. Bonsangue (Universiteit Leiden)

Manuscriptcommissie:

Prof. dr. H. Geuvers

Prof. dr. J.W. Klop (Vrije Universiteit Amsterdam)

Prof. dr. J.P. Allouche (Institut de mathématiques de Jussieu)

Copyright © 2014 Joost Winter

Printed and bound by Ipskamp, Enschede

IPA Dissertation Series 2014-07

The work in the thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

The research culminating in this dissertation was conducted as a part of the
NWO project CoRE (Coinductive Calculi for Regular Expressions).

in memoriam

Dik T. Winter

1945—2009

Acknowledgements

First of all, I would like to thank Krzysztof Apt, without whom this dissertation
would not have been possible, as he was the one who encouraged me to apply
for this position at the CWI, for which I was eventually selected.

I would like to thank Jan and Marcello, my promotor and co-promotor, for
encouragement, and for their significant role in my learning of the basics (and
beyond) of coalgebras, coinduction, and category theory. Next, I would like to
thank Milad Niqui, who has been an additional supervisor for this project in
the first half year.

Thanks are due to all my co-authors—besides the already named Jan en
Marcello—who have made possible a number of papers and short contributions:
Helle Hansen, Clemens Kupke, Baltasar Trancón y Widemann, and Jurriaan
Rot. Additionally, Alexandra Silva and Henning Basold also have helped a lot
over the course of various discussions and the sharing, and explaining, of ideas.

For additional discussion, comments, and/or the sharing of their insights and
knowledge, I would furthermore like to thank a number of people. This includes
Christophe Reutenauer, Arto Salomaa, and Jeffrey Shallit, all of whom quickly
replied to a question I had about the notions of algebraicity and constructive
algebraicity, pointing me to the paper by Michel Fliess. Furthermore I would
like to thank Jan van Eijck, for sharing his knowledge of doing stream calculus
in Haskell, and Jean-Paul Allouche for his knowledge about the k-automatic
and k-regular sequences. I would also like to thank Jonas Teuwen and Amar
van Leeuwaarde for helping me out with some of the algebra, and the intricacies
of Haskell, respectively.

Others who have been helpful to me, in some way or another, by sharing their
insights, include Pierre Lescanne, Wieb Bosma, Stefan Milius, Filippo Bonchi,
Jacques Sakarovitch, and Bram Westerbaan. More generally, I would like to
thank the organizers and participants of the various conferences (CALCO in
Winchester and Warsaw, and CMCS in Tallinn), seminars (the two Streams
seminars in Leiden and the workshop on coalgebraic logics in Dagstuhl), and

v

vi Acknowledgements

the summer school in Marktoberdorf: at all these places combined, I certainly
learned a lot and additionally had some great times.

I would like to thank my colleagues in the Formal Methods group (or, be-
fore its renaming, the SEN3 group): Michiel Helvensteijn (for the numerous
games of go and the hiking holidays in Austria), Farhad Arbab (amongst other
things for introducing me to the music of Kaykhosro Pournazeri and Triskilian),
Frank de Boer, Immo Grabe (for the movie nights), Lacramioara Astefanoaei
(for introducing me to the movies of Béla Tarr), Stijn de Gouw, Sung-Shik Jong-
mans, Stephanie Kemper, Natallia Kokash, Mahdi Jaghoori, Behnaz Changizi
(for inviting me to go to the Deep Purple concert in Zwolle), Dominic Luecke,
Matteo Mio, Erik de Vink, Francesco Santini, David Costa, Georgiana Caltais,
Christian Krause, Kasper Dokter, Nikolaos Bezirgiannis, Sean Halle, and Vlad
Serbanescu. Additionally, thanks are due to Susanne van Dam and Maarten
Dijkema for support in technical and bureaucratic matters, to Atze van der
Ploeg, to Michaël Smeding, to Florian Speelman for joining the go playing, and
to Bart de Keijzer for some evenings filled with good beer!

The IPA spring days have helped me to broaden my knowledge and under-
standing beyond my own research topic, and beyond that, have also been major
source of fun times! For some of us, the fun times of IPA were so much fun that
it led to the organizing of IPAZoP (IPA zonder praatjes) events! I would like to
thank the organizers of the IPA spring days, Tim Willemse, Meivan Cheng, and
all the participants I got to know there, including but not limited to Cynthia
Kop, Zé Pedro Magelhães, Mark Timmer-van der Stam, Marijn Schraagen, and
Frank Takes.

I owe a lot of thanks to Annetje, Sara, David, and all other relatives for their
support throughout the period, as well as to all of the friends whom helped or
supported me in whichever way during the last four years!

And finally:
This dissertation is dedicated to my father, Dik Winter (1945—2009), who

worked at the CWI for 40 years as a scientific programmer and system admin-
istrator, and who gave to me his love for mathematics and computer science.

Joost Winter
Amsterdam, May 2014

Contents

1 Introduction 1
1.1 Coalgebra and automata: background 2
1.2 Motivation and main contributions 4
1.3 Overview of the material . 7
1.4 Origins of the material . 10

2 Regular languages and rational power series 13
2.1 Automata as coalgebras . 14
2.2 Languages, power series, and streams 20
2.3 Weighted and linear automata . 27
2.4 Rational expressions and power series 34
2.5 Bisimulation up to linearity . 41

3 Context-free languages and algebraic power series 45
3.1 Polynomials and polynomial systems 46
3.2 Context-free grammars and languages 56
3.3 Towards the Greibach normal form 59
3.4 Counting derivations in grammars 64

4 Additional systems and operators 71
4.1 Pushdown automata . 72
4.2 The Hadamard product . 79
4.3 Zipping and unzipping . 81

5 k-Automatic and k-regular sequences 87
5.1 An isomorphism between final automata 88
5.2 Systems of zip-behavioural differential equations 92
5.3 Divide and conquer recurrences 99
5.4 Theorems by Fliess and Christol 101

vii

viii Contents

6 Term algebras and µ-expressions 105
6.1 Algebraic power series via term algebras 105
6.2 Algebraic power series via µ-expressions 111

7 Distributive laws and bialgebras 117
7.1 Distributive laws and λ-bialgebras 118
7.2 Examples of distributive laws . 122
7.3 Brzozowski bialgebras . 127

8 Stream calculus in Haskell 131
8.1 Coinduction in Haskell . 131
8.2 Streams with algebraic structure 133
8.3 Point-free definitions for stream calculus 139

9 Further directions 141

A Algebra 143
A.1 Monoids . 143
A.2 Semirings . 144
A.3 Modules . 145

B Category theory and universal coalgebra 147
B.1 Categories and functors . 147
B.2 Natural transformations and monads 150

C A suite of streams 153
C.1 Rational streams . 153
C.2 Algebraic streams . 155
C.3 k-Automatic and k-regular streams 156
C.4 Transcendental streams . 157

1

Introduction

This dissertation presents a coalgebraic treatment of a number of automata-
theoretic classes, in the setting of formal power series in noncommuting variables
over some semiring (or, sometimes, a commutative semiring), of which both
formal languages and streams are instances.

Automata theory is the study of systems involving some kind of notion of
a state space, and transitions on this state space labelled by a collection of
input symbols or an alphabet, and has been classically linked to the study of
formal languages. A general introduction to the theory of automata and formal
languages can be found in e.g. [HMU06]. One particular concern of automata
theory is the classes of formal languages that can be characterized by certain
types of automata (or other formal systems, such as grammars). A well-known
characterization of these classes is given by the Chomsky hierarchy [Cho59]
consisting of 1) the regular languages, 2) the context-free languages, 3) the
context-sensitive languages, and 4) the recursively enumerable languages, with
each class being contained in the next class.

Automata theory, as the study of formal languages, has been generalized in
the French and Finnish schools to a study of formal power series, over arbitrary
semirings. The notion of a weighted automaton (with weights in a semiring)
plays an important role in this work, pioneered by Schützenberger and others in
e.g. [Sch61a], [Sch61b], and [CS63]. General and comprehensive introductions to
the theory of weighted automata can be found in, for example, [BR11], [Eil76],
[SS78], [DKV09] and [Sak09].

During the last two decades, a coalgebraic view on automata and state-
based systems thus emerged. Within theoretical computer science, coalgebra
studies state-based transition systems on a high level of abstraction, and, closely
related to it, coinduction which can be seen as a definition scheme dual to
induction. Coalgebra and coinduction have so far found applications in, for
example, the framework of Structural Operational Semantics [TP97], functional
programming, formalized mathematics, and dynamical systems.

This introductory chapter starts with a brief survey of the surrounding back-

1

2 Chapter 1. Introduction

ground and context. The next section motivates the research and summarizes
the results found in this dissertation. Section 1.3 presents an outline of the var-
ious chapters and appendices, and Section 1.4 gives an overview of the various
publications on which the larger part of this dissertation is based.

1.1 Coalgebra and automata: background

In [Brz64], and later in [Con71], the notion of a derivative was introduced for
regular expressions, closely parallelling classical calculus, with the notable ex-
ception of the derivative of the product of two regular expressions s and t, which
is given by the rule:

(st)a = sat+ o(s)ta

which we call the Brzozowski product rule. Here o(s) can be seen as an output
value of s, giving the regular expression 1 if s matches with the empty word, and
the regular expression 0 otherwise. Taking the derivative to an alphabet symbol
a here corresponds to making an a-transition in an automaton consisting of all
regular expressions, where a is taken from an alphabet A, generally considered
to be finite.

In [Rut98], a presentation of finite automata and regular expressions as coal-
gebras is presented, making use of Brzozowski’s product rule. In the language of
category theory, a coalgebra for an endofunctor F (on some category) consists
of an object X in this category, together with a morphism δ : X → FX, and can
be seen as the dual to an algebra for this endofunctor F . This abstract point
of view has been developed further in the framework of universal coalgebra in
[Rut00]. Various classes of state based systems other than finite automata, such
as Moore and Mealy machines, and labelled transition systems, can be modelled
as coalgebras.

Both finite automata and regular expressions are regarded as coalgebras
for the functor B × −A (where B is the Boolean semiring identified with its
carrier {0, 1}). Here, the calculus of derivatives can be seen as coinductively
defining a coalgebra, or automaton, stucture on the set of all regular expressions.
Additionally, in [Rut98], a coalgebraic presentation of Kleene’s theorem (stating
that a formal language is accepted by a finite automaton if and only if it matches
with some regular expression) is given.

It is also possible to use this calculus of derivatives to reason about arbitrary
languages, which together again form an (infinite) automaton: given a formal
language L ∈ P(A∗) and an alphabet symbol a ∈ A, its a-derivative La can be

Chapter 1. Introduction 3

given by

La = {w | aw ∈ L}.

This automaton is a final object in the category of B × −A-coalgebras, i.e. for
every B×−A-coalgebra, there is a unique morphism function to P(A∗) with the
above automaton (or coalgebra) structure.

The coalgebraic approach to automata has been extended to weighted au-
tomata in for example [Rut08] and [BBB+12]. In a weighted automaton, every
transition is labelled by a weight (over an assumed underlying semiring), and
weighted automata can be determinized to linear automata1. The coalgebra
structure of the linear automaton can be constructed as the unique linear map-
ping extending the coalgebra structure of the weighted automaton. This con-
struction can be seen both as a generalization of the classical powerset construc-
tion extending each nondeterministic automaton into a deterministic one, and
as an instance of a more general categorical construction presented in [SBBR10].

In the setting of weighted automata, the role of formal languages is taken
over by formal power series in noncommuting variables, which can be regarded
as mappings σ assigning to each word w ∈ A∗ a value [σ ⇓ w]. Likewise,
language concatenation now is replaced by the convolution product, which can
be defined either as

[στ ⇓ w] =
∑
uv=w

[σ ⇓ u][τ ⇓ v]

or, equivalently, by Brzozowski’s product rule together with the equation 1a = 0.
The class of power series that can be characterized using a finite weighted

automaton is called recognizable, and corresponds to the class of rational power
series, i.e. power series characterizable using a rational expression (generalizing
regular expressions for languages).

In [Rut03a], (Brzozowski) derivatives of formal languages and power series
are used to specify (systems of) behavioural differential equations, where lan-
guages, streams, power series, families thereof, or operations on these classes are
characterized by means of systematically specifying the output as well as the
derivative of whatever is being defined. Roughly, behavioural differential equa-
tions can be seen as differential equations with respect to Brzozowski’s product
rule, and have languages or formal power series as their solutions. Brzozowski’s
product rule itself can also be regarded as a behavioural differential equation,
itself defining the convolution product on power series, which instantiates to
language concatenation in the case of formal languages.

1in [BBB+12] called linear weighted automata

4 Chapter 1. Introduction

In [Rut03b], the coalgebraic approach to weighted automata, in the specific
setting of streams, is applied to combinatorial problems, giving rise to the tech-
nique of coinductive counting, where combinatorial problems are presented using
systems of behavioural differential equations, specifying streams corresponding
to the combinatorial problem. The coinductive stream calculus, and many of
these counting problems, can furthermore easily and conveniently be implemen-
tated in the functional programming language Haskell: this connection has been
explored in for example [McI01] and [DvE04].

Extending the framework of universal coalgebra, the theory of λ-bialgebras
and distributive laws has been developed as an abstract method of looking
at transition systems (or coalgebras) with an algebraic structure, in [Bar04],
[Jac06], and [Kli11]. More precisely, a bialgebra is a structure that is simulta-
neously an algebra (say, for a functor T) and a coalgebra (say, for a functor
F), and a λ-bialgebra additionally provides a distributive law in the form of
a natural transformation λ : TF ⇒ FT . This framework has been used, for
example, to give a coalgebraic (or bialgebraic) interpretation to rules in the ab-
stract GSOS format, based on the SOS format from [TP97]. This framework
of λ-bialgebras also forms the basis for the generalized powerset construction
presented in [SBBR10], which gives a categorical generalization of the classical
construction of deterministic automata from nondeterministic automata.

1.2 Motivation and main contributions

1.2.1 Motivation

The overarching aim of this dissertation is to extend the coalgebraic approach
to automata theory to a number of additional automata-theoretic classes (of
formal languages, streams, or, more generally, formal power series), and to give
coalgebraic characterizations of these classes.

An important instance of such a class consists of the context-free languages.
Giving a coalgebraic presentation of the context-free languages along the lines
of the material in [Rut98] and [Sil10] was one of the main initial motivations
for the research presented in this dissertation. This work on the context-free
languages enables us to see the first two levels of the Chomsky hierarchy (the
regular languages and context-free languages) in a coalgebraic context.

A secondary aim has been a search for coalgebraic presentations (or, maybe
rather: presentations aligning well with the coalgebraic approach) of important
existing results in automata theory. Sometimes, these presentations allow us

Chapter 1. Introduction 5

to better connect the (traditional) algebraic approach to automata theory with
the (more recent) coalgebraic and bialgebraic approaches, and allow us to see
existing (concrete) results in a more general, category-theoretical, light.

1.2.2 Main contributions

The main contributions of this dissertation are roughly the following:

1. A closer integration between, on one side, the algebraic approach to au-
tomata theory (on the level of generality of semirings, as this is the max-
imal level of generality on which most of the theory has been developed)
pioneered by Schützenberger and others, and, on the other side, the coal-
gebraic approach developed in e.g. [Rut98], [Rut02], [Rut03a], [SBBR10],
and [BBB+12].

2. Extension of the coalgebraic approach to deterministic and weighted au-
tomata to systems that represent the context-free languages and their
algebraic generalizations, the constructively algebraic power series (over a
commutative semiring).

3. A new construction of the Greibach normal form, which relies on a general-
ized version of a lemma using which the Kleene-Schützenberger-Eilenberg
theorem (stating the equivalence between recognizable and rational power
series) can also be proven. Unlike traditional constructions of the Greibach
normal form, this construction does not depend on reduction to any in-
termediate forms, such as the Chomsky normal form.

4. A coalgebraic characterization of the k-regular sequences, extending (a
variant of) an earlier characterization of the k-automatic sequences pre-
sented in [KR12]. These characterizations are both based on an isomor-
phism of final coalgebras, between a final coalgebra consisting of streams
on one side, and a final coalgebra consisting of formal power series on the
other side.

5. Semantic characterizations of the constructively algebraic power series and
k-regular sequences, which connect well to their coalgebraic characteriza-
tion, and to similar, existing, characterizations of simple and recognizable
power series and k-automatic sequences.

6. An investigation of various ways in which the coalgebraic approach to
context-free languages and their generalizations can be connected to the
world of λ-bialgebras and distributive laws.

6 Chapter 1. Introduction

7. A brief survey of how the various classes presented in this dissertation (sim-
ple, recognizable, constructively algebraic, k-automatic, and k-regular)
can all easily be implemented in Haskell. In addition, a simple tool,
QStream, is presented including helper functions for looking up streams
in the Online Encyclopedia of integer Sequences.

1.2.3 Main characterizations

Throughout this dissertation, various different automata-theoretic classes (such
as the regular languages, the context-free languages, and their generalizations
to other semirings) are characterized by means of a format of behavioural dif-
ferential equations, as well as a semantic characterization. As a basic example,
the regular languages can be characterized by finite systems of behavioural dif-
ferential equations where each derivative is specified using simply an element
of some system, and a language is regular if and only if there is a finite set Σ
of languages, such that for each language in it, and each alphabet symbol, the
derivative with respect to this symbol is in Σ again.

We now present a summary of the various automata-theoretic classes, the
corresponding formats for behavioural differential equations, and the corre-
sponding semantic characterizations. Each of these semantic characterizations
relies on the existence of a finite set Σ, for which all derivatives satisfy some
kind of closure property, which is different for each of the classes.

The various types of systems of behavioural differential equations can be
gathered in the following table:

class type of system example
simple simple o(x) = 1, x′ = x

recognizable linear o(x) = 1, x′ = 2x
constructively algebraic polynomial o(x) = 1, x′ = x2

k-automatic simple zip o(x) = 1, x′ = zip(x, y)
o(y) = 0, y′ = zip(y, x)

k-regular linear zip o(x) = 1, x′ = zip(x, 2x)

Similarly, the next table combines each of the semantic characterizations,
highlighting the structural similarity between these results: these characteri-
zations can be found in the dissertation as Proposition 2.6, Proposition 2.16,
Proposition 3.6, Proposition 3.16, Corollary 5.4, and Corollary 5.10.

The table can be read as follows: each row of the table states that a formal
power series σ ∈M satisfies property P (σ) if and only if there is a finite Σ ⊆M

Chapter 1. Introduction 7

with σ ∈ Σ, such that for each τ ∈ Σ, τ satisfies property Q(τ). Or equivalently,
every row of the table satisfies the following formula of first order logic:

∀σ ∈M.(P (σ) ⇐⇒ ∃Σ ∈ Pω(M).(σ ∈ Σ ∧ ∀τ ∈ Σ.Q(τ)))

with the appropriate instantiations of M , P , and Q.

M P (σ) Q(τ)
S〈〈A〉〉 σ is simple ∀a ∈ A, τa ∈ Σ
S〈〈A〉〉 σ is recognizable ∀a ∈ A, τa is linear in Σ
S〈〈A〉〉 σ is constructively algebraic ∀a ∈ A, τa is polynomial in Σ
S〈〈A〉〉 σ is constructively algebraic ∀a ∈ A, τa is rational in Σ
SN σ is k-automatic ∀i < k, unzipi,k(τ ′) ∈ Σ
SN σ is k-regular ∀i < k, unzipi,k(τ ′) is linear in Σ

Of these characterizations, the ones for constructively algebraic power series
and k-regular sequences can be seen as new contributions in this dissertation.

1.3 Overview of the material

Chapter 2 gives a survey of the existing coalgebraic presentations of deter-
ministic automata (or Moore machines) and weighted automata. Deterministic,
weighted, and linear automata are introduced, and existing results are presented
on the level of generality of arbitrary semirings.

This chapter also gives a (perhaps to some extent new) proof of a classical
result due to Kleene, Schützenberger, and Eilenberg, stating that a power series
is recognizable (by a weighted automaton) if and only if it is rational (that is,
definable by a rational expression). This result is a generalization of Kleene’s
theorem, stating that a language is definable by a finite automaton if and only
if it can be described by a regular expression. One important advantage of our
presentation is that, in the next chapter, we can re-use the main lemma in order
to present a construction of the Greibach normal form.

Finally, this chapter presents the notion of bisimulations up to linear com-
binations, as a proof technique for behavioural equivalence between linear au-
tomata. This notion essentially corresponds to that of linear weighted sim-
ulations presented in [BBB+12], and provides us with a highly useful proof
technique for some of the main results in the remainder in this dissertation.

8 Chapter 1. Introduction

Chapter 3 extends the presentation from Chapter 2 to systems of behavioural
differential equations in which each derivative is given as a polynomial over
the underlying set of variables (or nonterminals). Such systems again can be
given an interpretation coalgebraically, using similar techniques to those used
in Chapter 2, and characterize precisely the context-free languages as well as
their usual generalization to commutative semirings, the constructively algebraic
power series.

Furthermore, in Section 3.3, we re-use Lemma 2.22 to present a new con-
struction of the Greibach normal form, which does not depend on intermediate
normal forms such as the Chomsky normal form. Finally, in Section 3.4, we em-
ploy a result due to Chomsky and Schützenberger in order to give coinductive
characterizations of streams representing combinatorial problems of counting
functions of context-free grammars.

Chapter 4 extends the coalgebraic framework for automata from the two pre-
vious chapters further, by giving characterizations of pushdown automata, the
Hadamard product, and finally the zip-operator, which will play a prominent
role in Chapter 5. Two characterizations of pushdown automata are given: first,
pushdown automata with empty stack acceptance, and second, pushdown au-
tomata which are in an accepting configuration when both the stack is empty,
and the current state is an accepting one, which we call refined empty stack
acceptance. One of the results in this chapter is a bisimulation-based proof of
a classical result of Schützenberger, stating that the Hadamard product of a
constructively algebraic power series and a rational power series again is con-
structively algebraic. Unlike the traditional proof of this result, our proof relies
on a direct transformation into pushdown automata of pairs of systems of be-
havioural differential equations.

Chapter 5 gives a coalgebraic treatment of the k-automatic and k-regular
sequences, based on the zip and unzip-operators presented in the previous
chapter. This is done by presenting an alternate (but necessarily isomorphic)
final S-automaton for an alphabet Ak of size k, consisting of the set of all se-
quences (or streams, or power series) over S, which, on reading the ith alphabet
symbol, makes a transition consisting of composing the operator unzipi,k with
the tail operator. This isomorphism can be given by making use of the bi-
jective base k numeration system, which yields a bijection between words over
Ak and natural numbers. Both the k-automatic and k-regular sequences can
be represented coalgebraically by making use of this isomorphism, and are in

Chapter 1. Introduction 9

correspondence with simple and recognizable power series.
It is next shown that this coalgebraic characterization provides a character-

ization of a family of sequences definable by divide-and-conquer recurrences as
k-regular sequences. The chapter concludes with a discussion of Christol’s the-
orem and connects this result to a result by Fliess, establishing the equivalence
between algebraic and constructively algebraic power series in a single variable
(or, equivalently, streams).

Chapter 6 presents two alternative coinductive characterizations of the con-
structively algebraic power series. The first of these characterizations is through
term algebras, in which terms over the signature of semirings take the place of
polynomials. This yields a notion of syntactic systems of behavioural differen-
tial equations, similar to weighted automata and polynomial systems, and we
establish that every S-automaton generated by a syntactic system is mapped
by a homomorphism onto a S-automaton generated by a polynomial system: in
other words, we can see polynomial systems as quotients of syntactic systems.

We next present a characterization through µ-expressions (here seen as
unique fixed point expressions), and give a transformation back and forth from
µ-expressions to term algebras. The method used can be regarded as a re-
working of the (generic) correspondence between coalgebras and µ-expressions
presented in [Sil10], albeit in a different setting not considered there.

Chapter 7 connects the constructions from Chapters 2 and 3 with the general
categorical framework of (λ)bialgebras and distributive laws (see for example
[Bar04], [Jac06], and [Kli11]). After presenting some relevant ideas and results
of the general framework, and recalling how weighted automata can directly be
obtained from this framework, we turn to a treatment of constructively alge-
braic power series. Here, a direct fit is less clear and some subtleties arise, which
can be resolved in various ways, for example by considering a distributive law
over a co-pointed functor. Finally, we give a definition for what we call Brzo-
zowski bialgebras, which are both automata and algebras over a commutative
semiring, and which satisfy the Brzozowski product rule. Brzozowski bialgebras
again form a category, which has a number of useful properties in common with
categories of λ-bialgebras.

Chapter 8 gives an implementation of the coinductive stream calculus (which
arises as an instance of the coinductive calculus of power series) in the functional
programming language Haskell. Using Haskell’s lazy evaluation, it is directly

10 Chapter 1. Introduction

possible to give coinductive definitions, and by extending Haskell’s numerical
type Num to streams, rational and algebraic streams can be defined directly.
In order to specify k-automatic and k-regular streams in Haskell, we need one
more function xzip, which again is defined coinductively, and using which the
operations zipk for any k can be given. Finally, a set of point-free definitions
of the coinductive calculus is given, bringing us again closer to the categorical
perspective.

Appendices A and B recall the underlying definitions from algebra and
category theory, together with some important examples and results. These
appendices, to a certain extent, also serve as preliminary material for this dis-
sertation. In Chapters 2 until 6, however, the dependence on category is very
light, and does not—at least, not explicitly—depend on the notions of monads,
natural transformations, or Eilenberg-Moore algebras, which are only considered
as such in Chapter 7.

Appendix C concludes with collection of coinductively defined streams, with
a few exceptions all inside one of the main classes considered in this dissertation.

1.4 Origins of the material

For the most part, the new contributions in this dissertation have their origins
in the following papers:

1. [WBR11]: Joost Winter, Marcello M. Bonsangue, and Jan Rutten. Con-
text-free languages, coalgebraically. (2011)

2. [BRW12]: Marcello M. Bonsangue, Jan Rutten, and Joost Winter. Defin-
ing context-free power series coalgebraically. (2012)

3. [WBR13]: Joost Winter, Marcello M. Bonsangue, and Jan Rutten. Coal-
gebraic characterizations of context-free languages. (2013)

4. [WBR14]: Joost Winter, Marcello M. Bonsangue, and Jan Rutten. Con-
text-free coalgebras. (Accepted for publication)

5. [Win13]: Joost Winter. QStream: A Suite of Streams (2013)

Chapter 1. Introduction 11

6. [HKRW14]: Helle H. Hansen, Clemens Kupke, Jan Rutten, and Joost
Winter. A final coalgebra for k-regular sequences. (Accepted for publica-
tion)

The papers [WBR13] and [WBR14] are journal papers extending the con-
ference papers [WBR11] and [BRW12], and have been used as source material
for this dissertation only indirectly.

The new material in Chapter 2 is mostly taken from [WBR14], with the
exception of the (unpublished) presentation of rational series and the Kleene-
Schützenberger-Eilenberg theorem. Chapter 3 incorporates, and integrates, re-
sults from [WBR13] as well as [WBR14]. The material in Chapter 4 is unpub-
lished. Chapter 5 for the most part is based on [HKRW14]. Finally, the material
in Chapters 6 and 7 originates from [WBR13]. Finally, Chapter 8 is based on
[Win13].

2

Regular languages and rational power series

In this chapter, we introduce the basics of the coalgebraic approach to au-
tomata theory, including a variety of results which have been presented before
in e.g. [Rut98], [Rut03a], [BBB+12] and [SBBR13].

We start by having a look at automata with output in an arbitrary set S
without assuming any additional structure on S (often called Moore automata in
the literature) from a coalgebraic perspective. At this level, using instantiations
of the general framework of universal coalgebra [Rut00], we can already talk
about homomorphisms, bisimulations, and the existence of a final automaton
(or, in more abstract terms, a final coalgebra).

We bring algebra into the picture in Section 2.2 by considering final au-
tomata for the case when S is the carrier of a semiring, and show that the final
automaton can be seen as both a semiring and an S-module. These semiring
and S-module structures are compatible with the interpretation of S〈〈A〉〉 as
formal power series in noncommuting variables. Specific instances of such final
automata include the set of all formal languages over any alphabet, and the set
of all streams over any semiring, both of which have been studied extensively
in a coalgebraic context.

Next, in Section 2.3, we introduce S-linear automata (for a semiring S), of
which the final automata from the previous section are instances, as S-automata
which additionally have the structure of a S-module. Closely related to S-
linear automata are S-weighted automata, which can be determinized into S-
linear automata. This determinization generalizes the classical determinization
of nondeterministic automata, and, in a broader categorical context, is itself an
instance of the generalized powerset construction presented in [SBBR13].

In Section 2.4, we introduce the notion of S-rational power series and present
a classic result by Kleene, Schützenberger and Eilenberg ([Sch61a], [Eil76]) stat-
ing that a power series is S-rational if and only if it is recognized by some finite
S-weighted automaton. Finally, in Section 2.5, we introduce the notion of bisim-
ulation up to linear combinations, an instance of the categorical presentation in
[RBR13] of bisimulation up to, as a useful technique to prove equality of lan-

13

14 Chapter 2. Regular languages and rational power series

guages and formal power series.

2.1 Automata as coalgebras

Fixing a finite alphabet A, and given an arbitrary set S, an S-automaton is
defined as a triple

(Q, o, δ)

where

1. Q is a set of states;

2. o : Q → S is a function assigning an output value from S to each state;
and

3. δ : Q → QA assigns a mapping from alphabet symbols to states to each
state. We call δ the transition function or the derivative of the automaton.

We call an S-automaton (Q, o, δ) finite whenever Q is finite, and often simply
refer to such an automaton as Q, when no confusion about the meaning of the
output and transition funcitons concerned is likely to arise.

We will usually write qa or in some cases, when we want to be more explicit
(for example, in the frequent case when we are comparing different automata),
the curried notation δ(q, a) instead of δ(q)(a), and call qa the a-derivative of q.

Contrary to more traditional presentations of automata, but following most
coalgebraic work on automata theory, our automata do not any have designated
initial states. However, it will soon become clear that nothing is lost in doing
so, as we can always assume any state from the automaton as ‘initial’ if so
desired. At the same time, by not regarding initial states as an intrinsic part
of the automaton, we gain the advantage (as we will see soon) of the existence
of unique automaton morphisms from arbitrary automata into a designated
automaton satisfying the property of being final.

Example 2.1. Consider the following automaton over the alphabet {a, b} with
outputs in {0, 1}, represented pictorially by

x ↓ 1 y ↓ 0

a

b

b

a

Chapter 2. Regular languages and rational power series 15

or equivalently by the following system of behavioural differential equations:

o(x) = 1 xa = x xb = y
o(y) = 0 ya = y yb = x

Note that both representations contain exactly the same information: we will
henceforth identify any automaton with the corresponding system of behavioural
differential equations.

We can extend the transition function δ to a transition function δ∗ over
words w ∈ A∗ inductively by setting

δ∗(q, 1) = q and δ∗(q, aw) = δ∗(δ(q, a), w). (2.1)

(Throughout this dissertation, the empty word is denoted by 1.)
Since δ∗(q, a) = δ∗(δ(q, a), 1) = δ(q, a) for all q ∈ Q and a ∈ A, the functions

δ and δ∗ are compatible, and we can rewrite (2.1) using the earlier shorthand
notation as

q1 = q and qaw = (qa)w

which hold for all q ∈ Q, a ∈ A, and w ∈ A∗. The second of these equations
can be generalized using a simple lemma:

Lemma 2.2. Given a S-automaton (Q, o, δ) and any q ∈ Q, the equation qvw =
(qv)w holds for all v, w ∈ A∗.

Proof. Induction on the length of v. If |v| = 0, then v = 1 and note q1w = qw =
(q1)w. If |v| > 0 then v = au for some a ∈ A and u ∈ A∗, and use the inductive
hypothesis that qzw = (qz)w holds for all z ∈ A∗ with |z| < |v|. In particular,
we have quw = (qu)w. Now observe

qvw = q(au)w = qa(uw) = (qa)uw = ((qa)u)w = (qau)w = (qv)w

and the proof is complete.

A morphism between two S-automata (Q, o, δ) and (R, p, γ) is a mapping
h : Q → R such that for all q ∈ Q and a ∈ A, we have o(q) = p(h(q)) and
h(qa) = h(q)a. Or equivalently, iff it makes the diagram

Q
h - R

S ×QA

(o, δ)

?
1S × hA- S ×RA

(p, γ)

?

16 Chapter 2. Regular languages and rational power series

commute. Thus, S-automata and their morphisms form a category, with the
identity function and function composition as identity morphism and compo-
sition of morphisms. This category is, by the above diagram, identical to the
category of coalgebras for the Set-endofunctor S ×−A.

Lemma 2.3. Given S-automata (Q, o, δ) and (R, p, δ), for any morphism h :
Q→ R, any q ∈ Q and any w ∈ A∗, h(qw) = h(q)w.

Proof. Induction on the length of w. Base case: h(p1) = h(p) = h(p)1. Inductive
case: assume h(pv) = h(p)v for all p ∈ Q, then also h(pav) = h((pa)v) =
h(pa)v = h(p)av.

The category of S-automata has a final object, which can be given by
(S〈〈A〉〉, O,∆), where S〈〈A〉〉 is defined as the function space

{f | f : A∗ → S}

from A∗ to S. We will subsequently use the notation

[σ ⇓ w]

for the evaluation of σ ∈ S〈〈A〉〉 at the word w. We will by convention let
elements from S〈〈A〉〉 be denoted by the Greek letters σ, τ , etc.

For now, S can be any set, but once we start adding more structure to our
automata, we will assume S to be a semiring and also consider the elements
of S〈〈A〉〉 as formal power series. In the absence of any algebraic structure on
S〈〈A〉〉, elements of S〈〈A〉〉 can maybe best be thought of as S-language partitions,
that is, partitions of A∗ into S.

We define the automaton structure (O,∆) on S〈〈A〉〉, for any σ ∈ S〈〈A〉〉,
a ∈ A and w ∈ A∗, by

O(σ) = σ(1) and [σa ⇓ w] = [σ ⇓ aw]

and it’s easy to see that this, indeed, unambiguously specifies such an automaton
structure.

The equality [σa ⇓ w] = [σ ⇓ aw] can again be generalized inductively:

Lemma 2.4. For all v, w ∈ A∗, we have [σv ⇓ w] = [σ ⇓ vw].

Proof. First show by induction on the length of v that for all σ ∈ S〈〈A〉〉 and
w ∈ A∗,

[σ ⇓ v] = [σv ⇓ 1]

and then use Lemma 2.2 to conclude [σv ⇓ w] = [σ ⇓ vw] for arbitrary w.

Chapter 2. Regular languages and rational power series 17

The following proposition establishes the fact that S〈〈A〉〉 is a final automaton
or, in the more general terminology of universal coalgebra, a final coalgebra for
the functor S ×−A:

Proposition 2.5. For any S-automaton (Q, o, δ) over an alphabet A, there
exists a unique morphism from (Q, o, δ) to the automaton (S〈〈A〉〉, O,∆).

Proof. Consider the mapping J−K : Q→ S〈〈A〉〉 defined by

[JqK ⇓ w] = o(qw).

To see that this mapping is a morphism, we have to show that o(q) = O(JqK)
and that JqaK = JqKa for all q ∈ Q and a ∈ A. But this is the case, since for any
w ∈ A∗, we have

O(JqK) = [JqK ⇓ 1] = o(q1) = o(q)

and

[JqaK ⇓ w] = o((qa)w) = o(qaw) = [JqK ⇓ aw] = [JqKa ⇓ w].

For unicity, assume that h is a morphism from Q to S〈〈A〉〉. But this gives

[h(q) ⇓ w] = o(h(q)w) = o(h(qw)) = o(qw) = [JqK ⇓ w]

for arbitrary q ∈ Q and w ∈ A∗, so we must have h = J−K.

The statement of this proposition can be summarized in the following com-
muting diagram

Q
J−K

- S〈〈A〉〉

S ×QA

(o, δ)

?
......................
1S × J−KA

- S × S〈〈A〉〉A

(O,∆)

?

with the dotted arrows indicating that J−K is the only function making this
diagram commute.

We call any σ ∈ S〈〈A〉〉 S-simple if and only if there is a finite S-automaton
(Q, o, δ) and a q ∈ Q such that JqK = σ. Equivalently, simple power series can
be characterized as follows:

18 Chapter 2. Regular languages and rational power series

Proposition 2.6. Given any set S and any σ ∈ S〈〈A〉〉, σ is S-simple if and
only if there is a finite set Σ ⊆ S〈〈A〉〉 with σ ∈ Σ, such that for all τ ∈ Σ and
all a ∈ A, τa ∈ Σ.

Proof. If σ is S-simple, there is a finite automaton (Q, o, δ) with a q s.t. JqK =
σ. Now notice {JqK | q ∈ Q} is a subset of S〈〈A〉〉 with the stated property.
Conversely, if Σ has the stated property, then (Σ, O,∆) is a finite automaton
with, for all σ ∈ Σ, JσK = σ, so σ is S-simple.

We now turn to bisimulations, which can be seen as a relational general-
ization of morphisms. The notion of bisimulation can, in general, be seen as
a technique to establish behavioural equivalence between different systems—in
this case S-automata. Given S-automata (P, oP , δP) and (Q, oQ, δQ), we say a
relation R ⊆ P ×Q is a bisimulation between P and Q if and only if, whenever
(p, q) ∈ R, we have

1. oP (p) = oQ(q), and

2. for all a ∈ A, (pa, qa) ∈ R.

This notion of bisimulation can be seen as an instance of a more general
concept of bisimulation between F -coalgebras, and the results that now follow
are instances of more general results, which can be found in [Rut00].

Proposition 2.7. If R ⊆ P × Q is a bisimulation between (P, oP , δP) and
(Q, oQ, δQ), and (p, q) ∈ R, then JpK = JqK.

Proof. We can define an automaton structure on R by defining, for (p, q) ∈ R,
oR((p, q)) = oP (p)(= oQ(q)), and (p, q)a = (pa, qa). Now observe that the pro-
jection functions π1 : R → P and π2 : R → Q are morphisms as oP (π1(p, q)) =
oP (p) = oR((p, q)), and π1((p, q)a) = π1(pa, qa) = pa = (π1(p, q))a, and simi-
larly for π2.

We now obtain morphisms J−K ◦ π1 and J−K ◦ π2 from R into the final
coalgebra, but by Proposition 2.5, it follows that these morphisms must be
identical, and hence, given (p, q) ∈ R,

JpK = Jπ1(p, q)K = Jπ2(p, q)K = JqK

completing the proof.

Chapter 2. Regular languages and rational power series 19

We thus obtain the following categorical characterization: a relation R is a
bisimulation between S-automata (P, oP , δP) and (Q, oQ, δQ) if and only if the
diagram

P �
π1

R
π2 - Q

S × PA

(oP , δP)

?
�1S × π1

A

S ×RA

(oR, δR)

?
1S × π2

A
- S ×QA

(oQ, δQ)

?

commutes, with oR and δR as in the above proposition.
Furthermore, given S-automata (P, oP , δP) and (Q, oQ, δQ), we say elements

p ∈ P and q ∈ Q are bisimilar and write p ∼P,Q q if and only if there is some
bisimulation R between (P, oP , δP) and (Q, oQ, δQ) such that (p, q) ∈ R.

Lemma 2.8. Given S-automata (P, oP , δP) and Q, oQ, δQ), as well as p ∈ P
and q ∈ Q, we have p ∼P,Q q if and only if JpK = JqK.

Proof. If p ∼P,Q q, there is some bisimulation R between P and Q, such that
(p, q) ∈ R. It follows from Proposition 2.7 that JpK = JqK. Conversely, given
p ∈ P and q ∈ Q such that JpK = JqK, consider the relation

R = {(r, s) | r ∈ P, s ∈ Q, JrK = JsK}.

If JrK = JsK, then o(r) = O(JrK) = O(JsK) = o(s) and for any a ∈ A, JraK =
JrKa = JsKaJsaK, so R is a bisimulation and, as (p, q) ∈ R, we get p ∼P,Q q.

We will only need this technique in Chapter 6, but this is a good point to
introduce the notion of bisimulation up to bisimilarity, an instance of the general
framework of coalgebraic bisimulation up to (see e.g. [Pou13], [RBR13]).

Given S-automata (P, oP , δP) and (Q, oQ, δQ), a relation R ⊆ P×Q is called
a bisimulation up to bisimilarity if and only if, whenever (p, q) ∈ R, we have

1. oP (p) = oQ(q), and

2. for all a ∈ A, there are elements s ∈ Q, t ∈ R, such that s ∼ pa, t ∼ qa,
and (pa, qa) ∈ R.

Proposition 2.9. If R is a bisimulation up to bisimilarity between (P, oP , δP)
and (Q, oQ, δQ), and (p, q) ∈ R, then JpK = JqK.

20 Chapter 2. Regular languages and rational power series

Proof. Extend R to a relation

S := {(p, q) | ∃r, s : p ∼ r, r R s, s ∼ q}.

We now verify that S is a bisimulation. If (p, q) ∈ S, then by p ∼ r,
r R s, s ∼ q we get oP (p) = oP (r) = oQ(s) = oQ(q). Given any a ∈ A,
moreover, because R is a bisimulation up to bisimilarity and r R s, there are
t ∈ P , u ∈ Q, such that t ∼ ra, u ∼ sa, and t R u. From p ∼ r and s ∼ q we now
get pa ∼ ra and sa ∼ qa and transitivity now gives us pa ∼ t and qa ∼ u. As
t R u, it now follows that pa S qa. Hence, S is a bisimulation and JpK = JqK.

2.2 Languages, power series, and streams

At this point, we add algebra into the purely colgebraic presentation of the pre-
vious section, by considering the case where the output set S has the structure
of a semiring. In this case, we have canonical semiring and semimodule struc-
tures on the set S〈〈A〉〉; these structures will be presented in this section. Most
of the results in this section can be found in [BR11], [Rut03a], and [Rut05].

Whenever this is the case, we can say a few things about the possible struc-
ture of S〈〈A〉〉. Specifically, we will see that S〈〈A〉〉 can be given

• a semiring structure;

• a left S-module structure; and

• a right S-module structure.

2.2.1 Formal languages

We first consider the case of B, the Boolean semiring with carrier {0, 1}, and
with multiplication and addition representing the operations min (or ∧) and
max (or ∨). The B-simple languages are, by definition, precisely the regular
languages.

Via the bijection f : P(A∗) � B〈〈A〉〉 defined by

[f(L) ⇓ w] = if w ∈ L then 1 else 0

the final automaton now becomes

P(A∗) ∼= B〈〈A〉〉

Chapter 2. Regular languages and rational power series 21

with the operations O : P(A∗) → B and ∆ : (P(A∗) × A) → P(A∗) translating
over this bijection as

O(L) = if 1 ∈ L then 1 else 0

La = {w | aw ∈ L}

for all L ∈ P(A∗). Given any B-automaton Q, we moreover call a state q ∈ Q
accepting whenever o(q) = 1.

Example 2.10. Consider the B-automaton from Example 2.1, which was given
by the system:

o(x) = 1 xa = x xb = y
o(y) = 0 ya = y yb = x

The final homomorphism J−K maps x to the language (over the alphabet
{a, b} of all words containing an even number of bs, and maps y to the language
of all words containing an odd number of bs.

We now define a multiplication operator representing language concatenation

LM = {vw | v ∈ L,w ∈M}

and it is easily verified that

(P(A∗),∪, ·,∅, {1})

is again a semiring.
We moreover define a mapping i : B→ P(A∗) by

i(0) = ∅, i(1) = {1}, and j(w) = {w}.

which is directly seen to be a semiring morphism between B and P(A∗). An
element from S〈〈A〉〉 that is in the image of i is called a scalar in S.

Moreover (as we will soon prove in a more general setting), the following
derivative rules, involving both the semiring structure and the B-automaton
structure of P(A∗) hold:

O(∅) = 0 ∅a = ∅
O({1}) = 1 {1}a = ∅
O({b}) = 0 {b}a = if b = a then {1} else ∅

O(L ∪M) = O(L) ∨O(M) (L ∪M)a = σa ∪ τa
O(LM) = O(L) ∧O(M) (LM)a = LaM ∪ i(O(L))Ma

This list of rules corresponds to, and generalizes, the derivative rules given
by Brzozowski for regular expressions in [Brz64].

22 Chapter 2. Regular languages and rational power series

2.2.2 Formal power series

This structural presentation fully generalizes from formal languages to formal
power series in noncommuting variables, which have been extensively studied in
automata theory. Originally conceived of as an abstraction of the Taylor series
of analytic functions, for automata-theoretic purposes formal power series can
maybe best be seen as S-weighted languages, assinging to each word over the
alphabet a weight in S.

Given any semiring S, we can define a semiring structure on S〈〈A〉〉 by giving
definitions for the constants 0 and 1 and the binary operations + and · pointwise
for all w ∈ A∗:

[0 ⇓ w] = 0

[1 ⇓ w] = if w = 1 then 1 else 0

[σ + τ ⇓ w] = [σ ⇓ w] + [τ ⇓ w]

[στ ⇓ w] =
∑
uv=w

[σ ⇓ u][τ ⇓ v].

It now follows that (S〈〈A〉〉,+, ·, 0, 1) is again a semiring. The product that
we defined on S〈〈A〉〉 is known as the Cauchy product or the convolution product.

Furthermore, we define a left scalar product ·l and a right scalar product ·r
again pointwise using

[σ + τ ⇓ w] = [σ ⇓ w] + [τ ⇓ w]

[k ·l σ ⇓ w] = k[σ ⇓ w]

[σ ·r k ⇓ w] = [σ ⇓ w]k.

for all k ∈ S, and it now follows that the structures

(S〈〈A〉〉, ·l,+, 0) and (S〈〈A〉〉, ·r,+, 0)

are left and right S-modules, respectively (as usual coinciding whenever S is
commutative).

Again, we can define an injective function iS : S → S〈〈A〉〉 pointwise using
the equation

[iS(s) ⇓ w] = if w = 1 then s else 0.

and once again iS is a semiring morphism from S to S〈〈A〉〉. Similarly, we can
define a function j : A∗ → S〈〈A〉〉 by

[j(v) ⇓ w] = if v = w then 1 else 0

Chapter 2. Regular languages and rational power series 23

and j is a monoid morphism from A∗ to S〈〈A〉〉.
In what follows, we will usually omit the notation for iS and j, and simply

write s and v for iS(s) and j(v): this can be done without causing any problems
because iS and j are semiring and monoid morphisms, respectively.

Combining the semiring structure on S〈〈A〉〉 with the earlier automaton struc-
ture, it becomes clear that Brzozowski’s derivative rules again are valid:

Proposition 2.11. For all s ∈ S, b ∈ A, σ, τ ∈ S〈〈A〉〉, we have:

O(s) = s sa = 0
O(b) = 0 ba = if b = a then 1 else 0

O(σ + τ) = O(σ) +O(τ) (σ + τ)a = σa + τa
O(στ) = O(σ)O(τ) (στ)a = σaτ +O(σ)τa

Proof. The only case that is not trivial is the case of the product: here, first we
have

O(στ) = [στ ⇓ 1] = [σ ⇓ 1][τ ⇓ 1] = O(σ)O(τ)

and then, for any w ∈ A∗,

[(στ)a ⇓ w] = [στ ⇓ aw]

=
∑
tu=aw

[σ ⇓ t][τ ⇓ u]

=
∑
vz=w

[σ ⇓ av][τ ⇓ z] + [σ ⇓ 1][τ ⇓ aw]

=
∑
vz=w

[σa ⇓ v][τ ⇓ z] + [σ ⇓ 1][τa ⇓ w]

= [σaτ ⇓ w] +O(σ)[τa ⇓ w]

= [σaτ +O(σ)τa ⇓ w].

Notation aside, the crucial difference between Brzozowzki’s calculus of deri-
vatives and the familiar calculus of function derivatives lies in the product rule

(στ)a = σaτ +O(σ)τa

which divers from the ordinary product rule

(fg)x = fxg + fgx

24 Chapter 2. Regular languages and rational power series

by an additional application of the output function O on σ.
We will now turn to an elementary but useful result, also called the funda-

mental theorem of the coinductive calculus (see e.g. [Rut03a]):

Proposition 2.12. For any σ ∈ S〈〈A〉〉, we have:

σ = O(σ) +
∑
a∈A

aσa

Proof. Consider the following relation R ⊆ S〈〈A〉〉 × S〈〈A〉〉:

R =

{(
σ,O(σ) +

∑
a∈A

aσa

)∣∣∣∣∣σ ∈ S〈〈A〉〉
}
∪ {(σ, σ) |σ ∈ S〈〈A〉〉}.

It is easy to see that R is a bisimulation on S〈〈A〉〉.

This result can again be represented diagrammatically, yielding a bijection
between S〈〈A〉〉 and S × S〈〈A〉〉A:

S〈〈A〉〉
(O,∆) -�

λs.π1(s) +
∑
a∈A

aπ2(s)(a)

S × S〈〈A〉〉A

2.2.3 Streams

Frequently, we will be concerned with the case where the alphabet A consists
of a single symbol, which we will represent using the symbol X. This case
corresponds to so-called streams over S, which can be seen as infinite sequences
over S together with operators head and tail, again also called output and
derivative. Extensive studies of the coinductive stream calculus can be found in
for example [Rut03a] and [Rut05].

We regard streams as infinite sequences σ ∈ SN together with operations
head and tail defined by

head(σ) = σ(0) and [tail(σ)](n) = σ(n+ 1).

Again, we call the tail of a stream its derivative and will commonly use the
notation σ′ for tail(σ). Likewise, we call the derivative σXn the nth derivative
of σ and denote it as σ(n).

Chapter 2. Regular languages and rational power series 25

The set S〈〈{X}〉〉 then is in bijective correspondence with the set SN of
streams over S, by identifying [σ ⇓ Xn] with σ(n) between the two representa-
tions.

This creates an isomorphism of S-automata

(S〈〈{X}〉〉, O,∆) ∼= (SN,head, tail)

and now SN directly inherits the semiring and semimodule structure of S〈〈{X}〉〉.
For example, the definition of the product now instantiates as

(στ)(n) =

n∑
i=0

σ(i)τ(n− i)

and the corresponding product rule as

(στ)′ = σ′τ + head(σ)τ ′.

Moreover, the fundamental theorem instantiates for streams as

σ = σ(0) + Xσ′.

When dealing with streams over arbitrary sets S, we have no semiring or
module structure on SN, and thus terms like Xσ are not defined. For these
cases, we introduce as an alternative a cons operator ::, defined coinductively
by

O(s :: σ) = s and (s :: σ)′ = σ

as an inverse of the output and derivative operators. Or equivalently, by the
single equation σ = O(σ) :: σ′.

When S is a semiring, it now directly follows that

s+ Xσ = s :: σ

for all s ∈ S and σ ∈ SN using the fundamental theorem and the equality
(Xσ)′ = σ.

When the underlying semiring S is a field, an stream σ ∈ SN is invertible
if and only if head(σ) is invertible, and satisfies the behavioural differential
equations

head(σ−1) = head(σ)−1 and(σ−1)′ = −head(σ)−1 · σ′ · σ−1.

We note that there is a connection between the operations on streams defined
this way, and the world of generating functions (which play a very minor role

26 Chapter 2. Regular languages and rational power series

in this dissertation), considering functions that generate certain power series as
their Taylor expansion. An introduction to generating functions can be found
in [Wil06]: we note that the operations of addition, multiplication and inverse
on streams coincide with those of generating functions. For example, the power
series expansion of the generating function

A(X) =
X

(1−X)(1− 2X)

is given by the following stream:

X

(1− X)(1− 2X)

This gives a justification for the symbol X, which can be regarded as a
‘fossilized variable’, that is, a variable regarded as a constant (or a singleton
alphabet symbol) in the coalgebraic approach.

We can now summarize the relationship between the general case of formal
power series, and the two specific instances of formal languages and streams as
follows:

Formal Formal Streams
languages power series

Alphabet A A {X}
Outputs B S S

Solution space P(A∗) ∼= B〈〈A〉〉 S〈〈A〉〉 S〈〈{X}〉〉 ∼= SN

Derivative of x xa (a ∈ A) xa (a ∈ A) x′

Many of the examples in this dissertation consist of systems of behavioural
differential equations defining streams over natural numbers or integers. For
these examples, we give a number of initial values of the streams, together
with the number of the associated entry in the Online Encyclopedia of Integer
Sequences, which can be found at:

http://oeis.org

Example 2.13. Consider the automaton

x ↓ 0 y ↓ 1

Chapter 2. Regular languages and rational power series 27

over a single alphabet symbol (X, not shown in the drawing of the automa-
ton), and with outputs in N. This automaton corresponds to the system of
behavioural differential equations

o(x) = 0 x′ = y
o(y) = 1 y′ = x

and it is easily seen that the final homomorphism maps x onto the stream
perpetually repeating the pattern 0, 1:

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . . (A000035)

2.3 Weighted and linear automata

We will now give a coalgebraic presentation of a part of the theory of weighted
automata over a semiring S, which constitutes a foundation for most of the mate-
rial in the remainder of this dissertation. Languages and power series characteri-
zable by finite weighted automata are called S-recognizable. In our presentation,
weighted automata can be regarded as linear systems of behavioural differential
equations. These systems, moreover, have unique solutions, which can be ob-
tained by transforming any S-weighted automaton into a corresponding S-linear
automaton.

Our presentation contrasts with (but can be linked to) the traditional treat-
ment of weighted automata by means of transition matrices: introductions to
this traditional approach can be found in for example [Eil76], [BR11], [Sak09],
[DKV09]. Instead of matrices, we formulate our presentation using formal lin-
ear combinations together with general mappings of S-modules and the S-linear
mappings between them.

The observation that rational power series occur as the solutions of (classi-
cal) systems of differential equations was first made in [FR83]. More recently,
rational power series have been considered in a coalgebraic setting in [Rut08]
and [BBB+12]. The determinization method presented in this section can be
traced back to [Bar04], and has more recently been treated extensively in a more
general coalgebraic context (to which we will return in Chapter 7) in [SBBR10].

2.3.1 Linear automata

We start by considering S-automata (Q, o, δ) where the output set S is the car-
rier of a semiring, and the state space Q is the carrier of a S-module. Assuming

28 Chapter 2. Regular languages and rational power series

a semiring (S,+, ·, 0, 1) (which we will usually just refer to as S), we call an
S-automaton (Q, o, δ) a S-linear automaton whenever:

1. Q is the carrier of a S-module; and

2. o : Q→ S is a S-linear mapping; and

3. for each a ∈ A, the derivative to A, (−)a : Q→ Q is a S-linear mapping.

Hence, we can regard S-linear automata as S-automata with outputs in a
semiring S, that are S-modules and satisfy additional linearity conditions. S-
linear automata and S-linear mappings that are also S-automata morphisms
again form a category.

The automaton (S〈〈A〉〉, O,∆) together with its S-module structures pre-
sented in the previous section is easily seen to be a S-linear automaton. Soon,
after weighted automata have been introduced, we will see that S-linear au-
tomata also occur as the determinized or linearized extensions of weighted au-
tomata.

We can now establish directly that the final mapping J−K from any linear
automaton (Q, o, δ) is a S-linear mapping:

Proposition 2.14. If (Q, o, δ) is a S-linear automaton, J−K is a S-linear map-
ping.

Proof. By Proposition 2.5, we have JqK(w) = o(qw) for all q ∈ Q. Because for
all w, the operation q 7→ δ∗(q, w) is S-linear, and o itself is S-linear, we have

[Jk0x0 + k1x1K ⇓ w]

= o((k0x0 + k1x1)w)

= k0o((x0)w) + k1o((x1)w)

= k0[Jx0K ⇓ w] + k1[Jx1K ⇓ w]

= [k0Jx0K + k1Jx1K ⇓ w]

for all w ∈ A∗, and hence

Jk0x0 + k1x1K = k0Jx0K + k1Jx1K

proving that J−K is S-linear.

From this proposition, it follows directly that S〈〈A〉〉 is a final object in the
category of S-linear automata and S-linear automata morphisms.

Chapter 2. Regular languages and rational power series 29

2.3.2 Formal linear combinations

Given a semiring (S, ·S ,+S , 1S , 0S), any set Y , and a function f : Y → S, let
the support of the function f

supp(f) := {y ∈ Y | f(y) 6= 0}

denote the set of elements in Y that are mapped onto a nonzero element of S.
Furthermore, let

LinS(X) := {f : X → S | supp(f) is finite}

denote the set of functions from X to S with finite support, which we regard as
representing formal finite S-linear combinations over X.

Given any s ∈ LinS(X) and any x ∈ X, we again use the notation

[s ⇓ x]

to denote the evaluation of s (seen as a function from X to S) at x.
Again, LinS(X) can be assigned a S-module structure (LinS(X),+, ·, 0),

overloading the symbols 0, +, and ·, and specified by:

[0 ⇓ x] = 0

[t+ u ⇓ x] = [t ⇓ x] + [u ⇓ x]

[s · t ⇓ x] = s[t ⇓ x]

We also define an injection ηl
X : X → LinS(X) by

[ηl
X(x) ⇓ y] = (if x = y then 1 else 0)

allowing us to represent elements of LinS(X) using summation notation, as the
equality

s =
∑
x∈X

[s ⇓ x]ηl
X(x)

holds for all s ∈ LinS(X) w.r.t. the S-module structure on LinS(X). Note that
this infinite sum is always defined, because by definition there are only finitely
many x ∈ X with s ⇓ x 6= 0.

We can extend any function f : X → Y to a function

LinS(f) : LinS(X)→ LinS(Y)

30 Chapter 2. Regular languages and rational power series

by defining, for arbitrary s ∈ LinS(X)

[LinS(f)(s) ⇓ y] =
∑

x∈f−1(y)

[s ⇓ x].

It is moreover easy to check that LinS(−) is a functor.
Given any S-module M , any set X, and a function f : X → M , there

moreover is always a unique linear mapping f̂ : LinS(X) → M making the
diagram

X ⊂
ηl
X- LinS(X)

M

f

?

f̂

�..
....

....
....

....
....

....
...

(2.2)

commute. Moreover, f̂ can be specified by

f̂(t) =
∑
x∈X

[t ⇓ x]x.

In the special instance when S is the Boolean semiring, LinS(X) is equivalent
to Pω(X), the set of finite subsets of X; and, given a f : X → Y , the function
LinS(f) corresponds to Pω(f), defined by Pω(f)(Z) = {f(z) | z ∈ Z} for finite
Z ⊆ X.

2.3.3 Weighted automata

Fixing a finite alphabet A, a weighted automaton with weights in a semiring S,
or a S-weighted automaton, consists of a triple

(X, o, δ)

where

1. X is a set, to be regarded as a set of variables or nonterminals;

2. o : X → S is, as in the case of automata, an output function

3. δ : X → LinS(X)A is the transition function, describing each of the pos-
sible derivatives of the set X as an S-weighted linear combination of ele-
ments of X.

Chapter 2. Regular languages and rational power series 31

Similarly to how S-automata can be seen as coalgebras for the functor
S × −A, S-weighted automata can be seen as coalgebras for the functor S ×
LinS(−)A. In other words, S-weighted automata have a different type from
S-automata.

However, we can transform any weighted automaton (X, o, δ) into a linear

automaton (LinS(X), ô, δ̂). To ensure compatibility between o and δ on one

side, and ô and δ̂ on the other side, we must have ô(ηl(x)) = o(x) for all x ∈ X,

and δ̂(ηl(x))(a) = δ(x)(a) for all x ∈ X and a ∈ A. Moreover, ô and δ̂ have to be

linear mappings as well in order for (LinS(X), ô, δ̂) to be a linear S-automaton.
Because LinS(X) is the free S-module over X, however, we know that there
must be a unique mapping satisfying these properties: given any s ∈ LinS(X),
we have

ô(s) = ô

(∑
x∈X

[s ⇓ x]x

)
=
∑
x∈X

[s ⇓ x]o(x)

and for all σ ∈ LinS(X) and a ∈ A, we have

σa =

(∑
x∈X

[s ⇓ x]x

)
a

=
∑
x∈X

[s ⇓ x]xa.

This construction, which can be seen as an instance of a more general cat-
egorical construction originally presented in [SBBR10], can be summarized in
the following diagram, together with the final homomorphism from the linear
automaton LinS(X) into the final automaton:

X ⊂
ηl
X- LinS(X)

J−K
- S〈〈A〉〉

S × LinS(X)A

(o, δ)

?
..

1S × J−KA
-

(ô, δ̂)

�
S × S〈〈A〉〉A

(O,∆)

?

(2.3)

We will call a formal power series σ S-recognizable whenever there is a finite
weighted automaton X, and an x ∈ X, such that Jηl(x)K = σ.

We end this section with a result giving another characterization of the S-
recognizable power series. Given a Σ ⊆ S〈〈A〉〉, we call a power series σ ∈ S〈〈A〉〉
S-linear in Σ whenever there is a finite sequence τ1, . . . , τn of elements from Σ,

32 Chapter 2. Regular languages and rational power series

and a corresponding sequence s1, . . . , sn of elements from S, such that

σ =

n∑
i=1

siτi.

An equivalent characterization in terms of formal linear combinations can be
given as follows: σ is linear in Σ if and only if there is some t ∈ LinS(Σ) with
αS〈〈A〉〉(t) = σ.

Lemma 2.15. Given any S-linear automaton (Q, p, γ) and any S-weighted au-
tomaton (X, o, δ), if a function f : X → Q makes the diagram

X
f - Q

S × LinS(X)A

(o, δ)

?
1S × (f̂)A - S ×QA

(p, γ)

?

commute, then the unique linear mapping f̂ : LinS(X) → Q extending f (i.e.

with the property f̂ ◦ ηl
X = f) makes the diagram

X ⊂
ηl
X- LinS(X)

f̂ - Q

S × LinS(X)A

(o, δ)

?
1S × f̂A -

(ô, δ̂)

�
S ×QA

(p, γ)

?

commute. Moreover, when (Q, p, γ) is a final S-linear automaton, we have f̂ =
J−K.

Proof. Because f = f̂ ◦ ηl
X , the commutativity of the diagram obtained by

removing (ô, δ̂) from the second diagram is immediate. Moreover, the triangle

on the left commutes as a direct result of the definition of (ô, δ̂).

Now observe that (1S× f̂A)◦ (ô, δ̂) and (p, γ)◦ f̂ are both S-linear mappings
from LinS(X) extending (p, γ)◦f , and now, because for any function g : X → Q

there is a unique linear mapping ĝ extending g, it follows that (1S×f̂A)◦(ô, δ̂) =

(p, γ) ◦ f̂ , and thus the second diagram again commutes.

Chapter 2. Regular languages and rational power series 33

If (Q, p, γ), moreover, is a final S-linear automaton, f̂ necessarily coincides
with the unique linear mapping into it.

Proposition 2.16. Given a semiring S and any σ ∈ S〈〈A〉〉, σ is S-recognizable
if and only if there is a finite Σ with σ ∈ Σ, such that for all τ ∈ Σ and a ∈ A,
τa is linear in Σ.

Proof. If σ is S-recognizable, then let (X, o, δ) be a weighted automaton wit-
nessing this and note that the set

Σ := {Jηl(x)K |x ∈ X}

satisfies the required property as a result of diagram (2.3).
Conversely, assume there is a finite Σ with σ ∈ Σ, such that for all τ ∈ Σ

and a ∈ A, τa is linear in Σ. This is equivalent (letting ι : Σ → S〈〈A〉〉 denote
the inclusion of Σ into S〈〈A〉〉) to the condition that there exists a mapping (o, δ)
making the diagram

Σ
ι - S〈〈A〉〉

S × LinS(Σ)A

(o, δ)

?
1S × ι̂A - S × S〈〈A〉〉A

(p, γ)

?

commute and now by Lemma 2.15 it follows that σ = Jηl
Σ(σ)K, establishing that

σ is S-recognizable.

We call a subset Σ ⊆ S〈〈A〉〉 S-linearly stable whenever, for each σ ∈ Σ
and each a ∈ A, σa is S-linear in Σ. This allows us to rephrase the preceding
proposition as follows: any σ ∈ S〈〈A〉〉 is S-recognizable if and only if there is a
finite S-linearly stable Σ ∈ S〈〈A〉〉 with σ ∈ Σ.

This result is essentially equivalent to [BR11, Proposition 1.5.1], which states
that a formal power series σ ∈ S〈〈A〉〉 is S-recognizable if and only if there is a
stable S-submodule M of S〈〈A〉〉 containing σ that is finitely generated (i.e. that
includes a finite Σ such that each τ ∈M is linear in Σ).

The definition of stable from [BR11] is exactly equivalent to the statement
that there is a finite Σ with σ ∈ Σ, such that for each τ ∈ Σ and each w ∈
A∗, ∆∗(τ, w) is linear in Σ. This in turn is equivalent to the condition that
for each a ∈ A, ∆(τ, a) is linear in Σ, as a direct consequence of the fact

34 Chapter 2. Regular languages and rational power series

that linear combinations of linear combinations can again be regarded as linear
combinations.

Example 2.17. Consider the following system over the semiring N, with a set
X = {x, y} of two variables, and a single alphabet symbol X:

o(x) = 1 x′ = y
o(y) = 1 y′ = x+ y

This system corresponds to the weighted automaton1

x ↓ 1 y ↓ 1

1

1

1

x is mapped by the final homomorphism to the stream of Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . (A000045),

easily establishing that this sequence is a N-recognizable stream.

2.4 Rational expressions and power series

In this section, we give a presentation of a well-known generalization of Kleene’s
theorem to arbitrary semirings, often known as the Kleene-Schützenberger the-
orem and also often called (again) fundamental theorem. This result was, in
fact, first presented in the most general case of arbitrary semirings by Eilenberg
in [Eil76].

Our proof of this result can be seen as a variation, or an alternate presenta-
tion, of more traditional proofs of this result, which can be found, for example,
in [BR11]. This presentation is similar in flavour to the presentation of Kleene’s
theorem in [Rut98], and its proof can be regarded as a direct generalization of
the proof technique used there:

1The 1s labelling the arrows here are the weights of the transitions, rather than alphabet
symbols.

Chapter 2. Regular languages and rational power series 35

• Starting from rational series, we inductively show that for each rational
power series, it is possible to construct a S-linearly stable subset of S〈〈A〉〉
containing this power series. This can be seen as a ‘semantic’ analogue
of the explicit construction of new automata from old automata. This
direction of the proof already appeared using this technique as Theorem
3 in [Rut99].

• From automata to expressions, we combine Arden’s rule with induction
to prove that systems of equations satisfying certain properties are guar-
anteed to have unique rational solutions, using a reduction from systems
in k + 1 variables to systems in k variables.

In [Sil10], a similar result was proved coalgebraically in a more general set-
ting, establishing the equivalence between expressions and finite systems for
coalgebras for a large class of functors. This class includes weighted automata
over arbitrary semirings. However, the language of expressions canonically ob-
tained there is slightly different from ours, with a unique fixed point operator µ
taking over the role of the star operator.

2.4.1 The star operator and Arden’s rule

We call a power series σ ∈ S〈〈A〉〉 proper whenever O(σ) = 0. If σ is proper, we
want to define the star σ∗ as the evaluation of the infinite sum σ∗ :=

∑∞
i=0 σ

i.
However, we first need to make precise what we mean when we talk about such
an infinite sum. In order to do this, we take a more direct route by concretely
defining a suitable notion of limit, rather than deriving this notion of limit from
the discrete topology on S and the product topology on S〈〈A〉〉, as is done in
e.g. [BR11].

Given a N-indexed family {σi | i ∈ N} of formal power series, we say that the
limit

lim
i→∞

σi

exists iff for all w ∈ A∗ there is a k ∈ N such that [σj ⇓ w] = [σk ⇓ w] for all
j ≥ k. In other words: this limit exists iff for all n ∈ N, the infinite sequence
[σ0 ⇓ w], [σ1 ⇓ w], . . . is eventually constant. Given a particular n ∈ N and the
associated k, we then write:

[lim
i→∞

σi ⇓ w] = [σk ⇓ w]

Now note that, for any proper power series σ, we have

[σn ⇓ w] = 0

36 Chapter 2. Regular languages and rational power series

for all w with |w| < n, and thus the limit

σ∗ := lim
n→∞

∑
i∈N,i≤n

σi

exists, and will be denoted using the notation σ∗.

Proposition 2.18 (Arden’s rule). Given a σ ∈ S〈〈A〉〉 and a proper τ ∈ S〈〈A〉〉,
the unique solution to

x = σ + τx is x = τ∗σ (2.4)

and the unique solution to

x = σ + xτ is x = στ∗. (2.5)

Proof. See e.g. [BR11, Lemma 4.1].

Remark 2.19. When S is the Boolean semiring B, or more generally an idempo-
tent semiring, the star operator can be defined without restriction (as is usually
done in the case of languages), and it is possible to present Arden’s rule without
the reference to properness. In this dissertation, we will restrict ourselves to the
case of arbitrary semirings together with the properness condition.

From Arden’s rule, by substituting 1 for σ in (2.4), we can directly derive
the equality

τ∗ = 1 + τ(τ∗)

for all proper τ ∈ S〈〈A〉〉. Applying the output and derivative operators on both
sides of this expression, we obtain the equalities

o(τ∗) = 1 and (τ∗)a = τa(τ∗) (2.6)

which again hold for all proper τ ∈ S〈〈A〉〉. When the underlying semiring S is
a field, we moreover have

σ∗ = (1− σ)−1

whenever o(σ) = 0, and

σ−1 = (1− σ)∗

whenever o(σ) = 1.

Chapter 2. Regular languages and rational power series 37

2.4.2 Rational power series and expressions

We now define the set of S-rational power series in a fixed set Σ ⊆ S〈〈A〉〉. Let
Srat(Σ)〈〈A〉〉 be the smallest subset of S〈〈A〉〉 such that:

1. Σ ⊆ Srat(Σ)〈〈A〉〉;

2. A ⊆ Srat(Σ)〈〈A〉〉 and S ⊆ Srat(Σ)〈〈A〉〉;

3. Srat(Σ)〈〈A〉〉 is closed under the operators + and ·; and

4. if σ ∈ Srat(Σ)〈〈A〉〉 and σ is proper, then σ∗ ∈ Srat(Σ)〈〈A〉〉.

Henceforth, we call any τ ∈ S〈〈A〉〉 S-rational in Σ whenever τ ∈ Srat(Σ)〈〈A〉〉.
In the case where Σ = ∅, we simply call τ S-rational. When S is a field, by the
duality between the star and inverse operators, this notion can easily be seen
to correspond to the ‘classical’ notion in terms of division.

This gives rise to an induction principle: by showing that a property holds
for all σ ∈ Σ, a ∈ A, and s ∈ S, and that whenever it holds for σ and τ , it
holds for σ + τ , στ and (if defined) σ∗, one proves that this property holds for
all σ ∈ Srat(Σ)〈〈A〉〉.

We now turn to an alternate characterization of the S-rational power series
in terms of rational expressions, which can be regarded as ‘semi-syntactic’. This
characterization is in fact not needed for the results in this chapter, but will be
useful for one of the characterizations of constructively algebraic power series
(which generalize the context-free languages) in Chapter 3.

Given a semiring S and a fixed set Σ of power series in S〈〈A〉〉, let us simulta-
neously define the class of RatS(Σ) rational expressions, as well as the valuation
function val : RatS(Σ)→ S〈〈A〉〉 as follows:

1. For each a ∈ A, there is an expression a ∈ RatS(Σ), with val(a) = a;

2. for each s ∈ S, there is an expression s ∈ RatS(Σ), with val(k) = k;

3. for each σ ∈ Σ, there is an expression [σ] ∈ RatS(Σ), with val([σ]) = σ;

4. if there are expressions t, u ∈ RatS(Σ), there is an expression (t ⊕ u) ∈
RatS(Σ) and (t ⊗ u) ∈ RatS(Σ), with val(t ⊕ u) = val(t) + val(u) and
val(t⊗ u) = val(t)val(u);

5. and if there is an expression t ∈ RatS(Σ) and O(val(s)) = 0, then there
is an expression t∗̄ ∈ RatS(Σ), with val(t∗̄) = val(t)∗.

38 Chapter 2. Regular languages and rational power series

Alternately, we could describe RatS(Σ) using a Backus Naur form-like no-
tation

RatS(Σ) 3 t ::= s ∈ S | a ∈ A | [σ], σ ∈ Σ | (t⊕ t) | (t⊗ t) | t∗̄, val(t) = 0

but note that this description again requires val to be inductively defined at
the same time. In fact, this definition can be seen as an instance of induction-
recursion: a more general introduction to this topic, addressing its foundational
aspects, can be found in [GH11].

This directly gives us the following lemma, which can be proven directly
using elementary induction techniques:

Lemma 2.20. Given any σ ∈ S〈〈A〉〉 and Σ ⊆ S〈〈A〉〉, σ is S-rational in Σ if
and only if there is a s ∈ RatS(Σ) such that val(s) = σ.

We will now turn to the special case where Σ is the empty set: in this case, we
simply write RatS instead of RatS(∅). We can define an (infinite) S-automaton
(RatS , o, δ) with RatS as carrier set, using the following system of behavioural
differential equations:

t o(t) ta
s ∈ S s 0
b, b ∈ A 0 if b = a then u else 0
(u⊕ v) ô(u) + ô(u) (ua ⊕ va)
(u⊗ v) ô(u) ∧ ô(v) ((ua ⊗ v)⊕ (ô(u)⊗ va))

(u∗̄) 1 (ua ⊗ u∗̄)

(2.7)

and it is now easy to check that val, as defined before, makes the following
diagram commute:

RatS
val - S〈〈A〉〉

S × (RatS)A

(o, δ)

?
1S × valA- S × S〈〈A〉〉A

(O,∆)

?

Hence, it follows that the function val coincides with the unique morphism
from (RatS , o, δ) into the final automaton (S〈〈A〉〉, O,∆).

In the case where Σ 6= ∅, things are slightly more complicated: we will
return to these matters in the next chapter.

Chapter 2. Regular languages and rational power series 39

2.4.3 The Kleene-Schützenberger-Eilenberg theorem

We now turn to the generalization of Kleene’s theorem to formal power series by
Schützenberger and Eilenberg, stating the equivalence between S-rational and
S-recognizable power series.

Proposition 2.21. If σ is S-rational, then σ is S-recognizable.

Proof. Use the induction principle for rational power series. For the base cases,
it is clear that {a} and {s} are linearly stable. For the inductive cases, assume
that σ and τ are S-recognizable. Then there must be some linearly stable Σ
with σ, τ ∈ Σ.

It now is easily verified that

Σ ∪ {υτ | υ ∈ Σ} ∪ {σ + τ}

is S-linearly stable again (i.e. all its derivatives are again linear combinations of
elements from this set), so στ and σ + τ are again S-recognizable.

Finally, if o(σ) = 0, then

{σ∗} ∪ {τσ∗ | τ ∈ Σ}

is S-linearly stable again, and hence σ∗ is S-recognizable.
It now follows from the induction principle that any σ which is S-rational,

is also S-recognizable.

For the converse, we will first present a lemma at a more general level than
needed to prove the equivalence between S-rational and S-recognizable series.
In the next chapter, we will show that we can use this lemma as a basis for a
construction of the Greibach normal form. For the results in the present chapter,
however, we only need the instance of the following proposition of S-rational
series over the empty set, rather than S-rational series over an arbitrary X.

Lemma 2.22. Given a k ∈ N, if for all i, j ≤ k, rij is a proper S-rational series
over X, and each pi is a S-rational series over X, the system of equations given
by

xi = pi +

k∑
j=0

rijxj

for i ∈ 0 . . . k has a unique solution, and each xi is S-rational over X.

40 Chapter 2. Regular languages and rational power series

Proof. Natural induction on k.
If k = 0, then we simply have one equation

x0 = p0 + r00x0

and Arden’s rule (2.4) now gives

x0 = (r00)∗p0,

as the unique solution and x0 is S-rational over X by the closure properties of
rational series.

If k = n+ 1, assume the inductive hypothesis that the proposition holds for
systems with n variables. We note

xk = pk +

n∑
j=0

rkjxj + rkkxk

and hence by Arden’s rule

xk = (rkk)∗

pk +

n∑
j=0

rkjxj

 . (2.8)

Now, for i ≤ n,

xi = pi +

n∑
j=0

rijxj + rikxk

= pi +

n∑
j=0

rijxj + rik(rkk)∗

pk +

n∑
j=0

rkjxj


= pi + rik(rkk)∗pk +

n∑
j=0

(rij + rik(rkk)∗rkj)xj .

Setting

qi := pi + rik(rkk)∗pk and sij := rij + rik(rkk)∗rkj ,

we now obtain for all i ≤ n

xi = qi +

n∑
j=0

sijxj ,

Chapter 2. Regular languages and rational power series 41

a similar system in one variable less, as it’s easy to see that each qi is S-
rational over X and each sij is S-rational over X and proper. By the inductive
hypothesis, this system has a unique solution in x0, . . . , xn, and filling in this
solution in (2.8), which is again unique by Arden’s rule, it becomes clear that
xk is S-rational over X too.

We can now state the converse:

Theorem 2.23. If σ ∈ S〈〈A〉〉 is S-recognizable, then it is rational.

Proof. If σ is S-recognizable, then it is the unique solution to a system of equa-
tions for x0, . . . , xk of the form

xi = oi +
∑
a∈A

a

k∑
j=0

kaijxj

with all oi and kaij scalars in S.
Now observe

xi = oi +

k∑
j=0

(∑
a∈A

akaij

)
xj

and, as oi is clearly S-rational and
∑
a∈A akaij is clearly S-rational and proper

for all k, i, and j, it follows by Lemma 2.22 that σ is S-rational.

2.5 Bisimulation up to linearity

In the case of linear automata, we can establish equality under the final ho-
momorphism using the notion of a bisimulation up to linearity. The general
idea here is that, given two linear automata X and Y , whenever two elements
(s, t) are related by a bisimulation up to linearity R ⊆ X × Y , their outputs
are identical, and moreover, the derivatives sa = ta are linear combinations of
projections of related pairs again. The idea of bisimulations up to linearity is
closely related to the more abstract, categorically defined, notion of coalgebraic
bisimulation up-to: for more background on this topic, we refer to [RBR13].

In order to make this notion precise, we will first need to define the relation
ΣR, which can, in a way, be regarded as a linear extension of R. We can formally
specify ΣR as

ΣR := {(αX ◦ LinS(π1), αY ◦ LinS(π2))(r) | r ∈ LinS(R)};

42 Chapter 2. Regular languages and rational power series

LinS(R) here is simply the set of formal S-linear combinations of elements of
R; however, because X and Y themselves have a S-module structure, we can
canonically transform elements of LinS(R) into elements of X ×Y : this is done
by the function

(αX ◦ LinS(π1), αY ◦ LinS(π2)).

Here mappings αX : LinS(X) → X and αY : LinS(Y) → Y are as defined
in Section A.3; and LinS(π1) and LinS(π2) are the liftings of the projection
morphisms π1 and π2 over the functor LinS(−), going from LinS(R) to LinS(X)
and LinS(Y), respectively. As a result, ΣR is again a subset of X × Y .

Given linear automata X and Y , we will now call a relation R ⊆ X × Y a
bisimulation up to linearity whenever the following conditions are satisfied:

1. for all (x, y) ∈ R, o(x) ∈ o(y), and

2. for all (x, y) ∈ R and a ∈ A, xa ΣR ya.

We will next show that a relation R is a bisimulation up to linearity whenever
ΣR is a bisimulation. In order to show this, hovever, we first to prove a few
auxiliary results.

Lemma 2.24. Given any (p, q) ∈ X × Y , we have (p, q) ∈ ΣR if and only
if there exists an index set I, and three mappings assigning elements i ∈ I to
coefficients si ∈ S and elements pi ∈ X and qi ∈ Y , such that

p =
∑
i∈I

sipi and q =
∑
i∈I

siqi,

and for each i ∈ I, (pi, qi) ∈ R.

Proof. Assume (p, q) ∈ ΣR. Then, by the definition of ΣR, there has to be a
r ∈ LinS(R), such that

p = αX ◦ LinS(π1)(r) and q = αY ◦ LinS(π2)(r).

However, because of the definition of LinS(−), it is clear that there must be
some index set I and mappings assigning elements i ∈ I to coefficients si ∈ S
and elements ri ∈ R, such that

r =
∑
i∈I

siri.

Chapter 2. Regular languages and rational power series 43

Writing each ri as (pi, qi), we now obtain

p = αX ◦ LinS(π1)

(∑
i∈I

si(pi, qi)

)
= αX

(∑
i∈I

sipi

)
=
∑
i∈I

sipi

and similarly for q. The vanishing of the α here can be understood as repre-
senting a move from elements of LinS(X), represented as formal sums, to the
corresponding real sums in X. For the other direction, we can simply define

r =
∑
i∈I

si(pi, qi),

observe that r ∈ LinS(R), and verify that p = αX ◦ LinS(π1)(r) and q =
αY ◦ LinS(π2)(r).

From this lemma we directly obtain the result R ⊆ ΣR:

Corollary 2.25. For all R ⊆ X × Y , R ⊆ ΣR.

Proof. Given a (p, q) ∈ R, consider the singleton index set I = {1}, together
with the mappings s1 = 1, p1 = p, and q1 = q, and apply Lemma 2.24 to obtain
(p, q) ∈ ΣR.

We now are equipped with the prerequisites needed to establish the desired
equivalence:

Proposition 2.26. A relation R ⊆ X × Y is a bisimulation up to linearity if
and only if ΣR is a bisimulation.

Proof. First assume that ΣR is a bisimulation. If (p, q) ∈ R, then (p, q) ∈ ΣR,
and hence we obtain both o(p) = o(q) and pa ΣRqa directly.

For the other direction, assume that R ⊆ X × Y is a bisimulation up to
linearity. Now, take any (p, q) ∈ ΣR. By Lemma 2.24, we have an index set I
and mappings assigning si, pi and qi to each i ∈ I, such that

p =
∑
i∈I

sipi and q =
∑
i∈I

siqi.

and for each i ∈ I, (pi, qi) ∈ R. We now have

o(p) = o

(∑
i∈I

sipi

)
=
∑
i∈I

sio(pi) =
∑
i∈I

sio(qi) = o

(∑
i∈I

siqi

)
= o(q)

44 Chapter 2. Regular languages and rational power series

and

pa =

(∑
i∈I

sipi

)
a

=
∑
i∈I

si(pi)a ΣR
∑
i∈I

si(qi)a =

(∑
i∈I

siqi

)
a

= qa,

and the proof is complete.

We will conclude this section with an elementary but noteworthy result: just
like in the case of ordinary bisimulation, elements related by a bisimulation up
to linearity have the same semantics in the final automaton.

Proposition 2.27. If R ⊆ X×Y is a bisimulation up to linearity, and (p, q) ∈
R, then JpK = JqK.

Proof. Use the fact that R ⊆ ΣR, the fact that ΣR is a bisimulation, and
Proposition 2.7.

3

Context-free languages and algebraic power
series

In this chapter, we will extend the approach from the previous chapter in order
to encapsulate context-free languages as well as (constructively) algebraic power
series, the usual generalization of context-free languages. The material in this
chapter builds on both the coalgebraic approach to rational power series, as
laid out in the previous chapter, and the traditional algebraic theory of context-
free languages and (constructively) algebraic power series, parts of which are
presented in e.g. [CS63], [PS09], and [SS78].

We will start in Section 3.1 by introducing the notion of a polynomial system
of behavioural differential equations, and give a canonical method of extending
any such system into a weighted automaton. This (infinite) weighted automaton
then can, using the techniques from the previous chapter, be determinized into
a linear automaton. We introduce the notion of a constructively algebraic power
series, as a power series that can be characterized using a finite polynomial sys-
tem of behavioural differential equations, and give a semantic characterization
similar to that of Proposition 2.16.

In Section 3.2, we restrict ourselves to the situation where the underlying
semiring is B. After introducing context-free grammars and (leftmost) deriva-
tions in such grammars, we show a correspondence between languages derivable
from a word s ∈ X∗, and the final coalgebra semantics JsK of the linear automa-
ton generated from such a grammar.

In Section 3.3, we return to the more general point of view, and consider the
more classical view of systems of equations, as can be found in e.g. [PS09]. We
give a method of transforming any system that satisfies the coniditon of being
proper into a polynomial system of behavioural differntial equations. Polynomial
systems of behavioural differential equations directly correspond to systems of
equations in Greibach normal form: thus, we can regard this transformation as
a construction of the Greibach normal form.

Finally, in Section 3.4, we turn to a classical result due to Chomsky and
Schützenberger, stating that N-algebraic power series are precisely the counting

45

46 Chapter 3. Context-free languages and algebraic power series

functions of unambiguous context-free languages, and present it using the notion
of bisimulation up to linearity. We furthermore show a few examples of counting
problems that can be presented coalgebraically as a direct result of this theorem.

3.1 Polynomials and polynomial systems

This section will start off with a formal treatment of polynomials, which will be
the building blocks for the remainder of the material in this chapter, in a way
similar to the way formal linear combinations were used in Chapter 2. Next,
we introduce polynomial systems of behavioural differential equations together
with their solutions, which will constitute a model for the context-free languages
as well as their generalizations to arbitrary commutative semirings.

3.1.1 Polynomials

We start off with a treatment of polynomials as formal objects, in direct analogy
with the treatment of formal linear combinations in Chapter 2. Some, but not
all, of the observations in this subsection can also be found in e.g. Chapter 1
of [BR11]. From a mathematical point of view, the polynomials that we will
use can be regarded as polynomials in a set of noncommuting variables, with
coefficients in a (commutative) semiring S. Wherever the commutativity of S
is relevant, this will be indicated.

We define the set S〈X〉 of polyniomials with coefficients in S and variables
in X as equal to

LinS(X∗),

the set of S-linear combinations of words over X. We can now regard S〈X〉 as
a functor again, obtained by composing the functors LinS(−) and −∗.

This definition also immediately implies the following characterization:

S〈X〉 := {f : X∗ → S | supp(f) is finite}

As a result of this characterization, it is also possible to regard S〈X〉 as the
subset of those elements in S〈〈X〉〉 with finite support. If we do this, it is easy to
see that S〈X〉 is closed under the semiring operations · and + (in other words,
if σ and τ have finite support: then so do σ · τ and σ + τ) as well as under the
scalar product. As a result, S〈X〉 can, in all cases, be seen as a subsemiring
and a sub-S-module of S〈〈X〉〉.

Chapter 3. Context-free languages and algebraic power series 47

Given any set X, define ηp
X : X → S〈X〉 pointwise on w by

[ηp
X(x) ⇓ w] = if w = 1 then x else 0 (3.1)

for all x ∈ X. This definition again corresponds to the definition

ηp = ηl
X∗ ◦ ηw

X .

Regarding polynomials as linear combinations of words, we can define func-
tions f on polyniomials by 1) specifying the value of f for the empty word,
2) inductively specifying the value f(xw) in terms of f(w) for any x ∈ X and
w ∈ X∗, and 3) specifying the value of f for all linear combinations.

For example, define the function αp : S〈S〈〈X〉〉〉 → S〈〈X〉〉 is defined by:

αp(1) = 1

αp(xw) = x · αp(w)

αp

(
n∑
i=1

siwi

)
=

n∑
i=1

siα
p(wi)

in terms of the semiring structure of S〈〈A〉〉. This function can be seen as evalu-
ating, or interpreting, polynomials of power series (regarded as formal objects)
as (or to) the corresponding power series.

When S is commutative, the function α in fact has a unique mapping property
(which will be considered in a more general setting in Chapter 7), which can be
stated as follows: given a commutative semiring S, and a function f from an
arbitrary set X to S〈〈A〉〉, there is a unique semiring morphism f] making the
diagram

X ⊂
ηp
X- S〈X〉

S〈〈A〉〉

f

?

f]

�..
....

....
....

....
....

....
...

(3.2)

commute. More specifically, f] can be specified by the equation

f] = αp ◦ S〈f〉. (3.3)

In fact, the extension] can be obtained as a composition of the extiensions
ˆ and ¯,

f] = ˆ̄f,

48 Chapter 3. Context-free languages and algebraic power series

or in other words, f] can be seen as the unique S-linear mapping extending the
unique monoid morphism extending f . This unique mapping property, however,
fails when S is not commutative:

Given any set Σ ⊆ S〈〈A〉〉, we call a formal power series σ polynomial in Σ,
whenever there is a s ∈ S〈Σ〉, such that αp(s) = σ.

Remark 3.1. This unique mapping property fails when S is not commutative.
As a counterexample, consider any semiring S that is not commutative, i.e. that
has elements s, t ∈ S such that st 6= ts.

Now take the set X = {x, y} together with the mapping f : X → S〈〈A〉〉
defined by f(x) = i(s) and f(y) = i(1). Note that in S〈X〉 there are elements
x and ty; the multiplication inherited from S〈〈A〉〉 now gives (x)(ty) = txy. In
order for the mapping f] to be a semiring morphism, it has to satisfy

f](x)f](ty) = f]((x)(ty)),

however note that

f](x)f](ty) = i(s)i(t) 6= i(t)i(s) = i(ts) = f](txy) = f]((x)(ty))

so, in this case, there is no possiblility of a semiring morphism f] extending
f . In order to establish the existence of a unique extension, we need to rely
on the property that, for an arbitrary σ ∈ S〈〈A〉〉 and an arbitrary s ∈ S,
i(s)σ = σi(s), which holds precisely in the case when S is commutative. When
S is not commutative, we do still have a semiring structure on S〈X〉, but the
property established in diagram (3.2) fails.

3.1.2 Polynomial systems and their coalgebraic semantics

We now turn to a format for polynomial systems of behavioural differential equa-
tions, where each derivative is given as a polynomial over the set of variables.
With finite systems in this format format, which is based on work presented in
[WBR13] and [WBR14], we can describe classes of formal power series, which
we call constructively algebraic. Later in this chapter, we will see a number of
alternate characterizations of these classes.

Fixing a finite alphabet A, a polynomial system of behavioural differential
equations over a semiring S consists of a triple

(X, o, δ)

where

Chapter 3. Context-free languages and algebraic power series 49

1. X is a set, to be regarded as a set of variables or nonterminals;

2. o : X → S is, as in the case of automata, an output function; and

3. δ : X → S〈X〉A is the transition function, describing each of the possible
derivatives of the set X as a polynomial.

We can, also, regard these systems of equations as coalgebras of the functor
S × S〈−〉A, or diagrammatically:

X
(o,δ)→ S × S〈X〉A

Example 3.2. As an example, consider the polynomial system of behavioural
differential equations over the alphabet {a, b} and the set of variables {x, y}
specified by:

o(x) = 1 xa = xy xb = 0
o(y) = 0 ya = 0 yb = 1

We will see soon that x can be interpreted as the language {anbn |n ∈ N},
while y can be interpreted as the singleton language {b}.

In order to be able to give meaning to these systems of behavioural differen-
tial equations, we first require a method of transforming such a system into an
automaton (or, equivalently, a coalgebra for the functor S × −A). We will do
this using an extension of the determinization method presented in Section 2.3.

To start, we extend (o, δ) into a pair of mappings (ō, δ̄)

(ō, δ̄) : X∗ → S × S〈X〉A

specifying output values and derivatives of words over X, by means of the
inductive definition

ō(1) = 1 1a = 0
ō(xw) = o(x)ō(w) (xw)a = xaw + o(x)wa

for all x ∈ X, w ∈ X∗, and a ∈ A.
We can see this inductive definition as an instance of a product rule, relating

to Brzozowski derivatives in a similar manner as the familiar product rule relates
to ordinary function derivatives. We can now prove that this product rule can
easily be extended from products of an alphabet symbol and a word, to products
of arbitrary words:

50 Chapter 3. Context-free languages and algebraic power series

Proposition 3.3. Given a polynomial system of behavioural differential equa-
tions (X, o, δ) over an arbitrary semiring S, for all v, w ∈ X∗, the equations

ō(vw) = ō(v)ō(w) and (vw)a = vaw + ō(v)wa

hold w.r.t. the extension (ō, δ̄).

Proof. Induction on the length of v.
If v = 1, then

ō(vw) = ō(1w) = ō(w) = ō(1)ō(w)

and
(vw)a = (1w)a = wa = 0w + 1wa = vaw + ō(v)wa.

If v = xu for x ∈ X and u ∈ X∗, use the inductive hypothesis that

ō(uw) = ō(u)ō(w) and (uw)a = uaw + ō(u)wa

and now observe

ō(vw) = ō(xuw) = o(x)ō(uw) = o(x)ō(u)ō(w) = ō(xu)ō(w) = ō(v)ō(w)

and

(vw)a = (xuw)a

= xa(uw) + o(x)(uw)a

= xauw + o(x)(uaw + ō(u)wa)

= xauw + o(x)uaw + o(x)ō(u)wa

= (xu)aw + ō(xu)wa

= vaw + ō(v)wa,

completing the proof.

Now, because S〈X〉 = LinS(X∗), the inductive extension presented above
simply gives a linear system

(ō, δ̄) : X∗ → LinS(X∗)A.

As a result, we can at this stage simply apply the determinization method from
Section 2.3, obtaining a (deterministic) S-linear automaton (S〈X〉, ô, δ̂). This
automaton again satisfies (a more general version of) Brzozowski’s product rule,
this time defined on polynomials. Note that the following proposition again
requires S to be a commutative semiring.

Chapter 3. Context-free languages and algebraic power series 51

Proposition 3.4. Given a polynomial system of behavioural differential equa-
tions (X, o, δ) over a commutative semiring S, for all polynomials s, t ∈ S〈X〉
and any a ∈ A, the equations

ô(st) = ô(s)ô(t) and (st)a = sat+ ô(s)ta

hold w.r.t. the extension (S〈X〉, ô, δ̂).

Proof. First recall the identities

s =
∑
w∈A∗

[s ⇓ w]w and t =
∑
w∈A∗

[t ⇓ w]w.

Now observe

ô(st) = ô

(∑
v∈X∗

[s ⇓ v]v
∑
w∈X∗

[t ⇓ w]w

)

= ô

 ∑
v,w∈X∗

[s ⇓ v][t ⇓ w]vw


=

∑
v,w∈X∗

[s ⇓ v][t ⇓ w]ō(vw)

=
∑

v,w∈X∗
[s ⇓ v][t ⇓ w]ō(v)ō(w)

=
∑
v∈X∗

[s ⇓ v]ō(v)
∑
w∈X∗

[t ⇓ w]ō(w)

= ô(s)ô(t)

and

(st)a =

(∑
v∈X∗

[s ⇓ v]v
∑
w∈X∗

[t ⇓ w]w

)
a

=
∑

v,w∈X∗
[s ⇓ v][t ⇓ w](vw)a

=
∑

v,w∈X∗
[s ⇓ v][t ⇓ w](vaw + o(v)wa)

=
∑

v,w∈X∗
[s ⇓ v][t ⇓ w]vaw +

∑
v,w∈X∗

[s ⇓ v][t ⇓ w]o(v)wa

52 Chapter 3. Context-free languages and algebraic power series

=
∑
v∈X∗

[s ⇓ v]va
∑
w∈X∗

[t ⇓ w]w +
∑
v∈X∗

[s ⇓ v]ō(v)
∑
w∈X∗

[t ⇓ w]wa

=
∑
v∈X∗

[sa ⇓ v]v
∑
w∈X∗

[t ⇓ w]w +
∑
v∈X∗

[s ⇓ v]ō(v)
∑
w∈X∗

[ta ⇓ w]w

= sat+ ô(s)ta,

and the proof is complete.

Now we can combine any system of equations of the form (X, o, δ) : X →
S × S〈X〉A, its extension (S〈X〉, ô, δ̂), and the unique mapping J−K into the
final S-automaton, in the following diagram:

X ⊂
ηp
X - S〈X〉

J−K
- S〈〈A〉〉

S × S〈X〉A

(o, δ)

?
..

1S × J−KA
-

(ô, δ̂)

�
S × S〈〈A〉〉A

(O,∆)

?

We will henceforth, given a polynomial system of behavioural differential
equations, call the composition of ηp

X (as defined in (3.1)) and the final homo-
morphism J−K the solution to this system.

We will call a formal power series σ over a commutative semiring S and
an alphabet A constructively algebraic whenever there is a finite polynomial
system of behavioural differential equations (X, o, δ), and an x ∈ X, such that
Jηp
X(x)K = σ.

The term ‘constructively algebraic’ is a translation of the French algèbrique
constrictif used in [Fli74]; in most of the automatic theory on algebraic power
series, e.g. [CS63], [SS78], and [PS09], this class is simply called ‘algebraic’.

Lemma 3.5. Given any polynomial system (X, o, δ) with coefficients in S, if a
function f : X → Q makes the diagram

X
f - S〈〈A〉〉

S × S〈Σ〉A

(o, δ)

?
1S × (f])A- S × S〈〈A〉〉A

(O,∆)

?

Chapter 3. Context-free languages and algebraic power series 53

commute, then the unique semiring morphism f] : S〈X〉 → S〈〈A〉〉 extending f
makes the diagram

X ⊂
ηp
X - S〈X〉

f] - S〈〈A〉〉

S × S〈X〉A

(o, δ)

?
1S × (f])A -

(ô, δ̂)

�
S × S〈〈A〉〉A

(O,∆)

?

commute. Moreover, we have f] = J−K.

Proof. Similar to Lemma 2.15, this proof relies on ensuring that (O,∆) ◦ f] =

(1× (f])A) ◦ (ô, δ̂). To establish this, we first prove by induction on the length
of w that, for all w ∈ X∗,

O(f̄(w)) = ō(w) and f̄(w)a = f](wa),

in order to establish that the diagram

X ⊂
ηw
X - X∗

f̄ - S〈〈A〉〉

S × S〈X〉A

(o, δ)

?
1S × (f])A -

(ō, δ̄)

�
S × S〈〈A〉〉A

(O,∆)

?

(3.4)

commutes.
If |w| = 0, then w = 1, and observe

O(f̄(1)) = O(1) = 1 = o(1) = ō(1)

and
f̄(1)a = 1a = 0 = f](0) = f](1a).

If |w| > 0, then w = xv for some x ∈ X, v ∈ X∗, and use the inductive
hypothesis that the equalities hold for v. Now observe

O(f̄(xw)) = O(f(x))O(f̄(w)) = o(x)ō(w) = ō(xw)

and

f̄(xw)a = (f(x)f̄(w))a

54 Chapter 3. Context-free languages and algebraic power series

= f(x)af̄(w) +O(f(x))f̄(w)a

= f](xa)f](w) + o(x)f](wa)

= f](xaw + o(x)wa)

= f]((xw)a),

so the equalities again hold for av and the inductive proof is complete.
So (3.4) indeed commutes, and using the equalities S〈X〉 = LinS(X∗), f] =

f̂∗, and ηp
X = ηl

X∗ ◦ ηw
X , we can now appeal to Lemma 2.15 to show that the

diagram

X ⊂
ηw
X - X∗ ⊂

ηl
X∗ - S〈A〉

f] - S〈〈A〉〉

S × S〈X〉A

(o, δ)

?
1S × (f])A -

(ô, δ̂)

�

(ō, δ̄)

�
S × S〈〈A〉〉A

(O,∆)

?

commutes to complete the proof. From the last diagram, f] = J−K is also
immediate.

Proposition 3.6. Given a commutative semiring S, a formal power series σ ∈
S〈〈A〉〉 is constructively S-algebraic if and only if there is a finite set Σ ⊆ S〈〈A〉〉
with σ ∈ Σ, such that for each τ ∈ Σ and a ∈ A, τa is S-polynomial in Σ.

Proof. Follows from the preceding lemma in the same manner as Proposition
2.16 follows from Lemma 2.15.

Moreover, from the preceding lemma it directly follows that J−K is a semiring
morphism:

Corollary 3.7. Given a polynomial system of behavioural differential equations
(X, o, δ) over a commutative semiring S, J−K is a semiring morphism w.r.t. the

extension (S〈X〉, ô, δ̂).

We now turn to the observation that the constructively S-algebraic power
series are closed under sum and product:

Corollary 3.8. If σ and τ are constructively S-algebraic, then so are σ+τ and
στ .

Chapter 3. Context-free languages and algebraic power series 55

Proof. If σ and τ are constructively algebraic, then there are finite Σ0,Σ1 ⊆
S〈〈A〉〉 with σ ∈ Σ0 and τ ∈ Σ1 such that for each a ∈ A, τ0 ∈ Σ0, and τ1 ∈ Σ1,
(τ0)a and (τ1)a are polynomial in Σ0 and Σ1, respectively.

It now follows that for each τ ∈ Σ2 := Σ0 ∪ Σ1 ∪ {στ, σ + τ} and each
a ∈ A, τa is polynomial in Σ2 again, so στ and σ + τ are again constructively
S-algebraic.

Example 3.9. Let us return now to the system from Example 3.2, which was
given by the following system of behavioural differential equations:

o(x) = 1 xa = xy xb = 0
o(y) = 0 ya = 0 yb = 1

We will now make the earlier claim, that x can be interpreted as the language

{anbn |n ∈ N},

precise. In order to do so, consider the following relation

R = {(xyk, {anbn+k n ∈ N}) | k ∈ N} ∪ {(yk, {bk}) | k ∈ N}

between B〈X〉 (or, equivalently, Pω(X)) and B〈〈A〉〉 (or, equivalently, P(A∗)).
To see that R is a bisimulation, take an arbitrary (r, s) ∈ R:

• If (r, s) is of the form (xyk, {anbn+k |n ∈ N}), then either k = 0, giving

o(r) = o(xyk) = o(x) = 1 = o({anbn |n ∈ N}) = o(s),

or k > 0, giving

o(r) = o(xyk) = 0 = o({anbn+k |n ∈ N}) = o(s).

Furthermore,

ra = (xyk)a = xyk+1 R {anbn+k+1 |n ∈ N} = {anbn+k |n ∈ N}a = sa

and

rb = (xyk)b = yk−1 R {bk−1} = {anbn+k |n ∈ N}b = sb,

completing the case.

56 Chapter 3. Context-free languages and algebraic power series

• If (r, s) is of the form (yk, {bk}), then

o(r) = if k = 0 then 1 else 0 = o(s),

ra = 0 = sa,

and
rb = (yk)b = yk−1 R {bk−1} = {bk}b = sb,

completing this case, too.

From the fact that R is a bisimulation, it now follows directly that JxK =
{anbn |n ∈ N}, as previously claimed.

Example 3.10. As an example of a constructively algebraic power series that
is not a language (over the semiring of the natural numbers and over a singleton
alphabet), taken from [Rut02], consider the stream defined by the following
equation:

o(x) = 1 x′ = x2

Its solution Jη(x)K is the stream of Catalan numbers:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . . (A000108)

The nth element of this stream counts the number of well-bracketed words
consisting of n pairs of opening and closing brackets. In Section 3.4, we will
show how to derive the above equation from a context-free grammar representing
pairs of brackets.

3.2 Context-free grammars and languages

In this section, we will restrict ourselves to the case where the underlying semir-
ing is the Boolean semiring B. We will connect polynomial systems of be-
havioural differential equations over this semiring to context-free grammars via
leftmost derivations.

Recall that, in the case of the Boolean semiring B, we have the following
instantiations of the more general notions of linear combinations and polynomi-
als:

Pω(X) ∼= LinB(X)

Pω(X∗)) ∼= B〈X〉

Chapter 3. Context-free languages and algebraic power series 57

P(X∗) ∼= B〈〈A〉〉

Given a finite alphabet A, a context-free grammar over A consists of a finite
set X of variables or nonterminals together with a mapping:

p : X → Pω(X +A∗))

In line with conventions, we write

x→ w

to denote w ∈ p(x), and call such a pair a production rule of the grammar (X, p).
Given a context-free grammar (X, p) and words v, w ∈ (X + A)∗, we write

v ⇒ w and say w is derivable from v in a single derivation step, whenever v =
v1xv2 and w = v1uv2 for some production rule x→ u for some v1, v2 ∈ (X+A)∗.
We say that w is derivable from v in a single leftmost derivation step whenever
v1 ∈ A∗.

Let ⇒∗ denote the reflexive and transitive closure of ⇒. In general, if v ⇒∗
w, then w is derivable from v using only leftmost derivation steps. Therefore
we can restrict our attention to leftmost derivations only. For a context-free
grammar (X, p) and any variable x ∈ X, called the starting symbol, we define
the language L(x) ∈ P(A∗) generated by (X, p) from x as:

L(x) := {w ∈ A∗ |x⇒∗ w}

A language L ∈ P(A∗) is called context-free if there exists a context free
grammar (X, p) and a variable x ∈ X, such that L = L(x).

For our coalgebraic treatment of context-free languages it will be convenient
to work with context-free grammars with production rules of a specific form.
We say that a context-free grammar is in Greibach normal form if all of its
production rules are of the form

x→ aw or x→ 1

where a ∈ A is an alphabet symbol, and w ∈ X∗ is a (possibly empty) se-
quence of nonterminal symbols. It is well-known (see e.g. [Gre65]) that for
every context-free language L, there exists a context-free grammar (X, p) in
Greibach normal form, and some x ∈ X, such that L(x) = L.

Given a context-free grammar (X, p) in Greibach normal form, we associate
with it a polynomial system of behavioural differential equations (X, o, δ), de-
fined by

o(x) = if x→ 1 then 1 else 0

58 Chapter 3. Context-free languages and algebraic power series

and
xa =

∑
w∈A∗|x→aw

w.

It is easy to see that this gives a one-to-one bijective correspondence be-
tween grammars in Greibach normal form, and finite polynomial systems of
behavioural differential equations.

Lemma 3.11. Given a context-free grammar (X, p) in Greibach normal form
and any s ∈ X∗, we have s⇒∗ 1 iff ô(s) = 1.

Proof. Induction on the length of s.

If s ⇒∗ aw is a derivation of a word w ∈ A∗ from a monomial s ∈ X∗, a
decomposition can be made:

s = uxz ⇒∗ xz ⇒ atz ⇒ aw

where x → at is the first rule used that is not of the form y → 1 in the
derivation.

We write s →̆ at whenever there are decompositions s = uxz and t = vz for
some u, v, z ∈ X∗, x ∈ X, such that u ⇒∗ 1 and x → av. Hence, s ⇒∗ aw if
and only if there is a t such that s →̆ at and t⇒∗ w.

Lemma 3.12. We have t ∈ sa iff s →̆ at.

Proof. For the right to left direction, if s →̆ at, then there are u, v, z ∈ X∗ and
x ∈ X with s = uxz, t = vz such that u ⇒∗ 1 and x → av. From x → av we
directly get v ∈ xa. Now observe

t = vz ∈ {uz |u ∈ xa} ∪ if o(x) = 1 then za else 0 = (xz)a

and hence also, because u⇒∗ 1 and hence ô(u) = 1,

t ∈ (uxz)a = sa.

For the converse, use induction on the length of s.
If s = 1, then the antecedent t ∈ sa is always false because 1a = 0, so the

implication holds.
If s = xz for some x ∈ X, z ∈ X∗, then from t ∈ sa we either get t = vz for

some v ∈ xa, or we have o(x) = 1 and t ∈ za. In the first case, we get s →̆ at
witnessed by the composition s = 1xz; in the second case, use the inductive
hypothesis to obtain z →̆ at, now observe there has to be a decomposition
z = uyw, t = vw with u ∈ X∗ and ô(u) = 1, y → av; now also s = (xu)yw and
ô(xu) = 1, giving s →̆ at.

Chapter 3. Context-free languages and algebraic power series 59

Lemma 3.13.
L(s)a =

⋃
t∈sa

{L(t)}

Proof. We have:

w ∈ L(s)a ⇔ aw ∈ L(s)

⇔ s⇒∗ aw
⇔ ∃t ∈ X∗ : s →̆ at ∧ t⇒∗ w
⇔ ∃t ∈ sa : t⇒∗ w
⇔ ∃t ∈ sa : w ∈ L(t)

⇔ w ∈
⋃
t∈sa

{L(t)}

This now leads to the main result, the proof of which depends on the bisim-
ulation up to union principle, which is the instantiation of bisimulation up to
linearity for the Boolean semiring B.

Proposition 3.14. For any context-free grammar (X, p) in Greibach normal
form and any s ∈ X∗, we have L(s) = JsK.

Proof. We have

o(s) = (if s⇒∗ 1 then 1 else 0) = O(L(s))

and
L(s)a =

⋃
t∈sa

{L(t)} ∪R
⋃
t∈sa

{t} = sa

so R is a bisimulation up to union. It follows that L(s) = JL(s)K = JsK.

Because every context-free language is generated by a grammar in Greibach
normal form, we thus directly obtain the following theorem:

Theorem 3.15. A language L ∈ P(A∗) is context-free iff it is constructively
B-algebraic.

3.3 Towards the Greibach normal form

The main aim of this section is to use Lemma 2.22, as a means to construct
the Greibach normal form of any proper system of equations. This yields a new

60 Chapter 3. Context-free languages and algebraic power series

way of transforming any proper system of equations (or in the case of formal
languages: any context-free grammar without empty word productions) into a
corresponding system in Greibach normal form: unlike traditional methods of
constructing the Greibach normal form (e.g. [HMU06] and [Ros67], this method
does not rely on intermediate forms such as the Chomsky normal form.

For this construction, it is useful to first establish another characterization of
constructively algebraic power series, replacing the condition of each derivative
from a finite set Σ being polynomial in Σ, with the condition of each derivative
being rational in Σ.

3.3.1 A characterization using rational series

For this construction, it is useful to first establish another characterization of
constructively algebraic power series, replacing the condition in Proposition 3.6
of each derivative from a finite set Σ being polynomial in Σ, with the condition
of each derivative being rational in Σ.

The equivalence between these conditions can be shown by adding a new
variable for each starred subexpression occurring in the derivatives, thereby
creating a polynomial system providing the same solution. Or more concisely:
by gathering the starred subexpressions and then showing that each derivative
of the union of Σ with the valuation val of all the starred subexpression is
polyniomial in this set again.

Define the operator star : RatS(Σ)→ P(RatS(Σ)) inductively by:

1. star(a) = star(s) = star([σ]) = ∅;

2. star(t⊕ u) = star(t⊗ u) = star(t) ∪ star(u); and

3. star(t∗̄) = star(t) ∪ {t∗̄}.

Here, the underlying intuition is that, for any expression s ∈ RatS(Σ),
star(s) is the set of all expressions of the form t∗̄ used in ‘building’ the ex-
pression s. We also define a ‘star-pruning’ operator

spr : RatS(Σ)→ RatS(S〈〈A〉〉)

by

1. spr(a) = a, spr(s) = s, spr([σ]) = [σ];

2. spr(t⊕ u) = (spr(t)⊕ spr(u)), spr(t⊗ u) = (spr(t)⊗ spr(u)); and

Chapter 3. Context-free languages and algebraic power series 61

3. spr(s∗̄) = val(s∗̄).

from which we can easily derive that

val(s) = val(spr(s)) (3.5)

for all expressions s ∈ RatS(Σ). Furthermore, for any s ∈ RatS(Σ),

spr(s) ∈ RatS(Σ ∪ {val(t) | t ∈ star(s)}).

This leads us to the following characterization of constructively algebraic
power series:

Proposition 3.16. Given a commutative semiring S, a formal power series
σ ∈ S〈〈A〉〉 is constructively S-algebraic if and only if there is a finite set Σ ⊆
S〈〈A〉〉 with σ ∈ Σ, such that for each τ ∈ Σ and a ∈ A, τa is S-rational in Σ.

Proof. If σ is constructively S-algebraic, then there is a finite Σ ⊆ S〈〈A〉〉 such
that for each τ ∈ Σ and each a ∈ A, τa is S-polynomial in Σ. It directly follows
that each τa is S-rational in Σ.

Conversely, suppose that there is a finite Σ ⊆ S〈〈A〉〉, such that for each
τ ∈ Σ and a ∈ A, τa is S-rational in Σ. If this is the case, there must be a
δ : Σ→ RatS(Σ)A such that for each τ ∈ Σ, τa = val(δ(τ̄ , a)).

We now can extend δ to a S-automaton (RatS , ô, δ̂) using the behavioural
differential equations:

t ô(t) ta
[σ], σ ∈ Σ O(Σ) δ(σ, a)
s ∈ S s 0
b, b ∈ A 0 if b = a then u else 0
(u⊕ v) ô(u) + ô(u) (ua ⊕ va)
(u⊗ v) ô(u) ∧ ô(v) ((ua ⊗ v)⊕ (ô(u)⊗ va))

(u∗̄) 1 (ua ⊗ u∗̄)

(3.6)

Using induction, we can now show that for each s ∈ RatS(Σ), val(s)a =

val(δ̂(s, a)).
We can gather all the starred expressions in the derivative by

T =
⋃

a∈A,τ∈Σ

star(δ(τ, a))

62 Chapter 3. Context-free languages and algebraic power series

and extend Σ with the evaluations of these starred expressions, giving a new set
Σ̂ ⊆ S〈〈A〉〉, again finite:

Σ̂ := Σ ∪ {val(t) | t ∈ T}

Now it can be shown, again using induction, that for any s ∈ RatS(Σ), if

star(s) ⊆ T , then for all a ∈ A, again star(δ̂(s, a)) ⊆ T .
It now follows that for each τ ∈ Σ′ and a ∈ A, τa is S-polynomial in Σ.

Because σ ∈ Σ′, it now follows that σ is constructively S-algebraic.

3.3.2 Systems of equations and the Greibach normal form

We will now establish a connection between the constructively power series we
just defined in terms of behavioural differential equations, and the presentation,
common in the theory of weighted automata, of algebraic power series over a
semiring S as solutions to certain classes of (flat) systems of equations. In the
current context, a system of equations over an alphabet A will be a pair (X, p),
where X is a finite set of nonterminals, and

p : X → S〈X +A〉

is a mapping assigning a polynomial over the disjoint union X + A to each
x ∈ X. This definition corresponds exactly to S-algebraic systems as presented
in e.g. [PS09] and [Fli74]. Such systems can also be regarded as weighted gram-
mars: the mapping p, in this case, can be seen as the set of (weighted) production
rules of the grammar.

A system of equations is called proper iff, for all x ∈ X and y ∈ Y

[p(x) ⇓ 1] = 0 and [p(x) ⇓ y] = 0.

If we would regard such systems as weighted grammars, the notion of being
proper corresponds to the absence of empty word productions and unit produc-
tions in the grammar. Furthermore, such a system is said to be in Greibach
normal form whenever

supp(p) ⊆ AX∗.

We will now give a precise definition of a solution to such a system, equivalent
to the classical situation, but presented in terms of commuting diagrams: to be
precise, a solution to a system of equations is a mapping

s : X → S〈〈A〉〉,

Chapter 3. Context-free languages and algebraic power series 63

of variables to power series, such that the diagram

X +A
[s, i]- S〈〈A〉〉

S〈X +A〉

p+ i

?
[s, i]]

-

commutes.
This formal presentation captures the intuitive idea that for all x ∈ X, x

and p(x) have the same interpretation on S〈〈A〉〉.
A solution to a system of equations is called strong strong whenever, for all

x ∈ X, we have
O(s(x)) = 0.

It is well-known (see e.g. [PS09]) that proper systems have a unique strong
solution. Other than this strong solution, proper systems also may have other
solutions. For example, the system x = x2 has (over an arbitrary semiring)
solutions x = 0 and x = 1; but only the first of these solutions is strong. This
can be contrasted with polynomial systems of behavioural differential equations,
which are guaranteed to always have a unique solution.

In the case where the underlying semiring is the Boolean semiring B, such
systems of equations are equivalent to context-free grammars without empty
word-productions and without unit-productions. Furthermore, we note that,
without the additional condition of properness, these systems of equations do
not necessarily have solutions: for example, the (non-proper) system consisting
of the single equation x = x+1, over the semiring N does not have any solutions.

We will now use Lemma 2.22 in its full generality to obtain the following
result, which is equivalent to [PS09, Theorem 3.2] and [PS09, Theorem 3.15].

Proposition 3.17. Every proper S-weighted system of equations has exactly
one strong solution, which occurs as the final coalgebra mapping of a polyno-
mial system of behavioural differential equations, canonically obtainable from
the system, and which thus is constructively S-algebraic.

Proof. Any solution to a proper S-weighted system over a set of variables X =
{x0, . . . , xk} will satisfy equations of the form

xi =

k∑
j=0

xjqij +
∑
a∈A

aria

64 Chapter 3. Context-free languages and algebraic power series

where each qij is rational over X and proper, and each ria is rational over X.

Under the assumption that such a solution is strong, we can take the deriva-
tive to any a ∈ A to obtain:

(xi)a = ria +

k∑
j=0

(xj)aqij

By Lemma 2.22, it now follows that each derivative (xi)a is rational over X,
so by Proposition 3.16, it now follows that this solution occurs as the unique so-
lution to the corresponding polynomial system of behavioural differential equa-
tions.

The above proposition can be regarded as a construction of the Greibach
normal form, as it transforms arbitrary proper systems into polynomial systems
of behavioural differential equations, which are in direct correspondence with
systems of equations in Greibach normal form.

3.4 Counting derivations in grammars

We will now turn to an application of behavioural differential equations, and
bisimulation-based proof techniques (more specifically: bisimulation up to lin-
earity), to a number of combinatorial counting problems. It turns out that a
number of familiar sequences, including e.g. the Catalan and Schröder numbers,
can easily be described and understood using systems of behavioural differential
equations, characterizing these sequences as constructively algebraic streams.

The results in this section can be related to [Rut02], in which a number of
counting problems are presented using (both finite and infinite) weighted au-
tomata. Compared to the work in that article, we present a more systematic
account, giving a uniform technique of obtaining systems of behavioural differ-
ential equations directly from a description of the combinatorial structure of a
sequence. For example, we can start from the characterization of the Catalan
numbers as the number of matching pairs of parentheses of a certain length, and
from this characterization directly obtain a system of behavioural differential
equations having the Catalan numbers as a solution. Because polynomial sys-
tems of behavioural differential equations can be regarded as infinite weighted
automata, we can regard this method as a more systematic approach, extending
the more ad hoc approach from [Rut02].

Chapter 3. Context-free languages and algebraic power series 65

Recalling from Section 3.2 that ⇒∗ was defined as the transitive closure of
⇒, we now observe that

v ⇒∗ w
is true if and only if there is a natural number n, together with a function
f : {n ∈ N |n ≤ n} → (X + A)∗ such that for all m ∈ N with m < n,
f(m)⇒ f(m+ 1), and moreover f(0) = v and f(n) = w.

Given v, w ∈ (X+A)∗, we let dv(v, w) denote the set of all distinct leftmost
derivations v ⇒∗ w, that is, the set of all such pairs (n, f) witnessing v ⇒∗ w.

In this section, we will establish that certain power series and streams, rep-
resenting the degrees of ambiguity of derivations of context-free grammars in
Greibach normal form, are again context-free. This will, again, be done using
the technique of bisimulation up to linearity. Proposition 3.18 below estab-
lishes that, given a context-free grammar in Greibach normal form, presented
as a polynomial system of behavioural differential equations (X, o, δ) over the
Boolean semiring B, the power series∑

w∈A∗
|dv(v, w)|w

is constructively N-algebraic for all words v ∈ X∗. The results in this section
were originally proven by Chomsky and Schützenberger in [CS63]; our proofs of
these classical results will be bisimulation-based proofs.

Starting from an arbitrary polynomial system of behavioural differential
equations

(X, o0, δ0)

over B, that is, any grammar in Greibach normal form, we can construct another
system over N

(X, o1, δ1)

specified by

o1(x) = e(o0(x)) and [δ1(x, a) ⇓ v] = e([δ0(x, a) ⇓ v]),

where the function e : B→ N is defined by e(0) = 0 and e(1) = 1.
First note we have, for v ∈ X∗, a ∈ A, and z ∈ A∗,

|dv(v, 1)| = e(o0(v))

and
|dv(v, az)| =

∑
u∈X∗

e([δ0(v, a) ⇓ u])|dv(u, z)|.

66 Chapter 3. Context-free languages and algebraic power series

Proposition 3.18. The relation

R =

{(
v,
∑
w∈A∗

|dv(v, w)|w

)∣∣∣∣∣ v ∈ X∗
}

is a bisimulation up to linearity between the S-linear automata (N〈X〉, ô1, δ̂1)
and (N〈〈A〉〉, O,∆).

Proof. We have

o1(v) = e(o0(v)) = |dv(v, 1)| = O

(∑
w∈A∗

|dv(v, w)|w

)

and, if
(
v,
∑
w∈A∗ |dv(v, w)|w

)
∈ R, then

va =∑
u∈X∗

[va ⇓ u]u =∑
u∈X∗

e([δ0(v, a) ⇓ u])u ΣR
∑
u∈X∗

e([δ0(v, a) ⇓ u])
∑
w∈A∗

|dv(u,w)|w

=
∑
z∈A∗

∑
u∈X∗

e([δ0(v, a) ⇓ u])|dv(u, z)|z

=
∑
z∈A∗

|dv(v, az)|z

=
∑
b∈A

∑
z∈A∗

|dv(v, bz)|(bz)a + |dv(v, 1)|1a

=
∑
w∈A∗

|dv(v, w)|wa

=

(∑
w∈A∗

|dv(v, w)|w

)
a

.

We can now also, given a system of behavioural differential equations (X, o, δ)
over an alphabet A and some v ∈ X∗, create a context-free stream σ, such that
for every number n ∈ N, σ(n) is equal to∑

w∈A∗,|w|=n

= |dv(v, w)|.

Chapter 3. Context-free languages and algebraic power series 67

In order to do this, let us construct another polynomial system

(X, o2, δ2)

defined by

o2(x) = o1(x) and x′ =
∑
a∈A

δ1(x, a).

The following proposition establishes that this new system indeed has the
intended behaviour:

Proposition 3.19. The relation

R =

{(
v,
∑
w∈A∗

|dv(v, w)|X|w|
)∣∣∣∣∣ v ∈ X∗

}

is a bisimulation up to linearity between the extension (N〈X〉, o2, δ2) of the sys-
tem just given, and (NN,head, tail).

Proof. We have

o2(v) = o1(v) = |dv(v, 1)| = O

(∑
w∈A∗

|dv(v, w)|X|w|
)

and, if (
v,
∑
w∈A∗

|dv(v, w)|X|w|
)
∈ R,

then also

v′ =∑
u∈X∗

[v′ ⇓ u]u =∑
u∈X∗

∑
a∈A

[va ⇓ u]u ΣR
∑
u∈X∗

∑
a∈A

[va ⇓ u]
∑
w∈A∗

|dv(u,w)|X|w|

=
∑
a∈A

∑
z∈A∗

∑
u∈X∗

[va ⇓ u]|dv(u, z)|X|w|

=
∑
a∈A

∑
z∈A∗

|dv(v, az)|X|z|

68 Chapter 3. Context-free languages and algebraic power series

=
∑
w∈A∗

|dv(v, w)|X|w|
′

=

(∑
w∈A∗

|dv(v, w)|X|w|
)′
.

This construction now enables us to derive specifications of some well-known
number sequences as context-free streams.

Example 3.20. We now return to the Catalan numbers, which we introduced
in Example 3.10. One of the ways of characterizing the nth Catalan number, is
as to the number of ways to combine n pairs of matching brackets. An unam-
biguous context-free grammar in Greibach normal form representing matching
pairs of brackets is

x→ axbx | 1

which corresponds to the system of equations

o(x) = 1 xa = xyx xb = 0
o(y) = 0 ya = 0 yb = 1.

Using the transformation on which Proposition 3.19 was based, we now
obtain another system of equations

o(x) = 1 x′ = xyx
o(y) = 0 y′ = 1.

yielding the stream σ such that for all n ∈ N, σ(2n) is equal to the nth Catalan
number, and σ(2n+ 1) = 0.

Now, because multiplication of streams over N is commutative, observe that

x′′ = (xyx)′ = (yx2)′ = y′x2 + o(y)(x2)′ = y′x2 = x2,

giving us a new system, over a single variable z, defined by

o(z) = 1 z′ = z2.

Because it clearly holds that JzK(n) = JxK(2n), it follows immediately that
the final homomorphism J−K maps z onto the stream of Catalan numbers: thus
we have established that the Catalan numbers are a constructively N-algebraic
stream.

Chapter 3. Context-free languages and algebraic power series 69

Example 3.21. Another, closely related, example arises from the following
problem: given a n×n grid, how many different ways are there to go from (0, 0)
to (n, n) by making steps of the types (0, 1), (1, 0) and (1, 1) that stay below
the diagonal? The sequence mapping each n ∈ N to the number of such paths
from (0, 0) to (n, n) is called the sequence of (large) Schröder numbers:

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, . . . (A006318)

It is easy to see that the nth Schröder number corresponds to the number of
derivations of words of length 2n given by the following system of behavioural
differential equations:

o(x) = 1 xa = xyx xb = 0 xc = zx
o(y) = 0 ya = 0 yb = 1 yc = 0
o(z) = 0 za = 0 zb = 0 zc = 1.

Here a represents a step of the type (0, 1), b represents a step of the type (1, 0),
and cc (cs can only occur in pairs in the language JxK) represents steps of the
type (1, 1).

Using the transformation from Proposition 3.19, we now obtain a new system
of equations

o(x̄) = 1 x̄′ = x̄ȳx̄+ z̄x̄
o(ȳ) = 0 ȳ′ = 1
o(z̄) = 0 z̄′ = 1

and again, by commutativity of multiplication, we now get

x̄′′ = (x̄ȳx̄+ z̄x̄)′ = (ȳx̄2)′ + (z̄x̄)′ = ȳ′x̄2 + o(ȳ)(x̄2)′ + z̄′x̄+ o(z̄)x̄′ = x̄2 + x̄

yielding a new system over a single variable u:

o(u) = 1 u′ = u2 + u

which is mapped by J−K onto the Schröder numbers.

4

Additional systems and operators

The present chapter further extends the work from Chapters 2 and 3 into a
coalgebraic treatment of pushdown automata and weighted pushdown systems,
presented again over arbitrary commutative semirings. Additionally, we intro-
duce the Hadamard product (which can, on the level of power series, be regarded
as a pointwise product, and on the level of formal languages as the intersection
operator), and present coalgebraic versions of some preservation properties of
the Hadamard product, making use of the earlier defined S-weighted automata
as well as S-weighted pushdown systems.

In Section 4.1, we will give a first presentation of pushdown automata and
weighted pushdown systems, together with a coalgebraic semantics that cor-
responds to the condition of empty stack acceptance. Next, we will refine our
notion of empty stack acceptance into the condition that a configuration is ac-
cepting if and only if the stack is empty and the pushdown machine is in an
accepting state. Our coalgebraic presentation of pushdown automata differs
from, and can be contrasted with the coalgebraic presentation from [SBBR13],
which is based on S × TXA-coalgebras, where T is the nondeterministic state
monad.

Next, in Section 4.2, we introduce the Hadamard product. Using bisimula-
tion techniques, we then give presentations of the main results from [Sch61a],
stating that the Hadamard product of two recognizable power series is again
recognizable, and that the Hadamard product of a recognizable and a algebraic
power series is again algebraic. In contrast with the original presentation from
[Sch61a], our presentation of the latter result is directly based on the connection
with pushdown systems, and can easily be seen to follow from the results from
4.1.

In the case of formal languages, the general results from Section 4.2 instan-
tiate to the fact that the intersection of two regular languages is again regular,
and that the intersection of a regular language with a context-free language is
again context-free.

The final section of this chapter introduces the zip and unzip operators,

71

72 Chapter 4. Additional systems and operators

which respectively zip together a finite list of streams into a new stream, and
unzip this stream back into a finite list of streams. We furthermore prove
that, for arbitrary semirings S, zipk preserves S-algebraicity. This result is a
generalization of a result that appeared in [NR10]. In the following chapter,
we will explore the connections between the zip and unzip operators and the
k-automatic and k-regular sequences.

4.1 Pushdown automata

Given a commutative semiring S, an S-weighted pushdown system (with empty
stack acceptance) is a triple

(Q,X, δ)

where:

1. Q is a finite set, which can be regarded as a set of states or variables;

2. X is a finite set, which can be regarded as a set of stack symbols, nonter-
minals, or again, variables;

3. δ is a function fromQ×X to LinS(Q×X∗)A called the transition function.

When S is the Boolean semiring B, these systems correspond to the usual
presentation of real time (i.e. without empty word transitions) pushdown au-
tomata , with the exception of (again) the absence of an initial state.

We will now extend any such system into an (infinite) S-weighted automaton
(or, in the Boolean case, a nondeterministic automaton), which captures the
behaviour of the usually defined pushdown automata.

For this extension, we need to define the operator

·[: LinS(Q×X∗)×X∗ → LinS(Q×X∗)

by
[s ·[w ⇓ (q, u)] = (if ∃u.u = zw then [s ⇓ (q, z)] else 0)

for all s ∈ LinS(Q×X∗), all q in Q, and all u,w ∈ X∗. Given any q ∈ Q and
v ∈ X∗, it directly follows from the definition that

(q, v) ·[w = (q, vw),

or in other words (q, v) ·[w is obtained by concatenating w to v. Intuitively, we
can now regard s ·[w as the unique linear extension of such concatenations.

Chapter 4. Additional systems and operators 73

We now uniquely extend any S-weighted pushdown system (X,Q, δ) to a
S-weighted automaton (Q×X∗, ō, δ̄) specified by the following behavioural dif-
ferential equations:

ō(q, 1) = 1 (q, 1)a = 0
ō(q, xw) = 0 (q, xw)a = (q, x)a ·[w

The specification of ō can be seen as a description of the condition of empty
stack acceptance.

In the Boolean case, it is easy to see that this captures the expected be-
haviour of a pushdown automaton. The left component can be seen as repre-
senting the state of the machine, and the right component as the stack content.
Sums represent nondeterminism.

We will now construct a polynomial system out of this pushdown system,
under the assumptions that o(x) = 0 for x ∈ X and o(q) = 1 for q ∈ Q, which
correspond to empty stack acceptance. The construction which now follows
corresponds to (a generalization of) the construction of context-free grammars
from pushdown automata presented in [HMU06], presented in a coalgebraic
fashion.

The state space of the pushdown system will be

Q×X ×Q

triples of elements from Q, X, and again Q.
Define the partial function

chain : X∗ → Q∗ → (Q×X ×Q)∗

so that chain(v, w) is defined if and only if |w| = |v|+ 1 and defined by

chain(1, q) = 1

chain(xv, qrw) = (q, x, r)chain(v, rw)

for x,∈ X, v ∈ X∗, q, r ∈ Q, and w ∈ Q∗ whenever this requirement holds.
The intuition of this function can be explained by the equation

chain(x1x2x3, q0q1q2q3) = (q0, x1, q1)(q1, x2, q2)(q2, x3, q3)

and using induction it is easily proven that for all q ∈ Q, v,w ∈ X∗, u, z ∈ Q∗
with |v| = |u| and |w| = |z|, we have

chain(vw, uqz) = chain(v, uq) · chain(w, qz).

74 Chapter 4. Additional systems and operators

We now specify the polynomial system (Q × X × Q, o′, δ′) using the be-
havioural differential equations

o′(q, x, r) = 0

and

(q, x, r)a =
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑

u∈Q|v|−1

chain(v, sur) + [(q, x)a ⇓ (r, 1)].

Proposition 4.1. The relation

R =


(q, w),

∑
v∈Q|w|

chain(w, qv)

∣∣∣∣∣∣ q ∈ Q,w ∈ X∗


is a bisimulation up to linearity between the S-linear automata

(LinS(Q×X∗), ô, δ̂)

and

(S〈Q×X ×Q〉, ô′, δ̂′).

Proof. Observe that if r ∈ R, then r has one of the following forms:

(q, 1) R 1

(q, xw) R
∑

v∈Q|xw|

chain(xw, qv)

In order to show that R is a bisimulation up to linearity, we proceed by
showing, using a simple case distinction, that for all (r0, r1) ∈ R, ô(r0) = ô′(r1)
and (r0)a ΣR (r1)a.

• Case (q, 1) R 1. We have ô(q, 1) = 1 = o(1) and

(q, 1)a = 0 = 1a.

• Case (q, xw) R
∑

v∈Q|xw|

chain(xw, qv).

Chapter 4. Additional systems and operators 75

We have

ô(q, xw) = 0 = ô′

 ∑
v∈Q|xw|

chain(xw, qv)


and

(q, xw)a

= (q, x)a ·[w

=
∑
r∈Q

[(q, x)a ⇓ (r, 1)](r, 1) ·[w +
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)](s, v) ·[w

=
∑
r∈Q

[(q, x)a ⇓ (r, 1)](r, w) +
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)](s, vw)

ΣR
∑
r∈Q

[(q, x)a ⇓ (r, 1)]
∑

z∈Q|w|
chain(w, rz)

+
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑

t∈Q|vw|

chain(vw, st)

=
∑
r∈Q

[(q, x)a ⇓ (r, 1)]
∑

z∈Q|w|
chain(w, rz)

+
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑

u∈Q|v|−1,r∈Q,z∈Q|w|
chain(vw, surz)

=
∑
r∈Q

(∑
s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑

u∈Q|v|−1

chain(v, sur)

+ [(q, x)a ⇓ (r, 1)]

) ∑
z∈Q|w|

chain(w, rz)

=
∑

r∈Q,z∈Q|w|
(q, x, r)achain(w, rz)

=
∑

r∈Q,z∈Q|w|
chain(xw, qrz)a

=

 ∑
t∈Q|xw|

chain(xw, qt)


a

76 Chapter 4. Additional systems and operators

We thus have shown that any power series accepted by a pushdown automa-
ton (realtime, with empty stack acceptance) is constructively algebraic.

4.1.1 Refining the acceptance condition

We now will introduce an extension of the acceptance conditions, by adding an
output function o0 assigning an output value to states. This extension will be
needed for the main result in the next section, on the Hadamard product.

Given a commutative semiring S, a S-weighted pushdown system (with re-
fined empty stack acceptance) is a quadruple

(Q,X, o0, δ)

where:

1. Q is a finite set, representing states;

2. X is a finite set, stack symbols;

3. o0 : Q→ S is an output function on states in Q;

4. δ is, as before a transition function from Q×X to LinS(Q×X∗)A.

We again uniquely extend any such system to a S-weighted automaton using
the behavioural differential equations:

ō(q, 1) = o0(q) (q, 1)a = 0
ō(q, xw) = 0 (q, xw)a = (q, x)a ·[w

Proposition 4.2. The relation

R ={(q, 1), o0(q)}

∪


(q, xw),

∑
p∈Q

o0(p)
∑

v∈Q|w|
chain(xw, qvp)

∣∣∣∣∣∣ q ∈ Q, x,w ∈ X∗


is a bisimulation up to linearity between the S-linear automata

(LinS(Q×X∗), ô, δ̂)

and
(S〈Q×X ×Q〉, ô′, δ̂′).

Chapter 4. Additional systems and operators 77

Proof. Observe that if r ∈ R, then r has one of the following forms:

(q, 1) R o0(q)

(q, x) R
∑
p∈Q

o0(p)(q, x, p)

(q, xyw) R
∑
p∈Q

o0(p)
∑

v∈Q|yw|

chain(xyw, qvp)

We again proceed by case distinction:

• Case (q, 1) R o0(q). We have ô(q, 1) = ō(q, 1) = o0(q) and

(q, 1)a = 0 ΣR 0 = (o0(q))a.

• Case (q, x) R
∑
p∈Q

o0(p)(q, x, p).

We have

ô(q, x) = 0 = ô′

∑
p∈Q

o0(p)(q, x, p)


and

(q, x)a

=
∑
r∈Q

[(q, x)a ⇓ (r, 1)](r, 1) +
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)](s, v)

ΣR
∑
r∈Q

[(q, x)a ⇓ (r, 1)]o0(r)

+
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑
p∈Q

o0(p)
∑

u∈Q|v|−1

chain(v, sup)

=
∑
p∈Q

o0(p)[(q, x)a ⇓ (p, 1)]

+
∑
p∈Q

o0(p)
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑

u∈Q|v|−1

chain(v, sup)

=
∑
p∈Q

o0(p)(q, x, p)a

78 Chapter 4. Additional systems and operators

• Case (q, xyw) R
∑
p∈Q

o0(p)
∑

v∈Q|yw|

chain(xyw, qvp).

We have

ô(q, xyw) = 0 = ô′

∑
p∈Q

o0(p)
∑

v∈Q|yw|

chain(xyw, qvp)


and

(q, xyw)a

= (q, x)a ·[yw

=
∑
r∈Q

[(q, x)a ⇓ (r, 1)](r, 1) ·[yw +
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)](s, v) ·[yw

=
∑
r∈Q

[(q, x)a ⇓ (r, 1)](r, yw) +
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)](s, vyw)

ΣR
∑
r∈Q

[(q, x)a ⇓ (r, 1)]
∑
p∈Q

o0(p)
∑

z∈Q|w|
chain(yw, rzp)

+
∑

s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑
p∈Q

o0(p)
∑

t∈Q|vw|

chain(vyw, stp)

=
∑
r∈Q

(∑
s∈Q,v∈X+

[(q, x)a ⇓ (s, v)]
∑

u∈Q|v|−1

chain(v, sur)

+ [(q, x)a ⇓ (r, 1)]

)∑
p∈Q

o0(p)
∑

z∈Q|w|
chain(yw, rzp)

=
∑
p∈Q

o0(p)
∑

r∈Q,z∈Q|w|
(q, x, r)achain(yw, rzp)

=
∑
p∈Q

o0(p)
∑

r∈Q,z∈Q|w|
chain(xyw, qrzp)a

=
∑
p∈Q

o0(p)

 ∑
v∈Q|w+1|

chain(xyw, qvp)


a

Chapter 4. Additional systems and operators 79

4.2 The Hadamard product

Let � denote the Hadamard product on power series, with σ � τ defined on
power series σ, τ ∈ S〈〈A〉〉 by

[σ � τ ⇓ w] = [σ ⇓ w][τ ⇓ w] for all w ∈ A∗

and define 1 by
[1 ⇓ w] = 1 for all w ∈ A∗.

It easy to see that
(S〈〈A〉〉,+,�, 0,1)

is a semiring again. Another way to characterize � is as the unique operation
on S〈〈A〉〉 satisfying the behavioural differential equations

O(σ � τ) = O(σ)O(τ) and (σ � τ)a = σa � τa.

Relying purely on the results from Chapter 2, it is straightforward to show
that the Hadamard product of two recognizable power series is again recogniz-
able, relying on the usual product construction:

Proposition 4.3. If σ ∈ S〈〈A〉〉 and τ ∈ S〈〈A〉〉 are both S-recognizable, then
σ � τ is S-recognizable.

Proof. If σ and τ are S-recognizable, there are S-weighted automata (P, oP , δP)
and (Q, oQ, δQ), and elements p, q ∈ P,Q such that JpKP = σ and JqKQ = τ .

Now define a S-weighted automaton (P ×Q, o, δ) as follows:

o(p, q) = oP (p)oQ(q)

(p, q)a =
∑
r,s∈Q

[pa ⇓ r][qa ⇓ s](r, s)

Now consider the relation

R = {((p, q), JpKP � JqKQ)}

and observe that R is a bisimulation up to linearity, as

ô(p, q) = oP (p)oQ(q) = O(JpKP � JqKQ),

and

(p, q)a =

80 Chapter 4. Additional systems and operators

∑
r,s∈Q

[pa ⇓ r][qa ⇓ s](r, s) = ΣR
∑
r,s∈Q

[pa ⇓ r][qa ⇓ s](JrKP � JsKQ)

= J
∑
r∈Q

[pa ⇓ r]rKP � J
∑
s∈Q

[qa ⇓ r]sKQ

= JpaKP � JqaKQ
= (JpKP � JqKQ)a

so it follows that J(p, q)K = JpKP �JqKQ and that J(p, q)K is again S-recognizable.

We now turn to the main result, which is a new presentation of a result orig-
inally proven in [Sch61a], stating that the Hadamard product of a recognizable
and a constructively algebraic power series is again constructively algebraic.

Proposition 4.4. If σ ∈ S〈〈A〉〉 is S-recognizable, and τ ∈ S〈〈A〉〉 is construc-
tively S-algebraic, then σ � τ is constructively S-algebraic.

Proof. If σ is S-recognizable and τ S-algebraic, there is a S-linear system
(Q, oQ, δQ) and a weighted system (X, oX , δX) with o(y) = 0 for all x ∈ X,
and some q ∈ Q and x ∈ X such that JqKQ = σ and JxKX = τ̂ for some τ with
τ = τ̂ +O(τ).

Define a S-weighted pushdown system (Q,X, o1, δ) with refined empty stack
acceptance by the following differential equations:

o1(q) = oQ(q)

(q, x)a =
∑

r∈Q,v∈X∗
[qa ⇓ r][xa ⇓ v](r, v)

Now consider the relation

R = {((q, u), JqK� JuK)}

and observe that R is a bisimulation up to linearity, as

ô(q, 1) = o1(q) = O(JqK� J1K),

ô(q, xt) = 0 = ô(q)ô(xt) = O(JqK)O(JxtK) = O(JqK� JxtK),

(q, 1)a = 0 ΣR 0 = JqK1 � 0 = JqKa � J1Ka = (JqK� J1K)a,

and

(q, xu)a =

Chapter 4. Additional systems and operators 81

(q, x)a ·[u =∑
r∈Q,v∈X∗

[qa ⇓ r][ta ⇓ u](r, vu) ΣR
∑

r∈Q,v∈X∗
[qa ⇓ r][xa ⇓ u](JrK� JvuK)

= J
∑
r∈Q

[qa ⇓ r]rK� J
∑
u∈X∗

[xa ⇓ v]vuK

= JqaK� JxauK
= (JqK� JxuK)a

In the extension of the corresponding polynomial system, it now follows that

J
∑
p∈Q

o0(p)(q, x, p)K = JqK� JxK = σ � τ̂

so σ� τ̂ is constructively S-algebraic, and it follows that σ� τ is constructively
S-algebraic too.

However, in general, the Hadamard product of two constructively algebraic
power series is not constructively algebraic—a simple counterexample in the
setting of formal language can be given by the languages

{ambmcn |m,n ∈ N} and {ambncn |m,n ∈ N}

which are both context-free. The intersection of these two languages is the
language

{anbncn |n ∈ N}
which is not context-free.

4.3 Zipping and unzipping

Given two streams σ, τ ∈ SN over any set S, we let the stream zip(σ, τ) be
defined using the equations

zip(σ, τ)(2n) = σ(n) and zip(σ, τ)(2n+ 1) = τ(n)

for all n ∈ N. Intuitively, we can see zip(σ, τ) as a stream that alternately takes
an element from σ and an element from τ . For example, if σ = (0, 0, 0, . . .) is the
constant stream of zeros, and τ = (1, 2, 3, . . .) is the stream of natural numbers,
we get

zip(σ, τ) = (0, 1, 0, 2, 0, 3, . . .).

82 Chapter 4. Additional systems and operators

Equivalently, we can also define zip coinductively with the following system
of behavioural differential equations:

O(zip(σ, τ)) = O(σ) and (zip(σ, τ))′ = zip(τ, σ′)

This definition generalizes as follows: given a finite sequence of streams
σ1, . . . , σk ∈ SN, we let the stream zipk(σ1, . . . , σk) be defined using the equation

zipk(σ1, . . . , σk)(nk +m) = σm+1(n)

for all n ∈ N and m ∈ N with m < k. The easily derivable and equivalent
coinductive definition now becomes

O(zipk(σ1, . . . , σk) = O(σ1) and zipk(σ1, . . . , σk)′ = zipk(σ2, . . . , σk, σ1).
(4.1)

Similarly, we can define an ‘integration rule’ for prefixing an element s ∈ S
to a stream specified using the zipk operator:

s :: zipk(σ1, . . . , σk) = zipk(s :: σk, σ1, . . . , σk−1) (4.2)

Conversely to the zip operator, given a stream σ, we can define streams
even(σ) and odd(σ) consisting of the even and odd elements of σ, respectively,
as follows:

(even(σ))(n) = σ(2n) and (odd(σ))(n) = σ(2n+ 1)

We can relate zip, even, and odd by the equation

σ = zip(even(σ),odd(σ))

which is easily verified to hold for all streams σ.
Again, the even and odd operations can be generalized to the operation

unzipi,k, defined for all i, k ∈ N with i < k by

unzipi,k(σ)(n) = σ(kn+ i)

yielding even = unzip0,2 and odd = unzip1,2.
The zipk and unzipi,k functions are again related by the equation

σ = zipk(unzip0,k(σ), . . . ,unzipk−1,k(σ)). (4.3)

Chapter 4. Additional systems and operators 83

4.3.1 Algebraicity is preserved by zip

In this section, we will establish a result which states that if streams

σ1, . . . , σk

are constructively S-algebraic, then the stream

zipk(σ1, . . . , σk)

is again S-algebraic.
This is a result which holds for all streams that are constructively S-algebraic

over any semiring S. In order to prove this result, the following lemma is useful:

Lemma 4.5. Given any semiring S and streams σ, τ ∈ SN, we have

zip(σ, τ) = zip(σ, 0) + Xzip(τ, 0),

and more generally, for any k ≥ 2, given streams σ0, . . . , σk ∈ SN, we have

zipk+1(σ0, . . . , σk) =

k∑
i=0

Xizipk+1(σi, 0, . . . , 0).

Proof. Trivial.

Proposition 4.6. Given a commutative semiring S and any k ≥ 2, if σ ∈ SN

is constructively S-algebraic, then

zipk(σ, 0, . . . , 0)

is constructively S-algebraic.

Proof. If σ is constructively S-algebraic, there must exist a finite system of
polynomial behavioural differential equations (X, oX , δX) in S and a x ∈ X,
such that JxK = σ.

Now construct a new system of polynomial b.d.e.’s (Y, oY , δY) with

Y = {x̄ |x ∈ X} ∪ {X}.

Here f : X → Y is an operation taking each x ∈ X to the corresponding
notational variant x̄ ∈ Y , and we naturally extend f to mappings f̄ : X∗ → Y ∗

on words and f̂ : s ∈ S〈X〉 → S〈Y 〉 on polynomials, built up from the notational
variants.

84 Chapter 4. Additional systems and operators

Now define oY and δY by

oY (x̄) = oX(x) and x̄′ = Xk−1f̂(x′).

We now define the relation R ⊆ S〈Y 〉 × SN

R = {(Xnf(v),Xnzipk(JvK, 0, . . . , 0)) |n ∈ N, v ∈ X∗}

and note that, from the definition of R it directly follows that, whenever s ΣR t,
then also Xns ΣR Xnt.

We will now show that R is a bisimulation up to S-linear combinations. This
is done by a case distinction on n:

1. If n > 0, observe that

oX(Xnf(v)) = 0 = oY (Xnzipk(JvK, 0, . . . , 0))

and that

(Xnf(v))′ =

Xn−1f(v) ΣR Xn−1zipk(JvK, 0, . . . , 0)

= (Xnzipk(JvK, 0, . . . , 0))′.

2. If n = 0, proceed by induction on the length of v. If |v| = 0, then v = 1,
and

f(v)′ = 1′ = 0 ΣR 0 = zipk(J1K, 0, . . . , 0)′ = zipk(JvK, 0, . . . , 0)′

and if v = xw for some x ∈ X and w ∈ X∗, using the inductive hypothesis
that

f(w)′ ΣR zipk(JwK, 0, . . . , 0)′,

we obtain

f(xw)′ = (x̄f(w))′

= x̄′f(w) + o(x̄)f(w)′

= x̄′f(w) + o(x)f(w)′

= Xk−1f(x′)f(w) + o(x)f(w)′

= Xk−1f(x′w) + o(x)f(w)′

Chapter 4. Additional systems and operators 85

=

(∑
z∈X∗

Xk−1(f(x′w))(f(z))f(z)

)
+ o(x)f(w)′

ΣR

(∑
z∈X∗

Xk−1zipk(J(x′w)(z)zK

)
+ o(x)f(w)′

= Xk−1zipk(Jx′wK, 0, . . . , 0) + Xk−1o(x)zipk(JwK, 0, . . . , 0)′

= Xk−1zipk(JxK′JwK + o(x)Jw′K, 0, . . . , 0)

= zipk(JxwK, 0, . . . , 0)′

establishing that

f(xw)′ ΣR zipk(JxwK, 0, . . . , 0)′.

It now follows that whenever sR t, it follows that s′ΣR t′, so R is indeed a
bisimulation up to linearity. It now follows that x̄ΣR zipk(JxK, 0, . . . , 0), and
thus that Jx̄KY = zipk(JxK, 0, . . . , 0)), so zipk(JxK, 0, . . . , 0) is constructively S-
algebraic.

We are now equipped with all ingredients required for the following theorem:

Theorem 4.7. Given a commutative semiring S and any k ≥ 2, if σ1 . . . , σk ∈
SN are constructively S-algebraic, then

zipk(σ1, . . . , σk)

is constructively S-algebraic.

Proof. Follows from Proposition 3.8, Lemma 4.5, and Proposition 4.6.

So far, it remains an open question whether the operator even (or equiva-
lently, odd), and the generalizations unzipi,k too, preserve constructive alge-
braicity. The natural approach here would be to transform the given system
into a new system, by setting the derivative of the nonterminals in the new
system equal to the second derivatives in the old system. For example, we could
try to transform the system

o(x) = 1 and x′ = x2

yielding the Catalan numbers, into the new system

o(x̄) = 1 and x̄′ = x̄3 + x̄.

86 Chapter 4. Additional systems and operators

However, the latter system yields the stream

1, 2, 10, 66, 498, 4066, 34970, 312066, 2862562, 26824386, . . . (A027307)

rather than the even-indexed Catalan numbers, and the suggested construction
does not work.

5

k-Automatic and k-regular sequences

The present chapter gives a coalgebraic presentation of two, related, families of
sequences that can be seen as being generated by automata. The k-automatic
sequences, first considered as a class in [Cob72], can be regarded as sequences
that are accepted, or generated, by a finite automaton. The k-regular sequences,
introduced in [AS92], and further elaborated on in [AS03b], generalize the k-
automatic sequences similarly to how recognizable power series generalize simple
power series (or, more precisely, language partitions). A comprehensive refer-
ence for both k-automatic and k-regular sequences is [AS03a].

This chapter gives a coalgebraic presentation of both classes, relying on
the so-called bijective base k numeration system, which differs from the familiar
(‘standard’) base k numeration system. Our presentation can then be contrasted
with more traditional presentations of the k-automatic and k-regular sequences,
which are given either in terms of the standard base k numeration system, or
in terms of the closely related k-kernel. Because of our switch to the bijective
base k numeration system, we do not depend anymore on additional notions
such as zero-consistency of automata (which was required for the coalgebraic
presentation in [KR12]), and furthermore, the notions of k-automaticity and
k-regularity now naturally include the case where k = 1 as well.

Section 5.1 starts with an introduction of the bijective base k numeration
system, providing an, in this context, useful and elegant alternative for the
standard base k numeration system. Next, this bijection is used to construct an
isomorphism between final automata providing two distinct notions of ‘stream
semantics’ and ‘power series semantics’.

In Section 5.2, we apply this isomorphism to provide coalgebraic charac-
terizations of k-automatic and k-regular sequences, as solutions to systems of
zip-behavioural differential equations. The results in this section include, build
on, and extend results from e.g. [KR12] and [GEH+12]: the format of zip-
behavioural differential equations, for k-automatic sequences, can be found in
[GEH+12], together with the realization that the class of streams can be as-
signed a final coalgebra (or final automaton) structure; we consider this fact in

87

88 Chapter 5. k-Automatic and k-regular sequences

a wider context, and use this final coalgebra to additionally obtain a format for
the k-regular sequences.

In Section 5.3, we apply the work in the previous section to a family of se-
quences defined by divide-and-conquer recurrences, and specify some conditions
under which it follows that such sequences are k-regular.

Section 5.4 concludes by giving some connections between the k-automatic
sequences, and algebraic streams. We consider a well-known result due to Chris-
tol and a lesser known result due to Fliess, and see how these results fit in the
coalgebraic approach presented in this chapter.

5.1 An isomorphism between final automata

Given any k ∈ N with k ≥ 1, consider the alphabet of digits

Ak := {1, . . . , k}

and define a function val : Ak → N by val(i) = i for all i ∈ N with 1 ≤
i ≤ k. This may appear somewhat pedantic and unnecessary, but we need
to pay close care to distinguish between concatenation of words of digits, and
multiplication of natural numbers, both denoted by the (generally omitted) ‘·’
symbol. Likewise, we need to distinguish between the empty word ‘1’, and the
digit ‘1’.

Now consider the mapping

νk : (Ak)∗ → N

defined inductively as follows:

νk(1) = 0 νk(dw) = kνk(w) + val(d)

It is easily established that νk is a bijection, and that, given a word d0 . . . dn
of digits, we have

νk(d0 . . . dn) =

n∑
i=1

val(di)k
i.

We regard νk as specifying the bijective base k numeration system, presented
with the least significant digit first. Note that νk can, unlike the standard base
k numeration system for which there is no unary system entirely analogous to
the base k systems for k > 1, be defined for all k ≥ 1.

Chapter 5. k-Automatic and k-regular sequences 89

Furthermore, we will in what follows use a (curried) variant of unzip,

unzipk : SN → (SN)Ak ,

defined so that unzipk(σ)(i) = unzipval(i)−1,k(σ).
In a similar manner, we can regard zipk as being of the type

zipk : (SN)Ak → SN

thus creating a bijection between SN and (SN)Ak :

SN
unzipk-
�

zipk
(SN)Ak

In what follows, we will usually simply write (SN)k instead of (SN)Ak .
We now recall from Section 2.1 that, given any finite alphabet A, the au-

tomaton

S〈〈A〉〉

S × S〈〈A〉〉A

(O,∆)

?

is a final S-automaton over the alphabet A, or equivalently, a final coalgebra
for the functor S ×−A.

Assuming that A = Ak for some k ∈ N with k ≥ 1, we thus have a bijection

(Ak)∗
νk -�
ν−1
k

N

which extends to a bijection

SN
− ◦ νk-�
− ◦ ν−1

k

S〈〈Ak〉〉

because S〈〈Ak〉〉 ∼= (Ak)∗ → S. Observe that the type of νk is (Ak)∗ → N, and
therefore, − ◦ νk takes functions of type N → S and maps them to functions
(Ak)∗ → S (and vice versa for the inverse).

90 Chapter 5. k-Automatic and k-regular sequences

Now consider the system

SN

S × (SN)k

(head,unzipk ◦ tail)

?

which is a S × −Ak coalgebra as a result of the isomorphism (SN)k ∼= (SN)Ak .
We will now establish that this coalgebra (or automaton) is again final, and
thus isomorphic to the final coalgebra that was presented in Chapter 2.

Proposition 5.1. The diagram

SN
− ◦ νk -

�
− ◦ ν−1

k

S〈〈Ak〉〉

S × (SN)k

(head,unzipk ◦ tail)

? 1S × (− ◦ νk)k-�
1S × (− ◦ ν−1

k)k
S × S〈〈Ak〉〉k

(O,∆)

?

commutes and thus (SN,head,unzipk ◦ tail) is a final S-automaton over the
alphabet Ak.

Proof. This amounts to showing that − ◦ νk is an isomorphism of S-automata,
for which it is sufficient to show that − ◦ νk is a bijective homomorphism:
furthermore, we already have established that − ◦ νk is bijective.

To show that − ◦ νk is a homomorphism, we first have to show that

head(σ) = O(σ ◦ νk),

which holds because

head(σ) = σ(0) = σ(νk(1)) = (σ ◦ νk)(1) = O(σ ◦ νk).

Second, we have to show that, for all i with 1 ≤ i ≤ k, (σ ◦ νk)i = (σi ◦ νk),
or using more explicit notation:

∆(σ ◦ νk, i) = ((unzipk ◦ tail)(σ)(i) ◦ νk)

Chapter 5. k-Automatic and k-regular sequences 91

This again holds, because given any w ∈ A∗k and i ∈ Ak, we have:

(σ ◦ νk)i(w) = (σ ◦ νk)(i · w)

= σ(νk(i · w))

= σ(i+ k · νk(w))

= σ′((i− 1) + k · νk(w))

= unzipi−1,k(σ′)(νk(w))

= ((unzipi−1,k ◦ tail)(σ) ◦ νk)(w)

= (σi ◦ νk)(w)

The observation that (SN,head,unzipk ◦ tail) is a final coalgebra first ap-
peared in [GEH+12, Proposition 26]: there this result was established directly,
rather than by establishing the existence of an isomorphism to a known final
coalgebra.

We now introduce the notation J−Kk for the unique mapping of an arbitrary
S-automaton into the automaton (SN,head,unzipk ◦ tail), directly yielding
the equalities

J−Kk = J−K ◦ νk and J−K = J−Kk ◦ ν−1
k .

Furthermore, given any S-automaton (Q, o, δ) over the alphabet Ak, we get
an instance of the following commuting diagram:

Q ...
J−Kk

- SN

S ×Qk

(o, δ)

?
...
1S × (J−Kk)k

- S × (SN)k

(head,unzipk ◦ tail)

?

The commutativity of this diagram can equivalently be captured by means
of the equations

o(q) = head(JqKk) and JqiKk = unzipi−1,k(JqK′k) (5.1)

which hold for all q ∈ Q, and i ∈ N with 1 ≤ i ≤ k. Using the earlier bijection
between the operations zipk and unzipk, the second of these equations can be
restated as

JqK′k = zipk(Jq1Kk, . . . , JqkKk).

92 Chapter 5. k-Automatic and k-regular sequences

5.2 Systems of zip-behavioural differential equa-
tions

5.2.1 Simple systems and k-automatic sequences

Given any set S, we call a sequence σ ∈ SN k-automatic whenever there is a
finite set Σ ⊆ SN with σ ∈ Σ, such that for each τ ∈ Σ, there are τ1, . . . , τk ∈ Σ
such that

τ = zipk(τ1, . . . , τk).

This characterization is equivalent to the condition that the k-kernel of σ, that
is, the smallest set of streams containing σ and closed under the unzipi,k oper-
ations, is finite.

Conventionally, the k-automatic sequences are defined in terms of finite au-
tomata and the standard base k numeration. It is well-known and not overly
difficult to prove (see e.g. [AS03a, Theorem 6.6.2]) that the definition using fi-
nite automata and the standard base k numeration is in direct correspondence
to the definition in terms of the k-kernel.

Existing coalgebraic and coinductive approaches to automatic sequences can
be found in [GEH+12] and [KR12]. In [KR12], a coalgebra is presented that
is ‘relatively’ final, i.e. final amongst automata that are zero-consistent : again,
this presentation is shown to be equivalent to the presentation given above.

The following proposition is essentially a rephrasing of [AS03a, Theorem
5.2.7], which already relies on the bijective base k numeration system.

Proposition 5.2. For any k ≥ 2, a sequence σ ∈ SN is k-automatic if and only
if there is a finite S-automaton (Q, o, δ) and a q ∈ Q such that JqKk = σ.

Proof. First assume that σ ∈ SN is k-automatic. By definition, there is a finite
set Σ, such that for each τ ∈ Σ there are τ1, . . . , τk ∈ Σ such that

τ = zipk(τ1, . . . , τk).

Taking derivatives, we obtain

τ ′ = zipk(τ2, . . . , τk, τ
′
1)

and taking derivatives a second time, we obtain

τ ′′ = zipk(τ3, . . . , τk, τ
′
1, τ
′
2)

Chapter 5. k-Automatic and k-regular sequences 93

(or, in the case where k = 2, simply τ ′′ = zip(τ ′1, τ
′
2)). Defining

Q := Σ ∪ {τ ′ | τ ∈ Σ}

it follows that for all q ∈ Q and all i ∈ N with i < k, unzipi,k(q) ∈ Q again.
This directly implies that (Q,head,unzipk ◦ tail) is a finite S-automaton.

This automaton is a sub-automaton of the final automaton, and hence J−Kk is
simply the identity mapping.

Conversely, assume that there is a finite S-automaton (Q, o, δ) and a q ∈ Q
such that JqKk = σ. We thus get, for all q ∈ Q

JqK′k = zipk(Jq1Kk, . . . , JqkKk)

Using (4.2), we now get

JqKk = o(q) :: JqK′k = zipk(o(q) :: JqkKk, Jq1Kk, . . . , Jqk-1Kk)

and applying (4.2) another time, we get for an arbitrary s ∈ S:

s :: JqKk = zipk(s :: Jqk-1Kk, o(q) :: JqkKk, Jq1Kk, . . . , Jqk-2Kk)

Hence, it follows that the finite set

{JqKk | q ∈ Q} ∪ {s :: JqKk | q ∈ Q, s ∈ {o(r) | r ∈ Q}}

satisfies the defining property of automaticity.

We now directly obtain the following corollaries:

Corollary 5.3. Given any σ ∈ SN, σ is k-automatic if and only if νk ◦ σ is
simple.

Corollary 5.4. Given any σ ∈ SN, σ is k-automatic if and only if there is a
finite Σ ⊆ SN with σ ∈ Σ, such that for each τ ∈ Σ and each i with 0 ≤ i < k,
unzipi,k(τ ′) ∈ Σ.

Example 5.5. As an example of a 2-automatic sequence, consider the following
zero-consistent 2-automaton over the alphabet B2:

x ↓ 0 y ↓ 1

0

1

1

0

94 Chapter 5. k-Automatic and k-regular sequences

It is well-known from e.g. [AS03a] that x generates the stream

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . . (A010060)

which is known as Prouhet-Thue-Morse sequence.
This stream can also be characterized as the morphic sequence generated by

the morphism p : F2 → (F2)∗ with p(0) = 01 and p(1) = 10, starting from the
symbol 0: if we repeatedly apply this substitution on the (finite) word obtained
by the previous substitution, the Prouhet-Thue-Morse sequence is obtained in
the limit.

This automaton structure corresponds to the zip-equations

x = zip(x, y) y = zip(y, x)

combined with the outputs

o(x) = 0 o(y) = 1

Taking derivatives and second derivatives, we obtain

x′ = zip(y, x′) y′ = zip(x, y′)
x′′ = zip(x′, y′) y′′ = zip(y′, x′)

yielding the following system of zip-behavioural differential equations (which
introduces new variables x̄, ȳ to stand for x′ and y′ respectively:

o(x) = 0 x′ = zip(x, ȳ)
o(y) = 1 y′ = zip(y, x̄)
o(x̄) = 1 x̄′ = zip(x̄, ȳ)
o(ȳ) = 0 ȳ′ = zip(ȳ, x̄)

This system again is equivalent to a finite automaton, this time an automaton
with four states over the alphabet A2:

x ↓ 0 x̄ ↓ 1 ȳ ↓ 0 y ↓ 1

1

2

1

2

2

1 1

2

Chapter 5. k-Automatic and k-regular sequences 95

Example 5.6. Another example is given by the Cantor sequence

1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . (A088917)

which is 3-automatic and can be characterized by the zip3-equations

o(x) = 1 x = zip3(x, y, x)
o(y) = 0 y = zip3(y, y, y)

The construction now yields the following system of zip3-behavioural differ-
ential equations:

o(x) = 1 x′ = zip3(y, x, x̄)
o(y) = 0 y′ = zip3(y, y, ȳ)
o(x̄) = 0 x̄′ = zip3(x, x̄, ȳ)
o(ȳ) = 0 ȳ′ = zip3(y, ȳ, ȳ)

5.2.2 Linear systems and k-regular sequences

The notion of a k-regular sequence with values in a ring was introduced in
[AS92]. The following definition is (roughly) a direct generalization to sequences
with values in a semiring.

Given a semiring S, we call a sequence σ ∈ SN (S, k)-regular (or sometimes
simply k-regular) whenever there is a finite set of generators Σ = {σ0, . . . σn−1}
with σ ∈ Σ, and an indexed family ah,i,j for all h, i, j ∈ N with h < n, i < n,
j < k, such that for all h < n and j < k

unzipj,k(σh) =

n∑
i=0

ah,i,jσi

or equivalently, for all h < n:

σh = zipk

(
n∑
i=0

ah,i,0σi, . . . ,

n∑
i=0

ah,i,kσi

)
. (5.2)

This is again equivalent to the condition that the k-kernel of σ is contained in
a finitely generated S-submodule of SN.

Because of the finality of the automaton (SN,head,unzipk◦tail), we obtain,
for any S-weighted automaton (X, o, δ), the following diagram, a variant of
diagram (2.3):

96 Chapter 5. k-Automatic and k-regular sequences

X ⊂
ηl
X- LinS(X) ...

J−Kk
- SN

S × (LinS(X))k

(o, δ)

?
...

1S × (J−Kk)
k

-

(ô, δ̂)

�
S × (SN)k

(head,unzipk ◦ tail)

?

(5.3)
From this diagram, we immediately can derive the following lemma:

Lemma 5.7. Given an S-weighted Ak-automaton (X, o, δ), J−Kk is the unique
linear mapping LinS(X)→ SN satisfying, for each x ∈ X, the equations

head(Jηl(x)Kk) = o(x) and Jηl(x)K′k = zipk(Jδ(x, 1)Kk, . . . , Jδ(x, k)Kk).

Hence, whenever we are concerned with the stream semantics J−Kk, we
are justified in presenting a weighted automaton (X, o, δ) as a system of zip-
behavioural differential equations, containing for each x ∈ X equations

head(x) = o(x) and x′ = zip(δ(x, 1), . . . , δ(x, k)).

The preceding lemma now tells us that the mapping J−Kk gives us the unique
solution to such a system of behavioural differential equations.

We will now show that k-regular sequences are obtained precisely by the
stream semantics of finite S-weighted Ak-automata. It will follow that k-regular
sequences are in bijective correspondence with recognizable formal power series
via k-adic numeration. The following proposition can be seen as a generalization
of Proposition 5.2, extended by taking into account linearity:

Proposition 5.8. Given a semiring S and any k ≥ 2, a sequence σ ∈ SN is
S, k-regular if and only if there is a finite S-weighted automaton (X, o, δ) over
the alphabet Ak and an x ∈ X, such that JxKk = σ.

Proof. First assume that σ is S, k-regular. In this case, there is a finite set of
sequences Σ = {σ0, . . . , σn−1} with σ ∈ Σ, and scalars ah and bh,i,j in S indexed
over h < n, i < n, j < k, such that for all h < n:

σh = zipk

(∑
i<n

ah,i,0σi, . . . ,
∑
i<n

ah,i,k−1σi

)

Chapter 5. k-Automatic and k-regular sequences 97

Taking the derivative and second derivative of each σh using (4.1), we obtain:

σ′h = zipk

(∑
i<n

ah,i,1σi, . . . ,
∑
i<n

ah,i,0σ
′
i

)

σ′′h = zipk

∑
i<n

ah,i,2σi, . . . ,
∑
i<n

ah,i,0σ
′
i,
∑
i≤n

ah,i,1σ
′
i


Hence, for each σ ∈ Σ+ := Σ ∪ {σ′ |σ ∈ Σ} and j < k, unzipj,k(σ′) is a S-

linear combination of elements from Σ+, and hence there is a finite S-weighted
Ak-automaton (X, o, δ) and an x ∈ X, such that JxKk = σ by Lemma 5.7.

Conversely, assume that there is a finite S-weighted automaton (X, o, δ) over
Ak, and a state x ∈ X, such that Jηl(x)Kk = σ. By Lemma 5.7, we have

JxK′k = zipk(Jδ(x, 1)Kk, . . . , Jδ(x, k)Kk)

and by (4.1) that

JxKk = zipk(o(x) + XJδ(x, k)Kk, Jδ(x, 1)Kk, . . . , Jδ(x, k-1)Kk). (5.4)

Using the fact that (XJxKk)′ = JxKk, and applying again (4.1), we obtain:

XJxKk = zipk(XJxk-1Kk, o(x) + XJxkKk, Jx1Kk, . . . , Jxk-2Kk) (5.5)

By defining the set of generators

Σ = {JxKk |x ∈ X} ∪ {XJxKk |x ∈ X} ∪ {(1, 0, 0, . . .)}

the equations (5.4) and (5.5) show (via the zip-unzip isomorphism (4.3)) that
for each generator σ ∈ Σ and j < k, unzipj,k(σ) is an S-linear combination
of the generators. It follows from the definition that JxKk is k-regular for all
x ∈ X.

This also gives us the following corollary, establishing the connection to the
recognizable power series:

Corollary 5.9. A sequence σ ∈ SN is k-regular if and only if σ ◦ νk is recog-
nizable.

This corollary is analogous to [AS92, Theorem 4.3], which says that σ ∈ ZN

is k-regular if and only if the formal power series
∑
n<ω σ(n)ξ̄(n) is rational (or

98 Chapter 5. k-Automatic and k-regular sequences

equivalently, recognizable), where ξ̄ : N→ B∗k \B∗k0 is the inverse of the bijection
obtained by restricting the standard base k numeration ξ : B∗k → N to words
not ending in 0.

Again, we obtain a semantic characterization in terms of finite sets of formal
power series:

Corollary 5.10. Given any σ ∈ SN, σ is S, k-regular if and only if there is a
finite Σ ⊆ SN with σ ∈ Σ, such that for each τ ∈ Σ and each i with 0 ≤ i < k,
unzipi,k(τ ′) is S-linear in Σ.

Example 5.11. We illustrate Proposition 5.8 with a well-known 2-regular se-
quence, which the composer Per Nørg̊ard used in a variety of his compositions,
and which he called the infinity sequence1:

0, 1,−1, 2, 1, 0,−2, 3,−1, 2, 0, 1, 2,−1,−3, 4, . . . (A004718)

This sequence can be characterized uniquely by the following equations:

o(x) = 0 x = zip(−x, x+ y)
o(y) = 1 y = zip(y, y)

(with x denoting σ). The zip-equations on the right-hand side are a system in
the format of (5.2) and hence the sequence is 2-regular. Taking derivatives and
second derivatives of the zip-equations, we now get using (4.1):

x′ = zip(x+ y,−x′) x′′ = zip(−x′, x′ + y′)
y′ = zip(y, y′) y′′ = zip(y′, y′)

We can now compute the initial values of x′ and y′ as

o(x′) = o(zip(x+ y,−x′)) = o(x+ y) = o(x) + o(y) = 1
o(y′) = o(zip(y, y)) = o(y) = 1.

Introducing new variables z and w representing x′ and y′ respectively, we now
can specify a weighted automaton as the unique solution to the following system
of zip-equations:

o(x) = 0 x′ = zip(x+ y,−z)
o(y) = 1 y′ = zip(y, w)
o(z) = 1 z′ = zip(−z, z + w)
o(w) = 1 w′ = zip(w,w)

1http://pernoergaard.dk/eng/strukturer/uendelig/uindhold.html

Chapter 5. k-Automatic and k-regular sequences 99

In this automaton, the final homomorphism J−Kk maps x to Nørg̊ard’s infin-
ity sequence. We remark, however, that this weighted automaton is not minimal,
as y and w both are mapped onto the constant sequence of ones.

A corresponding weighted automaton, with inputs in A2 (presented here
restricted to just the variables z and w), can be derived immediately from the
system of behavioural differential equations, as follows:

z ↓ 1 w ↓ 1

1| − 1

2|1

2|1

2|1

1|1

Example 5.12. Another example, which can be constructed in the same man-
ner as the previous example, is given by the following N-weighted A2-automaton:

o(x) = 1 x′ = zip(x, x)
o(y) = 1 y′ = zip(2y, 2y + x)
o(z) = 1 z′ = zip(z, x+ y)

Here, the final homomorphism J−K2 maps x onto the constant stream of
ones, y onto the stream of natural numbers, and z onto Kimberling’s sequence:

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, . . . (A003602)

5.3 Divide and conquer recurrences

Divide and conquer recurrences, which have been considered for example in
[GKP94] and [Ste03], can somewhat informally be seen as—in the case of k = 2,
to which we will restrict ourselves in this section—sequences σ where σ(0) is
given, and for each n, σ(n) is defined in terms of σ(b(n− 1)/2c), σ(d(n− 1)/2e),
and polynomials in n.

In this section, we will establish a close link between divide and conquer
recurrences satisfying a number of ‘natural’ conditions, and the k-regular se-
quences, by showing that their sequences occur as 2-regular sequences.

100 Chapter 5. k-Automatic and k-regular sequences

We will restrict ourselves to special (more precisely defined) restricted ver-
sions of divide and conquer recurrences. To be precise, we will consider recur-
rences of the form

σ(2n) = a2σ(n− 1) + a3σ(n) + τ1(n) σ(2n+ 1) = a1σ(n) + τ0(n)

where a1, a2, a3 are scalars from the semiring S, and τ1 and τ2 are themselves
2-regular sequences. We furthermore hold the assumption that σ(0) = 0 (we
will later see that this assumption can be relaxed).

Now observe that

σ(2n+ 2) = σ(2(n+ 1)) = a2σ(n) + a3σ(n+ 1) + τ ′1(n).

As a result of the equalities σ(2n + 1) = (even(σ′))(n) and σ(2n + 2) =
(odd(σ′))(n) we now derive

(even(σ′))(n) = (a1σ + τ0)(n)

(odd(σ′))(n) = (a2σ + a3σ
′ + τ ′1)(n)

and hence also

even(σ′) = a1σ + τ0 odd(σ′) = a2σ + a3σ
′ + τ ′1.

A large amount of combinatorial problems can be expressed by means of di-
vide and conquer recurrences of this type, and can be transformed using the
above construction. An overview of many of these examples can be found
at http://oeis.org/somedcgf.html. For some of these examples, Haskell-
specifications corresponding to the behavioural differential equations can be
found in Appendix C.

One of the questions asked on http://oeis.org/somedcgf.html, is whether
all the examples presented there are indeed 2-regular. We will soon see that this
question can be answered positively.

Example 5.13. As an example illustrating the construction, the recurrence
given by

σ(0) = 0 σ(2n) = σ(n) + σ(n− 1) + 2n− 2 σ(2n+ 1) = 2σ(n) + 2n− 1

specifying the sorting numbers (OEIS A001855) can first be transformed into

σ(0) = 0 σ(2n+ 1) = 2σ(n) + 2n− 1 σ(2n+ 2) = σ(n+ 1) + σ(n) + 2n

and from there into the behavioural differential equation:

head(σ) = 0 even(σ′) = 2σ + 2 · nats− ones odd(σ′) = σ′ + σ + 2 · nats

Chapter 5. k-Automatic and k-regular sequences 101

We can now establish that σ is again 2-regular:

Proposition 5.14. Let τ0 and τ1 be 2-regular sequences over a semiring S,
and let a0, a1, a2, and a3 be elements of S. Then there is a unique sequence σ
satisfying

σ(0) = a0 even(σ′) = a1σ + τ0 odd(σ′) = a2σ + a3σ
′ + τ1

which is again 2-regular.

Proof. If τ0 and τ1 are 2-regular, there are finite weighted automata (X0, o0, δ0)
and (X1, o1, δ1) with elements x0 ∈ X0, x1 ∈ X1 such that Jx0K2 = τ0 and
Jx1K2 = τ1.

Observe that, if σ satisfies the above equation, we can directly derive:

σ′(0) = a1a0 + o(τ0) even(σ′′) = a2σ + a3σ
′ + τ1 odd(σ′′) = a1σ

′ + τ ′0

We thus specify a system (X0 ∪ X1 ∪ {y, z}, o, δ) satisfying the behavioral
differential equations for X0 and X1 as before, and additionally:

o(y) = a0 y′ = zip(a1y + o(x0), a2y + a3z + x1)
o(z) = a1a0 + o(x0) z′ = zip(a2y + a3z + x1, a1z + x′0)

By Lemma 5.7, this system has a unique solution, in which JyK2 satisfies
the equations for σ and JzK2 = JyK′2. Because, given systems for τ0 and τ1,
any solution to the original equation for σ has to satisfy all equations in the
composite system, the solution for σ also is unique.

5.4 Theorems by Fliess and Christol

We now turn to the connection between the notion of constructive algebraicity,
introduced in Chapter 3, and the classical notion of an algebraic power series
(over a single variable, hence, a stream) over any field F , generalizing the notion
of an algebraic function.

The main result of this section states that if a stream σ ∈ (Fq)N is q-
automatic, then it is constructively Fq-algebraic. This is a known result, ob-
tained in a new way, and can be related both to Christol’s well-known theorem,
stating that any σ ∈ (Fq)N is q-automatic if and only if it is Fq-algebraic, and
to a lesser-known result due to Fliess, stating that any σ ∈ FN (for any perfect
field F) is Fq-algebraic if and only if it is constructively Fq-algebraic.

102 Chapter 5. k-Automatic and k-regular sequences

First, we recall some basic facts about fields (which can be found in [LB99]
or other textbooks on algebra). If there are elements n ∈ N with n 6= 0 such
that h(n) = 0F , we say F has characteristic p if p is the smallest number with
this condition; if there are no such elements, we say that F has characteristic
0. Whenever F has characteristic p 6= 0, p is necessarily a prime number.

For each prime number p and each natural number k ≥ 1, there is exactly
one finite field of size pk, denoted by Fpk ; the characteristic of such a field is
equal to p.

A field F is called perfect when F has either characteristic 0, or when F has
characteristic p and, for every f ∈ F , there is a g ∈ F such that f = gp. (Here
we inductively define g0 = 1 and gn+1 = g · gn.) The fields Q, R, C, and all
finite fields are perfect: an example of a field that is not perfect is the field of
Laurent series over a finite field.

We call a stream σ ∈ FN algebraic over F , or F -algebraic, if and only if
there exist polynomial F -streams p1, . . . , pn, with at least one pi not equal to
zero, such that: ∑

i≤n

piσ
i = 0

This is precisely the classical definition (see e.g. [BR11, Section 4.4]) adapted
to the terminology of streams.

The following result, which first appeared as [Fli74, Proposition 7], estab-
lishes that streams are constructively F -algebraic if and only if they are F -
algebraic. (In [Fli74], the notion of constructive algebraicity is defined in terms
of strong solutions to proper systems of equations.)

Proposition 5.15. Let F be a perfect field. Then a stream σ ∈ FN is F -
algebraic if and only if it is constructively F -algebraic.

The proof relies on first using a generalisation by Christol (see [Chr70]) of
Furstenberg’s theorem (see [Fur67]), to transform algebraic streams into diago-
nals of rational power series in two commuting variables, which in turn can be
transformed into a systems of equations using a construction given in [Fli74].
Combining these results with the results from Section 3.3.2, it directly follows
that streams over perfect fields are F -algebraic if and only if they occur as the
solution to some polynomial system of behavioural differential equations.

The following lemma is a translation into stream calculus notation of the
generating function equation

Aq(X) = A(Xq)

Chapter 5. k-Automatic and k-regular sequences 103

which is well-known to hold for finite fields (see e.g. [AS03a, Exercise 2.16]).

Lemma 5.16. Given a prime power q and any σ ∈ (Fq)N, we have

σq = zipq(σ, 0, . . . , 0).

The following proposition corresponds to one of the directions of Christol’s
theorem, with the exception that we prove σ to be constructively Fq-algebraic,
rather than traditionally Fq-algebraic:

Proposition 5.17. For any prime power q and any σ ∈ (Fq)N, if σ is q-
automatic, then σ is constructively Fq-algebraic.

Proof. If σ is q-automatic, then there is a finite set Σ, such that for any τ ∈ Σ
there are σ1, . . . , σq ∈ Σ such that

τ ′ = zipq(σ1, . . . , σq).

With Lemma 4.5 we now obtain

τ ′ =

q∑
i=1

Xi−1zipq(σi, 0, . . . , 0)

and Lemma 5.16 now gives

τ ′ =

q∑
i=1

Xi−1(σi)
q.

Now it directly follows that for every τ ∈ Σ, τ ′ is rational over Σ. From
Proposition 3.16 it now follows that σ is constructively Fq-algebraic.

Furthermore, if we combine this result with the (classical) other direction
of Christol’s theorem, i.e. the result that if a stream is Fq-algebraic, it is q-
automatic, we obtain the result from [Fli74]—for finite fields only—that, if a
stream is Fq-algebraic, it is constructively Fq-algebraic. Instead of going via
diagonals of rational series, as is done in [Fli74], we now obtain the same result
taking a route via the q-automatic sequences.

Example 5.18. Returning to Example 5.5, the construction from Proposition
5.17 now yields the system of behavioural differential equations

o(x) = 0 x′ = x2 + Xw2

o(y) = 1 y′ = y2 + Xz2

o(z) = 1 z′ = z2 + Xw2

o(w) = 0 w′ = w2 + Xz2

104 Chapter 5. k-Automatic and k-regular sequences

with x witnessing that the Thue-Morse sequence is F2-algebraic.

Example 5.19. Likewise, the zip3-behavioural differential equations from Ex-
ample 5.6 can be transformed in the following behavioural differential equations,
showing that the Cantor sequence is constructively F3-algebraic

o(x) = 1 x′ = y3 + Xx3 + X2x̄3

o(y) = 0 y′ = y3 + Xy3 + X2ȳ3

o(x̄) = 0 x̄′ = x3 + Xx̄3 + X2ȳ3

o(ȳ) = 0 ȳ′ = y3 + Xȳ3 + X2ȳ3

6

Term algebras and µ-expressions

In this chapter, we will turn to two more ways of coalgebraically describing
the constructively algebraic power series, by means of term algebras and by
means of µ-expressions. The presentations again instantiate to the context-free
languages when B is considered as the underlying semiring, and the presentation
in this result essentially can be seen as relying on a syntactic translation of the
approach from Chapter 3.

Term algebras, which are treated in Section 6.1 provide a connection between
the polynomial systems presented in Chapter 3 and the world of universal al-
gebra. As we will see in the next chapter, term algebras also provide a closer
connection to the coalgebraic work on bialgebraic semantics and coalgebraic
bisimulation up to (see e.g. [Kli11] and [RBR13]).

In Section 6.2, we introduce µ-expressions, and construct S-automata cap-
turing these µ-expressions and their coalgebraic interpretation. The construc-
tions and proofs in this section are more streamlined versions of those presented
in [WBR13], which in turn were based on the work in [Mil10], [SBR10], and
[Sil10]. This work contrasts with more traditional work (e.g. [ÉL05]) on µ-
expressions in formal language theory, which studies least and greatest fixed
points in a setting of idempotent semirings and lattices. In contrast, our µ-
expressions can be seen as unique fixed point expressions over arbitrary semir-
ings, yielding unique solutions.

6.1 Algebraic power series via term algebras

In this section, we introduce term algebras for a signature containing constants
for elements of the underlying semiring, two binary operators ⊕ and ⊗, and
an operator . prefixing alphabet symbols to terms. For the remainder of this
section, we again fix a finite alphabet A.

Given a semiring S and a finite set X of nonterminals, we let the set TS(X)

105

106 Chapter 6. Term algebras and µ-expressions

of terms over X be defined by the following specification in Backus-Naur form:

TS(X) 3 t ::= s ∈ S | [x], x ∈ X | (a.t), a ∈ A | (t⊕ t) | (t⊗ t)

Examples of terms over {x, y} include 1, (a.[x]), and (((a.0) ⊗ [x]) ⊕ [y]). We
note that these terms are purely syntactic objects, and assume no precedence
rules: in order to disambiguate, we always will use parentheses.

Given a finite set X of nonterminals, a syntactic system of behavioural dif-
ferential equations is a coalgebra for the functor S × TS(X)A, i.e. a system

X
(o, δ)- S × TS(X)A

assinging to each nonterminal an output value, and a function from A to TS(X).
Following earlier conventions, we commonly again write xa for δ(x)(a), and call
it the a-derivative of x.

Example 6.1. As an example over the semiring B, consider the syntactic system
of behavioural differential equations over the alphabet {a, b} and the set of
variables {x, y} specified by:

o(x) = 1 xa = ([x]⊗ (b.0)) xb = 0

We will soon see that this example corresponds to the polynomial system of
behavioural differential equations from Example 3.2, and that x has the language
anbn as a solution.

Once again, we can extend any syntactic system of behavioural differential
equations (X, o, δ) to an S-automaton

(ô, δ̂) : TT (X)→ S × TT (X)A,

by inductively defining the value of the mappings ô and δ̂ on all terms t ∈ TT (X)
as follows:

t ô(t) ta
[x], x ∈ X o(x) xa
s ∈ S s 0

(b.u), b ∈ A 0 if b = a then u else 0
(u⊕ v) ô(u) + ô(u) (ua ⊕ va)
(u⊗ v) ô(u) ∧ ô(v) ((ua ⊗ v)⊕ (ô(u)⊗ va))

(6.1)

Chapter 6. Term algebras and µ-expressions 107

We can, again, combine the syntactic system (X, o, δ) and the S-automaton

(TS(X), ô, δ̂) in the following commuting diagram, together with the final map-

ping from (TS(X), ô, δ̂) to the final S-automaton:

X ⊂
[−] - TT (X)

J−K
- S〈〈A〉〉

S × TT (X)A

(o, δ)

?
..

1S × J−KA
-

(ô, δ̂)

�
S × S〈〈A〉〉

(O,∆)

?

We again call the composition J[−]K : X → P(A∗) of the final homomor-
phism J−K with the injection [−] from variables to their corresponding terms
the solution to the system (X, o, δ).

We will now give a simple transformation from syntactic systems of be-
havioural differential equations, that is, coalgebras for the functor S×TS(−)A,
into polynomial systems of behavioural differential equations, that is, coalgebras
for the functor S × S〈−〉A.

We first define a mapping f : TT (X) → S〈X〉 assigning terms to their
corresponding polynomials by induction on terms, as follows:

t ∈ TT (X) f(t)
[x], x ∈ X x
s ∈ S s

(a.u), a ∈ A af(u)
(u⊕ v) f(u) + f(v)
(u⊗ v) f(u)f(v)

(6.2)

Note that, because every polynomial can be constructed in a finite number
of steps, it directly follows that f is surjective.

Now, suppose we are given a syntactic system of behavioural differential
equations

X
(o, δ)- S × TS(X)A.

We can associate with this system a polynomial system of behavioural differen-
tial equations (X +A, p, γ) by specifying:

108 Chapter 6. Term algebras and µ-expressions

y ∈ Y p(y) γ(y, a)
x ∈ X o(x) f(δ(x, a))
b ∈ A 0 if b = a then 1 else 0

It is easy to check that f is a morphism of S-automata:

Proposition 6.2. The mapping f is a morphism between the S-automata
(TT (X), ô, δ̂) and (S〈X +A〉, p̂, γ̂) or, in other words, the diagram

TT (X)
f - S〈X +A〉

S × TT (X)

(ô, δ̂)

? 1S × fA- S × S〈X +A〉A

(p̂, γ̂)

?

commutes.

Proof. We need to check that for all t ∈ TT (X)

ô(t) = p̂(f(t)), (6.3)

and for all σ ∈ TT (X) and a ∈ A

f(ta) = γ̂(f(t), a) (6.4)

(for clarity writing the derivative γ̂ explicitly while using subscript notation for

δ̂). We do this by structural induction on terms.

• If t = [x] for some x ∈ X, observe

ô([x]) = o(x) = p(x) = p̂(x) = p̂(f([x]))

and
f([x]a) = f(xa) = γ(x, a) = γ̂(x, a) = γ̂(f([x]), a).

• If t = s for some s ∈ S, observe

ô(s) = s = p̂(s) = p̂(f(s))

and
f(sa) = f(0) = 0 = γ̂(s, a) = γ̂(f(s), a).

Chapter 6. Term algebras and µ-expressions 109

• If t = (b.u) for some b ∈ A and u ∈ TS(X), use the inductive hypothesis
that (6.3) and (6.4) for u and observe

ô(b.u) = 0 = p(b)p̂(f(u)) = p̂(bf(u)) = p̂(f(b.u)).

and

f((b.u)a) = f(if b = a then u else 0)

= if b = a then f(u) else 0)

= γ(b, a)f(u) + p(b)γ̂(f(u), a)

= γ̂(bf(u), a)

= γ̂(f(b.u), a).

• If t = (u ⊕ v) for some u and v, use the inductive hypothesis that (6.3)
and (6.4) hold for u and v. Observe

ô(u⊕ v) = ô(u) + ô(v) = p̂(f(u)) + p̂(f(v)) = p̂(f(u) + f(v)) = p̂(f(u⊕ v))

and

f((u⊕ v)a) = f(ua ⊕ va)

= f(ua) + f(va)

= γ̂(f(u), a) + γ̂(f(v), a)

= γ̂(f(u⊕ v), a).

• If t = (u ⊗ v) for some u and v, use the inductive hypothesis that (6.3)
and (6.4) hold for u and v. Observe

ô(u⊗ v) = ô(u)ô(v) = p̂(f(u))p̂(f(v)) = p̂(f(u)f(v)) = p̂(f(u⊗ v))

and

f((u⊗ v)a) = f(((ua ⊗ v)⊕ (ô(u)⊗ va)))

= f(ua)f(v) + f(ô(u))f(va)

= γ̂(f(u), a)f(v) + p̂(f(u))γ̂(v, a)

= γ̂(f(u)f(v), a)

= γ̂(f(u⊗ v), a).

110 Chapter 6. Term algebras and µ-expressions

Denoting the unique mapping from (TT (X), ô, δ̂) into the final automaton
with J−K and denoting the unique mapping from (S〈X +A〉, p̂, γ̂) with J−K1,
we get

J−K = J−K1 ◦ f
because of unicity and thus, because J−K1 is a semiring morphism, we also get

J(s⊕ t)K =JsK + JtK
J(s⊗ t)K =JsKJtK.

Thus, the syntactic operators ⊕ and ⊗ are interpreted as the semiring operations
+ and · of S〈X +A〉 and of S〈〈A〉〉.

The equality J−K = J−K1 ◦ f , together with the surjectivity of f , also gives
us the following result:

Proposition 6.3. A power series σ ∈ S〈〈A〉〉 is constructively S-algebraic if
and only if there is a finite syntactic system (X, o, δ) and a term t ∈ TT (X)

such that JtK = σ w.r.t. the extension (TT (X), ô, δ̂).

Proof. If there is such a system, then f(t) yields a polynomial in the associated
system, and by Jf(t)K1 = JtK = σ and Proposition 3.6, it now follows that σ is
constructively algebraic.

Conversely, if σ is constructively S-algebraic, there is a polynomial system
of behavioural differential equations (X, p−, γ−) and a polynomial q ∈ S〈X〉
such that JtK = σ. We can extend this system to another polynomial system
(X +A, p, γ) and because f is surjective, we can construct some corresponding
syntactic system (X, o, δ) that yields the system (X + A, p, γ) as its associated
polynomial system. Now take some t ∈ TS(X) with f(t) = q and it follows that
again JtK = σ.

We will finish this section with a simple and well-known result (which can
also be derived from the categorical framework that we will present in the next
chapter), namely that the bisimilarity relation on any automaton is a congru-
ence.

Lemma 6.4. The bisimilarity relation ∼ on any S-automaton (TS(X), ô, δ̂) is
a congruence, in other words, if s ∼ t and u ∼ v, then also (s ⊕ u) ∼ (t ⊕ v)
and (s⊗ u) ∼ (t⊗ v).

Proof. Recall that for any s, t, s ∼ t if and only if JsK ∼ JtK. Now observe

J(s⊕ u)K = JsK + JuK = JtK + JvK = J(t⊕ v)K

and thus (s⊕ u) ∼ (t⊕ v). The case of ⊗ goes in the same way.

Chapter 6. Term algebras and µ-expressions 111

6.2 Algebraic power series via µ-expressions

We define the set of terms t (henceforth to be called µ-expressions) and guarded
terms g over a semiring S, an alphabet A and an arbitrary infinite set Z of
variables as follows:

T−µ 3 t ::= s ∈ S |x ∈ Z | (a.t), a ∈ A | (t⊕ t) | (t⊗ t) |µx.g
T−γµ 3 g ::= s ∈ S | (a.t), a ∈ A | (g ⊕ g)

We now let Tµ denote the set of all closed µ-expressions, and T−µ the set of
all µ-expressions. Similarly, we let Tγµ denote the set of closed and guarded
µ-expressions, and T−γµ the set of all guarded µ-expressions.

Note that, as a result of the specification, every guarded µ-expression also
is a µ-expression (but not vice versa), and thus Tγµ ⊂ Tµ and also T−γµ ⊂ T−µ .

The notions of free and bound variables and of subexpression can now be
defined in the usual way. Given expressions t and u and a variable x, let

t[u/x]

the expression obtained by replacing all free occurrences of x in t with the
expression u.

Moreover, define a pruning operator pr : Tµ → T(Z) as follows:

pr(s) = s

pr(x) = x

pr(a.t) = (a.pr(t))

pr(t⊕ u) = (pr(t)⊕ pr(u))

pr(t⊗ u) = (pr(t)⊗ pr(u))

pr(µx.g) = x

Finally, given any µ-expression t, let vars(t) ∈ Z be the set of variables that
occur in pr(t).

We will, in order to avoid considerations related to α-renaming, restrict our-
selves to µ-expressions that have the followng property: we call a µ-expression
t nice whenever the following two conditions hold:

1. If t has subexpressions µx.u and µx.v for some variable x ∈ Z, then
pr(u) = pr(v).

112 Chapter 6. Term algebras and µ-expressions

2. If t has a subexpression µx.u, then u has no subexpressions of the form
µx.v.

For example, the expression

t := (µx.((a.µy.(b.x)))⊕ µy.((b.µx.(a.y)))) (6.5)

is nice (every subexpression bound by x has the pruning (a.y) and every subex-
pression bound by y has the pruning (b.x), but the expression

u := (µx.((a.µy.(b.x)))⊕ µy.((b.y)))

is not, as y is bound by expressions with prunings (b⊕ x) and (b⊕ y).

If t has no two subexpressions binding the same variable, it is clear that
these two conditions hold. We can therefore, using α renaming, transform any
µ-expression into an equivalent µ-expression that is nice.

If t is nice and closed, we can define a unique function

ξt : vars(t)→ Tγ(vars(t))

assigning to each variable in t the unique pruning of the µ-expressions bound
by it.

In the earlier example from 6.5, note that ξt can be specified as

ξt(x) = (a.y)

ξt(y) = (b.x)

Given any X ⊆ Z and any assignment ζ : X → Tγ(X), we can now gather
the set of all closed µ-expressions that yield an assignment which is a subset of
ξ, as follows:

Tζµ = {u |u is nice and ξu ⊆ ζ}

We next define the closure clζ with respect to some set of assignment ξ.
Let clζ(t) be the unique closed µ-expression that can be obtained by repeated
substitutions of the form [ζ(x)/x].

We have a bijection

T(dom(ζ))
clζ -�
pr

Tζµ

Chapter 6. Term algebras and µ-expressions 113

And now can assign an automaton (oζ , δζ) on Tζµ as follows:

t ∈ Tζµ oζ(t) ∈ S δζ(t, a) ∈ Tζµ
s ∈ S s 0

(b.u), b ∈ A 0 if b = a then u else 0
(u⊕ v) o(u) + o(v) (ua ⊕ va)
(u⊗ v) o(u)o(v) ((ua ⊗ v)⊕ (o(u)⊗ va))
µx.u o(u) cl(ua)

(6.6)

or, in other words, a S ×−A-coalgebra:

Tζµ
(oζ , δζ)- S × (Tζµ)A

6.2.1 An isomorphism between µ-expressions and term al-
gebras

For this section, assume an assignment ζ and let X ⊆ (Z) denote dom(ζ).

X ⊂
[−] - T(X)

clζ -�
pr

Tζµ

S × T(X)A
1S × (clζ)

A
-�

1S × prA
S × (Tζµ)A

(oζ , δζ)

?

We now can use this diagram to construct a syntactic system of behavioural
differential equations (o, δ) on X, by specifying

o = oζ ◦ clζ ◦ [−]

and

δ = prA ◦ δζ ◦ clζ ◦ [−].

As a direct consequence of this definition and the bijection between clζ and

114 Chapter 6. Term algebras and µ-expressions

pr, the diagram

X ⊂
[−] - T(X)

clζ - Tζµ

S × T(X)A

(o, δ)

?
1S × (clζ)

A
- S × (Tζµ)A

(oζ , δζ)

?

again commutes.

Note the following identities:

cl(s⊕ t) = (cl(s)⊕ cl(t))

cl(a.t) = (a.cl(t))

cl(s⊗ t) = (cl(s)⊕ cl(t))

Proposition 6.5. The function clζ is an isomorphism of S-automata between

(T(X), ô, δ̂) and (Tζµ, o
ζ , δζ), or in other words, the diagram

T(X)
clζ -�
pr

Tζµ

S × T(X)A

(ô, δ̂)

? 1S × (clζ)
A
-

�
1S × prA

S × (Tζµ)A

(oζ , δζ)

?

commutes. Hence, for any t ∈ Tζµ, JtK is constructively S-algebraic.

Proof. We know that clζ is a bijection, so it suffices to show that clζ is a mor-
phism of S-automata. This is done by structural induction on terms, in combi-
nation with reading off the specifications (6.1) and (6.6). Hence JtK = Jpr(t)K
for all t ∈ Tζµ, and by Proposition 6.3 it now follows that t is constructively
S-algebraic.

Chapter 6. Term algebras and µ-expressions 115

6.2.2 From terms to µ-expressions

For the converse direction, first need to define a syntactic analogue of the indexed
summation operator

∑
, denoted by

k⊕
i=1

ti

and defined as follows: If k = 1, then

1⊕
i=1

ti = t1

and if k > 1, then
k⊕
i=1

ti =

(
k−1⊕
i=1

ti ⊕ tk

)
.

Given a system (X, o, δ) on a finite set X ⊆ Z, now consider the assignment

ζ(x) =

(
o(x)⊕

k⊕
i=1

(ai.xa)

)
.

This assignment leads to another system (X, p, γ). Observe that o = p.
We now define the zero-closure zcl of a term t ∈ T(X) as the smallest set of

terms containing t, such that, whenever u ∈ zcl(x), then also (u ⊕ 0) ∈ zcl(x)
and (0⊕ u) ∈ zcl(x). We can describe zcl using Backus Naur notation as

zcl(t) 3 u ::= t | (u⊕ 0) | (0⊕ u)

or equivalently in set-theoretic notation:

zcl(t) :=
⋂
{U ⊆ T(X) | t ∈ U ∧ ∀u ∈ T(X)(u ∈ U → {(u⊕ 0), (0⊕ u)} ⊆ U)}

Lemma 6.6. The relation {(t, u) |u ∈ zcl(t)} is a bisimulation on any S-

automaton (T(X), ô, δ̂) obtained from a syntactic system of behavioural differ-
ential equations (X, o, δ).

Proof. It is easily seen (e.g. by induction) that for all u ∈ zcl(t), ô(u) = ô(t)
and that ua ∈ zcl(ta).

116 Chapter 6. Term algebras and µ-expressions

Proposition 6.7. The identity relation R := {(t, t) | t ∈ T(X)} is a bisimula-
tion up to bisimilarity between (X, o, δ) and (X, p, γ).

Proof. We again proceed by structural induction on terms. Because o = p and
thus ô = p̂, we only have to check the derivative cases.

• If t = [x] for some x ∈ X, it follows that γ(x, a) ∈ zcl(ta), so ta ∼ γ̂(x, a)
and thus we have

[x]a R [x]a ∼ γ̂([x], a).

• If t = s for some s ∈ S, it follows that

sa = 0 R 0 = γ̂(s, a).

• If t = (b.u) for some b ∈ A and u ∈ T(X), observe

(b.u)a R (b.u)a = γ̂((b.u), a).

• If t = (u ⊕ v) for terms u and v, use the inductive hypothesis that ua ∼
γ̂(u, a) and va ∼ γ̂(v, a). Because of Proposition 6.4, it now follows that

(ua ⊕ va) ∼ (γ̂(u, a)⊕ γ̂(v, a))

and thus

(u⊕ v)a = (ua ⊕ va) R (ua ⊕ va) ∼ (γ̂(u, a)⊕ γ̂(v, a)) = γ̂((u⊕ v), a).

• The case where t = (u⊗ v) is entirely analogous to the previous case.

Now, finally, we have established the identity between power series charac-
terizable by µ-expressions and the constructively S-algebraic series:

Theorem 6.8. A formal power series σ ∈ S〈〈A〉〉 is constructively S-algebraic
if and only if there is a nice and closed µ-expression t ∈ Tµ such that JtK = σ
with respect to the automaton (Tξtµ , o

ξt , δξt).

Proof. If σ is constructively S-algebraic, there is a by Proposition 6.3 there
is a syntactic system of behavioural differential equations (X, o, δ) and a term
t ∈ T(X) such that JtK = σ. Using the main construction from this subsection,
we now obtain a new system (X, p, γ) and an assignment ζ such that Jclζ(t)K = σ
w.r.t. (Tξtµ , o

ξt , δξt).
The converse case is a part of the statement of Proposition 6.5.

7

Distributive laws and bialgebras

We will, in this chapter, explore the connections between the concrete coalge-
braic presentations of the rational and constructively algebraic power series from
Chapters 2 and 3, and the more abstract, categorical, framework of distributive
laws and bialgebras.

In Section 7.1, we first give the relevant definitions of bialgebras and dis-
tributive laws, followed by stating the relevant results from this framework.
Comprehensive introductions to the framework, providing a more general con-
text, can be found in e.g. [Bar04], [Jac06], and [Kli11]. We also describe the
generalized powerset construction from [SBBR10] and [SBBR13] as a generalized
method of obtaining diagrams similar to (2.3) and (3.1.2) as well as lemmata
similar to Lemma 2.15 and Lemma 3.5. The section is concluded with a brief
survey of the case where T is an arbitrary monad and F is the functor for
S-automata for some set S, and propose generalizations of the concepts of ra-
tionality, constructive algebraicity, and k-regularity, allowing us to talk about
λ-algebraic elements of S〈〈A〉〉, and λ, k-algebraic streams in SN.

Several examples, as well as a striking counterexample, to this general frame-
work, are presented in Section 7.2. On one hand, it turns out that, whereas
weighted and nondeterministic automata can, without the occurrence of any
problems, be seen as an instance of this framework (as first observed in [Bar04]),
the same does not hold—at least not directly—for the polynomial systems from
Chapter 3. More specifically, this case fails to be a direct instance of a distribu-
tive law, as a result the absence of a suitable algebra structure on S × S〈X〉A.
One way in which the context-free languages (with possible generalization to
constructively algebraic power series) can be reconciled with the framework of
distributive laws, is by considering a co-pointed functor: this approach has been
considered in [BHKR13].

Finally, in Section 7.3, we propose Brzozowski bialgebras as another method
of dealing with the encountered problems and counterexamples, alternative to
the options of altering the product rule and using co-pointed functors. We
end with the observation that, albeit with a different proof than the purely

117

118 Chapter 7. Distributive laws and bialgebras

abstract proof for λ-bialgebras, the crucial lemma still holds at the same level
of generality. Furthermore, it turns out that categories of Brzozowski bialgebras
share many similarities with categories of λ-bialgebras.

7.1 Distributive laws and λ-bialgebras

We will briefly summarize the main relevant constructions from [Bar04], [Jac06],
[Kli11], and [SBBR10].

Given a monad (T, µ, η) and an endofunctor F on any category C, a dis-
tributive law of the monad T over F is a natural transformation

λ : TF ⇒ FT

such that the two diagrams of natural transformations

F ======
ηF
⇒ TF

FT

λ�
wwwwwwwwwFη

============⇒
and

TTF =================
µF

⇒ TF

TFT

Tλ�
wwwwwwwww

====
λT
⇒ FTT ====

Fµ
⇒ FTT

λ�
wwwwwwwww

commute.
Furthermore, given a distributive law λ : TF ⇒ FT , λ-bialgebra (X,α, γ)

consists of a coalgebra (X, γ) for the functor F , an algebra (X,α) for the monad
T , such that the diagram

TX
α - X

γ - FX

TFX

Tγ

? λX - FTX

Fα

6

commutes.
We turn our attention to a number of elementary results about distributive

laws, found e.g. in Lemmata 3.2.5 and 3.4.21 of [Bar04]:

Proposition 7.1. Let λ : TF ⇒ FT be a distributive law. We have the follow-
ing:

Chapter 7. Distributive laws and bialgebras 119

1. Given any algebra (X,α) for the monad T , the T -algebra (FX,Fα ◦ λX)
is again an algebra for the monad T .

2. Given any λ-bialgebra (X,α, γ), γ is an algebra morphism between (X,α)
and (FX,Fα ◦ λX).

3. Given algebras (X,α) and (Y, β) for the monad T and any algebra mor-
phism f : (X,α)→ (Y, β), Ff : (FX,Fα ◦ λX)→ (FY, Fβ ◦ λY) is again
an algebra morphism.

Proof. 1. follows from the fact that the diagrams

FX
idFX- FX

TFX

ηFX

? λX- FTX

Fα

6
FηX

-

and

TTFX
µFX - TFX

TFTX

TλX

? λTX- FTTX
FµX- FTX

λX

?

TFX

TFα

? λX- FTX

FTα

? Fα- FX

Fα

?

commute.

2. is a direct consequence of the defining diagram of λ-bialgebras, and

3. follows from the following commuting diagram:

TFX
λX- FTX

Fα- TX

TFY

TFf

? λY- FTY

FTf

? Fβ- TY

Tf

?

120 Chapter 7. Distributive laws and bialgebras

Instantiating the free algebra (TX, µX) in this result, we thus get, for any

FT -coalgebra δ, a unique T -algebra mapping δ̂ extending δ as follows:

X ⊂
ηX- TX

FTX

δ

?

δ̂

�..
....

....
....

....
....

....
....

.

This leads us to the following categorical generalization of Lemma 2.15,
which is essentially a reformulation of [Jac06, Lemma 2]:

Lemma 7.2. Given a distributive law λ of a monad (T, µ, η) over an endofunc-
tor F , a λ-bialgebra (Q,α, γ) and any FT -coalgebra (X, δ), if f : X → Q makes
the diagram

X
f - Q

FTX

δ

? F f̂ - FQ

γ

?

commute, then the unique T -algebra morphism f̂ : TX → Q extending f makes
the diagram

X ⊂
ηX - TX

f̂ - Q

FTX

δ

? F f̂ -

δ̂

�
FQ

γ

?

commute.

Proof. Identical to the proof of Lemma 2.15 after making the following substi-

Chapter 7. Distributive laws and bialgebras 121

tutions:
(ô, δ̂) ⇒ δ̂
(p, γ) ⇒ γ

1S × fA ⇒ Ff
LinS(X) ⇒ TX

S-linear mapping ⇒ F -algebra morphism
S-linear automaton ⇒ λ-bialgebra

When F has a final coalgebra (Ω, ω), as an instance of this diagram we thus
obtain, as shown in [SBBR10] and [SBBR13], the following diagram for any
FT -coalgebra (X, δ)

X ⊂
ηX- TX

J−K
- Ω

FTX

δ

?
..

F J−K
-

δ̂

�
FΩ

ω

?

yielding a notion of final coalgebra semantics for λ-bialgebras via what is called
the generalized powerset construction.

7.1.1 Distributive laws over automata

Let us now restrict ourselves to the case where F is of the form S×−A, i.e. where
the F -coalgebras are S-automata, while letting T be an arbitrary monad on Set.
We will call such a distributive law a distributive law of the monad T over S-
automata.

We call a σ ∈ S〈〈A〉〉 T -describable in some finite set Σ ⊆ S〈〈A〉〉 whenever
there is some t ∈ T (Σ) such that α◦Tι = σ (letting ι again denote the inclusion
of Σ into S〈〈A〉〉, and letting α be the algebra structure of the final λ-bialgebra
on S〈〈A〉〉).

If we additionally say that any σ ∈ S〈〈A〉〉 is λ-algebraic if and only if there
is a finite S×T (−)A-coalgebra (X, o, δ) and some x ∈ X such that JηX(x)K = σ,
we again obtain the following result thanks to Lemma 7.2:

Proposition 7.3. Given a distributive law λ of a monad T over S-automata, an
S-language partition σ ∈ S〈〈A〉〉 is λ-algebraic if and only if there is a finite set

122 Chapter 7. Distributive laws and bialgebras

Σ ⊆ S〈〈A〉〉 with σ ∈ Σ, such that for each τ ∈ Σ and a ∈ A, τa is T -describable
in Σ.

Proof. Like Proposition 2.16 and Proposition 3.6.

Using the isomorphism between S〈〈Ak〉〉 and SN described in Chapter 5, we
can furthermore generalize the notions of k-automaticity and k-regularity as
follows: we call a σ ∈ SN λ, k-algebraic whenever νk ◦ σ ∈ S〈〈A〉〉 is λ-algebraic.
This definition again directly leads to a result corresponding to Corollary 5.9.

Furthermore, we have the following elementary but general proposition about
the S-simple language partitions and k-automatic sequences:

Proposition 7.4. Let λ be a distributive law of a monad T over S-automata.
If σ ∈ S〈〈A〉〉 is S-simple, then σ is λ-algebraic. Likewise, if σ ∈ SN is k-
automatic, then σ is λ, k-algebraic.

Proof. If σ is S-simple, then there is a finite automaton (X, δ−) and some x ∈ X
with JxK = σ. Instantiate the antecedent diagram from Lemma 7.2 with δ =
Tδ− ◦ ηX for δ, J−K for f , the final S-automaton for (Q, γ), and F = S × −A.
It now directly follows from Lemma 7.2 that σ is S, λ-algebraic. The case for k-
automatic sequences goes analogously via the isomorphism from Chapter 5.

7.2 Examples of distributive laws

7.2.1 Weighted automata

We now turn to the observation that the functor LinS(−) is in fact a monad.
Recalling that every element t ∈ LinS(X) can be written as

n∑
i=1

sixi

in some way using the S-module structure of LinS(X), µX can be defined as

µX

 n∑
i=1

si

mi∑
j=1

tijxij

 =

 n∑
i=1

mi∑
j=1

sitijxij


together with ηX mapping any x to the linear combination [x], and checking that
this indeed is a monad is easy. For example, checking that the multiplication law

Chapter 7. Distributive laws and bialgebras 123

for monads holds amounts to showing that, in the below expression, removing
the outer brackets first and then the inner brackets yields the same result as
removing the inner brackets first and then the outer brackets:

n∑
i=1

si

mi∑
j=1

tij

 lij∑
k=1

uijkxijk


Furthermore, the category of LinS(−)-algebras is the same as the category of
S-modules.

The distributive law

λ : LinS(−)(S ×−A)⇒ (S ×−A)LinS(−)

can be given componentwise by

λX

(
n∑
i=1

si(oi, di)

)
=

(
n∑
i=1

sioi, a 7→
n∑
i=1

sidi(a)

)
.

We verify that this natural transformation indeed is a distributive law equa-
tionally:

(1S × (λX)A) ◦ ηl
S×XA(o, d)

= (1S × (λX)A)[(o, d)]

= (o, a 7→ ηX(d(a)))

= (1S × (ηX)A)(o, d)

λX ◦ µl
S×XA

 n∑
i=1

si

mi∑
j=1

tij(oij , dij)


= λX

 n∑
i=1

mi∑
j=1

sitij(oij , dij)


=

 n∑
i=1

mi∑
j=1

sitijoij , a 7→
n∑
i=1

mi∑
j=1

sitijdij(a)


= (S × (µl

X)A)

 n∑
i=1

si

mi∑
j=1

tijoij

 , a 7→ n∑
i=1

si

mi∑
j=1

tijdij(a))



124 Chapter 7. Distributive laws and bialgebras

= (S × (µl
X)A) ◦ λLinS(X)

 n∑
i=1

si

mi∑
j=1

tijoij , a 7→
mi∑
j=1

tijdij(a))


= (S × (µl

X)A) ◦ λLinS(X) ◦ LinS(λX)

 n∑
i=1

si

mi∑
j=1

tij(oij , dij)


It is now easily verified that the λ-bialgebras become precisely the S-linear

automata, whereas the FT -coalgebras instantiate as S-weighted automata. As
a consequence, Lemma 2.15 is indeed an instance of Lemma 7.2, as S-linear
automata are λ-bialgebras for the above distributive law.

7.2.2 Polynomial systems

Having the knowledge that weighted automata are indeed an instance of the
framework of bialgebras, it seems natural to expect that the same fact holds
for the presentation of Chapter 3 of context-free languages and constructively
algebraic power series.

If S is commutative, we can indeed assign the structure of a monad to the
functor S〈−〉. Like in the case of linear combinations, the multiplication of
the monad can be given by (intuitively) removing brackets from polynomials
of polynomials, applying the distribution of multiplication over addition, and
bringing the coefficients in the underlying semiring to the front, resulting in
new polynomials. Note that, in order to be able to (meaningfully) bring the
coefficients to the front, it is again required that S is commutative.

However, we are faced with additional hurdles, directly resulting from the
fact that the derivatives δ(−, a) to alphabet symbols are in fact not semiring
morphisms.

Indeed, we can see the presentation in Chapter 3, again, in terms of the
monad S〈−〉 providing the algebraic structure, and the functor S×−A providing
the coalgebraic structure.

Counterexample 7.5. Consider the following system:

∅ ⊂
ηp
X - S〈∅〉

f] - S〈〈A〉〉

S × S〈∅〉A

(o, δ)

?
1S × (f])A -

(ô, δ̂)

�
S × S〈〈A〉〉A

(O,∆)

?

Chapter 7. Distributive laws and bialgebras 125

We have S〈∅〉 = S, and thus observe that S × SA contains the pair (1, b 7→
if b = a then 1 else 0) which is, via the composition

(O,∆)−1 ◦ (1S × (f])A),

mapped onto the power series a, but, at the same time, there are no elements of
S×SA that are mapped onto aa. Hence, S×SA lacks the S〈−〉-algebra structure
that would be present, had this extension been obtained by a distributive law
λ : S〈S ×−A〉 ⇒ S × S〈−〉A.

From this counterexample, it directly follows that Lemma 3.5 is, unlike
Lemma 2.15, not an instance of Lemma 7.2. There are, however, still possi-
bilities to regard the constructively algebraic power series as resulting from a
distributive law, which we will consider in the next section.

7.2.3 Syntactic systems

We will now give a short summary of the situation where T is a term algebra
over some signature. The case of context-free languages has, in a more refined
setting using co-pointed functors, been explored in [BHKR13]. We assume S
to be a signature functor, reflecting the algebraic operations and their arity.
Rather than going into formal definitions here, let us illustrate this with the
signature functor

S(X) = S +A×X +X2 +X2

corresponding to the signature employed in Section 6.1, consisting of elements of
the semiring S (which can be regarded as nullary operations), pairs of elements
from A and X (which can be regarded as a A-indexed family of unary operations,
representing the . operator), and two binary operations corresponding to ⊕ and
⊗.

Each signature functor S uniquely extends to a term algebra TS, which has
the structure of a monad. This monad (TS, η, µ) is also called the free monad
generated by the functor S.

As a consequence of the next, crucial, result, any natural transformation
from SF to FTS can be extended to a distributive law of the monad TS over
F :

Proposition 7.6. If S is any signature functor, there is a bijective correspon-
dence between natural transformations

λ− : SF ⇒ FTS

126 Chapter 7. Distributive laws and bialgebras

and distributive laws
λ : TSF ⇒ FTS

of the monad T over F .

Proof. Found in [Bar04, Lemma 3.4.24].

As an example, the natural transformation λ−X = (oX , δX) can be specified
by the equations

t ∈ S(S ×−A) oX(t) ta
s ∈ S s 0

(b.(ou, du)), b ∈ A 0 if b = a then int(ou, du) else 0
((ou, du)⊕ (ov, dv)) ou + ov (du(a)⊕ dv(a))
((ou, du)⊗ (ov, dv)) ouov ((du(a)⊗ int(ou, du))⊕ (ou ⊗ dv(a)))

where int is defined on output derivative pairs as follows:

int(o, d) :=

(
o⊕

(⊕
a∈A

(a.d(a)

))
.

This function can be seen as ‘integrating’ output-derivative pairs to corre-
sponding terms: in the current setting, this is necessary because, as a result
of the type of the natural transformation, we cannot use the variables in the
specification. We remark, however, that this issue can be solved by resorting
to co-pointed functors: for the specific case of context-free languages, this was
done in [BHKR13].

Except for the presence of the int operator in the specification, the above
specification is essentially the same as the specification in Section 6.1. In fact,
because for all σ ∈ S〈〈A〉〉 the equality

σ =

(
O(σ)⊕

⊕
a∈A

(a.σa)

)
.

holds true, it directly follows that the final λ-bialgebra will be identical in its
algebraic structure to the TS-structure given on S〈〈A〉〉 in Section 6.1, giving an
interpretation of the syntactic operators corresponding to the semiring structure
with the convolution product. From this it also follows that any σ ∈ S〈〈A〉〉 is
TS-describable in Σ if and only if it is polynomial in Σ, leading to the conclu-
sion that, with respect to this distributive law, the notions of λ-algebraic and
constructively S-algebraic coincide.

Chapter 7. Distributive laws and bialgebras 127

7.3 Brzozowski bialgebras

Given a commutative semiring S, an S-algebra is a tuple

(X, 0, 1,+, ·, ·s)

such that (X,+, 1,+, ·) is a semiring, and (X, 0,+, ·s) is a S-module. Moreover,
the semiring and S-module structure interact as follows:

(s ·s 1) · t = s ·s t = t · (s ·s 1).

S-algebras again form a category, with the morphisms given by mappings
that are both semimodule and semiring morphisms. Given any S-algebra M ,
any set X, and a function f : X → M , there moreover is always a unique
S-algebra f] : S〈X〉 →M making the diagram

X ⊂
ηp
X- S〈X〉

M

f

?

f]

�..
....

....
....

....
....

....
...

(7.1)

commute. In fact, the category of S-algebras and their morphisms is equivalent
to the Eilenberg-Moore category of S〈−〉-algebras, described in Section 7.2.2.

Given a commutative semiring S, we define a Brzozowski S-bialgebra as a
tuple

(X, 0, 1,+, ·, ·s, o, δ)

such that (X, 0, 1,+, ·, ·s) is an S-algebra, (X, o, δ) is an S-linear automaton, o
is a semiring morphism, and moreover the product rule

1a = 0 and (st)a = sat+ o(s) ·s ta

is satisfied.

We can now state a more general version of Lemma 3.5, generalizing the
result from the final S-automaton to arbitrary Brzozowski bialgebras:

128 Chapter 7. Distributive laws and bialgebras

Lemma 7.7. Given any polynomial system (X, o, δ) with coefficients in S and
any Brzozowski S-bialgebra (Q, p, γ), if a function f : X → Q makes the diagram

X
f - Q

S × S〈X〉A

(o, δ)

?
1S × (f])A - S ×QA

(p, γ)

?

commute, then the unique S-algebra morphism f] : S〈X〉 → S〈〈A〉〉 extending f
makes the diagram

X ⊂
ηp
X - S〈X〉

f] - Q

S × S〈X〉A

(o, δ)

?
1S × (f])A -

(ô, δ̂)

�
S ×QA

(p, γ)

?

commute.

Proof. Identical to the proof of Lemma 3.5, with the exception of removal of
the last sentence of the proof and replacement of all instances of S〈〈A〉〉, O, and
∆ with Q, p, and γ.

Furthermore, given any Brzozowski S-bialgebra, the mapping J−K into the
final automaton is a semiring morphism:

Proposition 7.8. Given any Brzozowski S-bialgebra (Q, o, δ), J−K is a S-
algebra morphism.

Proof. We already know from Chapter 2 that J−K is an S-linear mapping, as
every Brzozowski S-bialgebra is an S-linear automaton. Now consider the rela-
tion

R = {(st, JsKJtK | s, t ∈ Q} ∪ {(1, 1)}

The requirement on output values follows from o(1) = O(1) and

o(st) = o(s)o(t) = O(JsK)O(JtK) = O(JsKJtK)

Chapter 7. Distributive laws and bialgebras 129

For the requirement on derivatives, in case of the pair (1, 1), we get 1a =
0 ΣR 0 = 1a, and if (st, JsKJtK) ∈ R, we get:

(st)a = sat+ o(s)ta

ΣR JsaKJtK + Jo(s)KJtaK
= JsKaJtK + o(JsK)JtaK
= (JsKJtK)a

Now it follows that J1K = 1 and JstK = JsKJtK, establishing that J−K is a
semiring morphism.

Hence, it follows that the final automaton, together with its S-algebra struc-
ture, is a final Brzozowski bialgebra. Dually, the Brzozowski S-bialgebra on S
with o(s) = s and sa = 0 for all s ∈ S is an initial object in the category of
Brzozowski S-bialgebras, adding a unique S-automaton structure to the initial
S-algebra (i.e.: S).

It now follows that the categories of Brzozowski bialgebras are, in a number
of ways, very similar to categories of λ-bialgebras:

• The objects are both coalgebras for a functor and algebras for a monad,
satisfying interaction rules specified by a product rule or distributive law.

• There is an initial as well as a final S-Brzozowski bialgebra for any com-
mutative semiring S.

• The statement of Lemma 7.7 corresponds to the statement of Lemma 7.2
(although its proof, relying on induction, differs).

However, unlike in the case of λ-bialgebras, Brzozowski S-bialgebras do not
lead to an S-algebra structure on S × S〈X〉A (the representant of FTX), as
shown in Counterexample 7.5.

As a final remark concluding this chapter, we observe that if we replace
Brzozowski’s product rule in the definition of a Brzozowski bialgebra with the
Leibniz product rule (presented here in the case of a single variable)

(st)′ = s′t+ st′

the resulting definition is equivalent to the usual definition of a differential S-
algebra (see for example [AMT09]1), combined with a semiring morphism o into

1or http://en.wikipedia.org/wiki/Differential_algebra

130 Chapter 7. Distributive laws and bialgebras

S (again regarded as output). If we define the category of differential S-algebras
together with output functions o analogously, there again is a final object

(S〈〈A〉〉, 0, 1,+,×, ·s, O,∆)

where (S〈〈A〉〉, 0,+, ·s, O,∆) is the final S-linear automaton and where × denotes
the shuffle product, which can be given explicitly (for streams) by

(σ × τ)(n) =

n∑
k=0

(
n

k

)
σ(n− k)τ(k)

as is shown in [Rut03a]. In a way, we thus can regard Brzozowski bialgebras as
differential algebras (with output) for Brzozowski’s product rule.

Leaving further details as future work, we expect that it should, without
significant problems or obstacles, be possible to translate some of the main con-
structions and results from Chapter 3 and this chapter analogously for differ-
ential S-algebras with outputs. In particular, we conjecture that the analogous
statement of Lemma 7.7 again holds in this setting.

8

Stream calculus in Haskell

We now take a look at how the formats for behavioural differential equations
presented in Chapters 2, 3, and 5 can be implemented in the functional program-
ming language Haskell. Haskell provides an elegant and highly usable setting
for coinductive techniques in general, in particular including coinductive stream
calculi. The connection between coinduction, coinductive stream calculus in
Haskell, and formal power series as streams has been explored in for example
[McI99], [McI01], [DvE04], and [Hin11].

In this chapter, we will recall some of the constructions from this earlier work,
and show how the various classes of streams described in Chapters 2, 3, and 5
can be described in a way that is essentially ‘bialgebraic’—i.e. incorporating
both algebraic and coalgebraic structure.

This chapter does not provide an introduction to the programming language
Haskell. Nor will we say much, in explicit terms, about the type system of
Haskell (in fact, all type declarations are omitted in the code presented in this
chapter), only focussing on it when especially relevant. General introductions
to the Haskell programming languages can be found in e.g. [HF92], [DI06], or
[OGS08].

As alternatives to Haskell or Haskell-based tools for working with streams,
various other tools for reasoning with stream calculus exist. CIRC [LGCR09]
and Streambox [ZE11] are two such tools: both focus on automatic proving of
stream equality by means of bisimulation techniques.

8.1 Coinduction in Haskell

To start with an elementary example, consider the following Haskell specifica-
tion:

x = 1:2:3:x

This specification uses the cons operator : (corresponding to the operator ::
from Chapter 3) to specify a variable x type [Integer]. A variable of this type

131

132 Chapter 8. Stream calculus in Haskell

represents either a finite list or an infinite stream of the type Integer.
With this specification, it is directly possible to obtain initial segments of

the stream x as follows:

>>> take 10 x

[1,2,3,1,2,3,1,2,3,1]

This definition works because of Haskell’s lazy evaluation, corresponding to
the idea that expressions are, at any point in time, only evaluated in so far
as this is required. This, in combination with the guardedness of the equation
(here reflecting the fact that, on the right hand side, the variable x only reoccurs
behind the cons operator in its own definition), enables us to access as many
elements of the stream as we like, without any requirement to ‘compute’ the
entire stream.

Eventually periodic, or simple, streams (over any type whatsoever) can al-
ways be specified using specifications of this type.

QStream and OEIS integration The package QStream, which can be found
at

http://homepages.cwi.nl/~winter/qstream/

provides an easy interface for the stream calculus presented in this chapter. It
is comparable to, and inspired by e.g. McIlroy’s implementation1.

The functions o and d, standing for output and derivative are simply defined
as synonyms for head and tail:

o = head

d = tail

Furthermore, a function dd with two arguments is defined, giving the nth
derivative of a stream:

dd n s = iterate d s !! n

In addition to the general stream calculus implementations provided by McIl-
roy and Hinze, QStream also offers helper functions for integration with the
OEIS. The most elementary function, info, simply looks up a stream, based on
the first 15 (or any other arbitrary number) elements. For the periodic stream
defined above, this gives:

>>> info x

Simple periodic sequence: repeat 1,2,3. (A010882)

1http://www.cs.dartmouth.edu/~doug/powser.html

Chapter 8. Stream calculus in Haskell 133

8.2 Streams with algebraic structure

In order to be able to produce more interesting classes of streams than the
eventually periodic streams, we coinductively define a few basic operations on
streams. We are here concerned with streams where the underlying type is a Num

type, or a numerical type. Numerical types in Haskell can, essentially, be seen
as being (roughly) the analogue of rings, together with a signum and absolute
value function.

Following the example of [McI99], we let streams be a Num type, enabling
us to reap the fruits of type coercion, use the standard operators + and *, and
furthermore directly inherit functions such as sum, ^, etc.

We first define a scalar product operator *!, purely for pragmatic reasons,
and playing the same role as the scalar product of modules, as it computes
the scalar product much faster than the full convolution product defined by
Brzozowski’s product rule. We define this as an infix operator of precedence 7,
the same precedence as the multiplication operator *.

infixl 7 *!

(*!) k = map (k*)

We now extend any numerical type a to a numerical type on [a], as follows:

instance Num a => Num [a] where

fromInteger = i . fromInteger

negate = map negate

(+) = zipWith (+)

s * t = o s * o t : d s * t + o s *! d t

signum = error "undefined"

abs = error "undefined"

Here the signum and absolute value functions are left undefined, because it
is, on streams, generally impossible to give definitions for these two functions
satisfying the equation, required to hold for any Num type, relating the two. (We
thus take a pragmatic approach here.) If we had not defined the scalar product
*!, the product could be defined by

s * t = o s * o t : d s * t + i (o s) * d t

resulting in slower computation of the product.
Fractional types, involving multiplicative inverses, can be extended similarly,

by defining the recip operator:

134 Chapter 8. Stream calculus in Haskell

instance Fractional a => Fractional [a] where

fromRational = i . fromRational

recip s = recip (o s) : recip (o s) *! recip s * d s

This extension of the Num type directly allows us to represent rational and
algebraic streams in Haskell using elegant and clear notation. In addition to the
examples given below, Appendix C presents a selection of coinductive streams
for the various classes, together with the corresponding OEIS entries.

Rational streams The system from Example 2.17 can directly be translated
to the Haskell equation,

fibs = 0 : 1 : fibs + d fibs

coinductively specifying the Fibonacci numbers, and directly corresponding to
the system of behavioural differential equations:

o(x) = 0 o(y) = 1 x′ = y y′ = x+ y

As additional examples of rational streams, consider:

dups = 1 : 2 *! dups

hypercube = 1 : 2 *! (hypercube + dups)

Here dups consists of the powers of 2: (1,2,4,8,. . .), and the nth element of
hypercube, is equal to the number of edges in a n-dimensional hypercube.

It is also possible to define complete systems of streams at once. As an
example, the following stream systems yield, respectively, diagonal rows from
Pascal’s triangle, and the Stirling numbers of the 2nd kind:

pascal n = 1 : sum [pascal i | i <- [1..n]]

stirling2 n = 1 : sum [i *! stirling2 i | i <- [1..n]]

These Haskell specifications are in direct correspondence to the systems of
behavioural differential equations

o(pn) = 1 p′n =

n∑
i=1

pi (n ∈ N)

o(sn) = 1 s′n =

n∑
i=1

isi (n ∈ N)

Chapter 8. Stream calculus in Haskell 135

giving respectively

JpnK(k) =

(
n+ k

k

)
and JsnK(k) =

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn+k

which can furthermore easily be derived from the familiar recurrence relations
for these sequences.

QStream provides three additional helper functions for systems of streams:
rangeinfo, maketable and oeistable, which display information about a range
of streams in a system or which display tables containing an initial part of a
system of streams.

The use of these functions is best illustrated with the following examples
(maketable is identical to oeistable with the exception that it doesn’t look
up the streams at the OEIS):

>>> rangeinfo stirling2 [1..5]

1: The simplest sequence of positive numbers: the all 1’s

sequence. (A000012)

2: 2^n - 1. (Sometimes called Mersenne numbers, although that

name is usually reserved for A001348.) (A000225)

3: Stirling numbers of second kind S(n,3). (A000392)

4: Stirling numbers of the second kind, S(n,4). (A000453)

5: Stirling numbers of the second kind, S(n,5). (A000481)

>>> oeistable pascal 10 5

1: 1 1 1 1 1 1 1 1 1 1 (A000012)

2: 1 2 3 4 5 6 7 8 9 10 (A000027)

3: 1 3 6 10 15 21 28 36 45 55 (A000217)

4: 1 4 10 20 35 56 84 120 165 220 (A000292)

5: 1 5 15 35 70 126 210 330 495 715 (A000332)

Algebraic streams Similarly to rational streams, systems of behavioural dif-
ferential equations for algebraic streams again directly correspond to coinductive
definitions in Haskell, where the full product * can be used in the derivatives of
specifications. A well-known example of an algebraic stream is the specification

cats = 1 : cats^2

corresponding to the system of behavioural differential equations from Example
3.10 and again yielding Catalan numbers. (This coinductive definition of the
Catalan numbers originated from [DvE04].)

136 Chapter 8. Stream calculus in Haskell

Likewise, the large Schröder numbers from Example 3.21 can directly be
represented in Haskell using the equation

lschroeder = 1 : lschroeder + lschroeder^2

Sometimes, systems of behavioural differential equations, and the corre-
sponding specifications in Haskell, are much simpler in form than the sometimes
more familiar explicit formulas for these sequences. For example, the number
of m-ary search trees on n keys is equal to the nth element of the stream
searchtrees m, specified by:

searchtrees m = take (m-1) ones ++ searchtrees m^m

This equation can easily be derived from the generating function

A(X) =

m−2∑
j=0

Xj +Xm−1Am(X),

found in [FD97], where a (much lengthier) corresponding explicit formula is also
provided.

Transcendental streams Another example, this time of an infinite polyno-
mial system, can be constructed for the stream (for a fixed n) of which the kth
element is the number of terms in the λ-calculus of size k with n free De Bruijn
indices. This number can be given by the recurrence (as shown in [GL14], to
which we also refer for a discussion of what is meant exactly by the size of a
λ-term)

σn(0) = n

σn(k + 1) = σn+1(k) +

k∑
i=0

σk(i)σk(k − i)

from which the behavioural differential equation

o(σn) = n σ′n = σn+1 + σ2
n

and the Haskell specification

lambda n = n : lambda (n+1) + lambda n^2

Chapter 8. Stream calculus in Haskell 137

can be derived immediately. This is an infinite system, so we are not guaranteed
that it is algebraic. In fact, each of the streams σi is transcendental2, which
can be shown by establishing that each of these streams dominates the counting
function of any context-free grammar.

k-automatic and k-regular sequences In order to be able to represent
the classes of k-automatic and k-regular sequences coinductively in Haskell, we
need one additional ingredient—the zipk operations. In fact, a zip operation
of arbitrary arity can be specified in Haskell using the equation

xzip (s:t) = head s : xzip (t ++ [tail s])

allowing us to coinductively specify all of the examples from Chapter 5. The
streams from Examples 5.5, 5.6, 5.11 and 5.12 can now be coinductively repre-
sented using the following equations:

tm = 0 : xzip [ones - tm, d tm]

cantor = 1 : xzip [0, cantor, d cantor]

noergaard = 1 : xzip [-noergaard, noergaard + ones]

kimberling = 1 : xzip [kimberling, nats + ones]

Note that the specification for the Thue-Morse sequence here is a slight
modification of the specification given in Example 5.5: the second variable of
the system has been replaced by the equivalent ones - tm, allowing us to give
a specification in a single line.

Hadamard and shuffle products The Hadamard and shuffle products can,
again, be easily specified in Haskell, using analogues of the corresponding be-
havioural differential equations. Because the Hadamard product is pointwise, it
can be specified simply by:

hadamard = zipWith (*)

The shuffle product can be specified in a similar manner to the convolution
product, again in correspondence to the behavioural differential equation:

shuffle s t = o s * o t : shuffle (d s) t + shuffle s (d t)

2i.e. not algebraic

138 Chapter 8. Stream calculus in Haskell

Moessner’s construction We have now seen that Haskell easily allows for
coinductive specification of streams, and will now turn to an example of a coin-
ductive construction involving additional operators. For the case of k = 2,
Moessner theorem states that, starting from the natural numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .

the squares can be obtained by first removing each even element

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, . . .

and then taking partial sums:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . .

The more general version states that by first removing each kth element,
then taking partial sums, and then performing the corresponding construction
for k − 1, the kth powers are obtained. This result was originally proven in
[Moe51] and more recently a coinductive proof was given in [NR11] using bisim-
ulation techniques. A formalized proof of Moessner’s theorem, again based on
bisimulation techniques, has recently been given in Coq in [KPS14].

The partial sum and drop operators can be implemented in Haskell using
the lines

psum s = o s : repeat (o s) + psum (d s)

xdrop k s = take (k-1) s ++ dd k s

and Moessner’s construction itself can now be specified as follows (for arbitrary
k):

moessner k = foldr (.) id [psum . xdrop i | i<-[1..k]]

The statement of Moessner’s theorem now can be stated as

‘The stream moessner k ones is equal to the stream of all kth pow-
ers.’

Haskell is, without the appropriate extensions, unable to give us a formal
proof of this theorem, but at least it gives some empirical validation:

>>> take 10 (moessner 3 ones)

[1,8,27,64,125,216,343,512,729,1000]

Chapter 8. Stream calculus in Haskell 139

8.3 Point-free definitions for stream calculus

To conclude this chapter, we will give alternate specifications of the coinductive
operators using point-free style, that is, a style in which functions are specified
purely in terms of other functions and basic constructions and combinators,
without directly referencing the argument. The general motivation for using
such a style lies in the fact that point-free style is considered more abstract and
elegant, as well as providing a closer link to the language of category theory.

In order to be able to present a point-free specification of the stream calculus
in Haskell, we specify a function lift as follows:

lift f g h x = f (g x) (h x)

For example, lift (:), the lifting of the cons operator, specifies a function
taking first a function from some type s to another type t, and then a function
from s to [t], and returning again a function from s to [t].

This allows us to extend the Num type to any type of function that has a Num

type as its domain:

instance Num a => Num (b -> a) where

fromInteger = const . fromInteger

(+) = lift (+)

(*) = lift (*)

negate = (.) negate

abs = (.) abs

signum = (.) signum

This allows us to perform basic arithmetic operations on functions with a
Num type as codomain. For example, if we declare functions f x = 3*x and
g x = 4*x + 1, we can now evaluate, for example:

>>> (f*g + 2*g + 1) 2

73

With these liftings, it is possible to replace our coinductive definitions of (*)
and recip with an equivalent, point-free definition:

(*) = curry (lift (:) (o.fst * o.snd)

(d.fst * snd + i.o.fst * d.snd))

recip = lift (:) (recip.o) (-i.recip.o * d * recip)

140 Chapter 8. Stream calculus in Haskell

These definitions are again coinductive: in the case of *, note that the
first occurrence of * on the right hand side is the (assumed) multiplication
of the underlying Num type, and the second and third are guarded corecursive
occurrences of (the lifted versions) of the operator which is being defined on
streams of the underlying type.

9

Further directions

We now conclude with a number of ideas for future work, further building on
the results and approach from this dissertation.

In Chapter 2, our definition of the star operator can be regarded as being
based on the discrete topology. One possible direction for future work is to in-
vestigate the possibilities of generalization to other topologies and metric spaces,
in the setting of topological semirings. This may lead to further generalizations
of 2.22, with the possibility of applications in ε-elimination (i.e. elimination of
empty word-transitions). More generally, it may be worthwhile to try to fur-
ther refine those results in Chapters 3 and 5 that relate to Arden’s rule and
the Greibach normal form, in the setting of idempotent semirings, creating a
connection to the world of Kleene algebra (see e.g. [Koz90]).

It is known from e.g. [Wor09] that algebras over a semiring S can be regarded
as monoids in the (monoidal) category of S-modules. Likewise, it appears to
be that Brzozowski bialgebras can somehow be seen as monoids in the category
of S-linear automata (and similarly for differential algebras with output). This
raises the question about the possibilities to regard the category of S-linear
automata as a monoidal category. One possible direction for future work is in-
vestigation of possibilities to see the category of S-linear automata as a monoidal
category, and connect this to the various types of products that can be defined
coinductively.

The work in Chapter 3 can be seen as a presentation of the second level of
the Chomsky hierarchy, the context-free languages, giving (together with the
existing presentation of the regular languages) a coalgebraic picture of the first
two levels of the Chomsky hierarchy. It remains to be seen to which extension
it is possible to give similar characterizations of the remaining two levels, the
context-sensitive languages. With regards to the recursively enumerable lan-
guages, we note that it is impossible to obtain them, in any computional man-
ner whatsoever, as this family extends the computable languages, ruling out any
‘reasonable’ co- or bialgebraic treatment of this class. It may be worthwhile to
investigate if we can give some (one, or more) coalgebraic characterization of

141

142 Chapter 9. Further directions

the computable languages, and possibly connect this to coalgebraic models of
computation and/or coalgebraic semantics of programming languages. We note
that recently, some work towards a coalgebraic Chomsky hierarchy has been
presented in [GMS14].

A final possibility for future work, on a more applied level, is investigating
whether the results on (weighted) context-free grammars could lead to applica-
tions in the area of natural language parsing (see e.g. [JM00] for an introduction
to the field). For this purpose, we can rely on the Viterbi semiring defined by

([0, 1], ·,max, 0, 1),

which would give, when used as the underlying semiring for a polynomial system,
the probability of the most likely derivation. This application would entail a
combination of the theoretically oriented work from this dissertation with more
practical techniques: for efficiency reasons, we may for example consider pruning
techniques.

A

Algebra

We recall the essential definitions of the algebraic structures monoids and semir-
ings, as well as of modules over a semiring.

A.1 Monoids

A monoid (M, ·, 1) consists of a set M , together with a distinguished element
1 ∈M , and a binary multiplication operator · : M ×M →M , such that for all
m,n, o ∈M we have:

m · (n · o) = (m · n) · o
m · 1 = m

1 ·m = m

We call a monoid commutative if for all m,n ∈ M , mn = nm. (Following
usual conventions of omitting the multiplication symbol) Often commutative
monoids will be represented in additive notation, using the symbols 0 and +
rather than 1 and ·. Moreover, a monoid is called idempotent if, for all m,M ,
mm = m.

Given two monoids (M, ·M , 1M) and (N, ·N , 1N), a function f : M → N is a
monoid morphism whenever:

f(m ·M n) = f(m) ·N f(n)

f(1M) = 1N

Given any (finite or infinite) alphabet X, let X∗ denote the set of all words
over X, that is, lists of finite sequences of elements from X. We use the symbol
1 to denote the empty word—that is, the sole word of length zero, and given
words

v = x1 . . . xm and w = y1 . . . yn,

143

144 Appendix A. Algebra

let the product v · w be defined by the concatenation

vw = x1 . . . xmy1 . . . yn.

It is easy to see that the unit and associativity laws for monoids hold here,
turning the structure (X∗, ·, 1) into a monoid.

Now, given any X, let us define ηw
X : X → X∗ by mapping each symbol

x ∈ X to the singleton word x ∈ X∗. This gives rise to the following universal
mapping property:

Proposition A.1. Given a set X, a monoid (M, ·M , 1M), and a function f :
X →M , there is a unique monoid morphism f̄ : X∗ →M such that f̄ ◦ηw

X = f .

Proof. See e.g. [Awo10, Proposition 1.9]

In other words, X∗ is the free monoid on X.

A.2 Semirings

A semiring (S,+, ·, 0, 1) consists of a set S, such that (S, ·, 1) is a monoid, and
(S,+, 0) is a commutative monoid, moreover satisfying:

r · (s+ t) = r · s+ r · t
(r + s) · t = r · t+ s · s

0 · r = 0

r · 0 = 0

A semiring (S,+, ·, 0, 1) is commutative whenever the multiplicative monoid
(S, ·, 1) is commutative, and idempotent the additive monoid (S,+, 0) is idem-
potent.

Given semirings S and T , a function f : S → T is called a semiring mor-
phism whenever it is a monoid morphism with respect to both the additive and
multiplicative monoid underlying the semiring.

Two important instances of semirings are the semiring N = {0, 1, 2, 3, . . .}

(N,+, ·, 0, 1)

of natural numbers, which is commutative, and the Boolean semiring B = {0, 1}

(B,∨,∧, 0, 1).

Appendix A. Algebra 145

which is commutative as well as idempotent.
Semirings importantly include rings such as Z (which are semirings where

every element x has a unique inverse −x such that x + (−x) = 0), and fields
such as Q, R, and C (which are commutative rings where every nonzero element
x has a unique multiplicative inverse x−1 such that xx−1 = 1).

A.3 Modules

This section introduces modules over a semiring S, which can be regarded as
semiring-valued spaces in the same way as vector spaces can be regarded as
field-valued spaces for fields F .

Remark A.2. These are, in the context of semirings, usually called semimod-
ules. Following [BR11], we do not use the term semimodule, but simply module,
also because the definitions are equivalent when S is is a ring.

Given a semiring S, a left S-module (M,+, ·, 0) or a left module over S,
consists of a commutative monoid (M,+, 0) and an operation · : S →M →M ,
such that for all r, s ∈ S and m,n ∈M :

r · (m+ n) = r ·m+ r · n 1 ·m = m
(r + s) ·m = r ·m+ s ·m 0 ·m = 0

(rs) ·m = r · (s ·m) r · 0 = 0

Analogous to this definition, a right S-module (M,+, ·, 0) consists of a com-
mutative monoid (M,+, 0) and an operation · : M → S →M , such that for all
r, s ∈ S and m,n ∈M :

(m+ n) · r = m · r + n · r m · 1 = m
m · (r + s) = m · r +m · s m · 0 = 0
m · (rs) = (s ·m) · r 0 · r = 0

When S is a commutative semiring, the notions of left and right S-modules,
and of left and right-linear mappings are equivalent, and are simply called S-
modules.

Given two left S-modules (M,+M , 0M , ·M) and (N,+N , 0N , ·N), a function
f : M → N is called a left S-linear mapping whenever for all m,n ∈ M and
s ∈ S:

f(0M) = 0N

146 Appendix A. Algebra

f(m+M n) = f(m) +N f(n)

f(s ·M m) = s ·N f(m)

Again, the notion of a right S-linear mapping can be defined analogously,
and when S is commutative, the two notions coincide.

In the specific case of the Boolean semiring B, a B-module is the same thing
as a monoid that is both commutative and idempotent, which is also called a
bounded join-semilattice.

B

Category theory and universal coalgebra

This section, like the previous section on algebra, presents the basic definitions,
together with some relevant examples. Thorough introductions to category
theory can be found in e.g. [Awo10] and [Mac71]; a good and comprehensive
reference to universal coalgebra is [Rut00].

B.1 Categories and functors

A category C consists of:

1. A class C0 of objects and a class C1 of morphisms (or arrows);

2. Operators dom and cod assigning to each morphism f ∈ C1 a domain
dom(f) ∈ C0 and a codomain dom(f) ∈ C0 (we use the notation f :
X → Y to denote dom(f) = X ∧ cod(f) = Y);

3. A composition operator ◦ assigning to morphisms f : X → Y and g :
Y → Z a composition g ◦ f : X → Z, satisfying the condition that for all
f : X → Y , g : Y → Z, h : Z →W , we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

4. For each X ∈ C0, there a morphism 1X : X → X ∈ C1 satisfying

1 ◦ fY = f = f ◦ 1X

for all f : X → Y .

Some relevant categories are the category of sets and functions between them,
the category of monoids/semirings and monoid/semiring morphisms between
them, categories of S-modules and linear mappings between them.

147

148 Appendix B. Category theory and universal coalgebra

Given a category C, a diagram consists of a pictorial representation of objects
and morphisms in C, e.g.

X

Y

f

? g - Z

h

-

(B.1)

with the source and target of an arrow indicating the domain and codomain. A
diagram is said to commute if for any two objects X, Y , and paths of arrows

f1, . . . , fm and g1, . . . , gm

going from X to Y , we have

fm ◦ . . . ◦ f1 = gn ◦ . . . ◦ g1.

In the above example, the diagram commutes if and only if g ◦ f = h.
We call a morphism f : X → Y an isomorphism whenever there is a g : Y →

X such that f ◦ g = 1Y and g ◦ f = 1X , or equivalently, whenever the following
diagram commutes:

X
f -�
g

Y

We call an object X ∈ C0 initial whenever for every object Y ∈ C0, there
is a unique morphism from X to Y , and dually, an object X ∈ C0 is called final
whenever for every object Y ∈ C0, there is a unique morphism from Y to X.
For example, N is an initial semiring, and B is an initial idempotent semiring.
Initial objects are unique up to isomorphism.

Given categories C and D, a functor F : C → D consists of mappings
F : C0 → D0 and F : C1 → D1 (overloading the symbol F and often omitting
the parentheses surrounding the argument of F), such that, for all morphisms
f, g, h ∈ C1 and all X ∈ C0:

1. dom(Ff) = Fdom(f)

2. cod(Ff) = Fcod(f)

3. F (g ◦ h) = F (g) ◦ F (h) (whenever g ◦ h is defined)

Appendix B. Category theory and universal coalgebra 149

4. F (1X) = 1FX

A functor F : C→ C going from a category to itself is called an endofunctor.

Given a category C and an endofunctor F on C, a F -algebra (X,α) consists
of an object X ∈ C0, together with a C-morphism α : TX → X. We call a
C-morphism f : X → Y a T -algebra morphism from a F -algebra (X,α) to a
F -algebra (Y, β) whenever the diagram

FX
Ff- FY

X

α

? f - Y

β

?

commutes. It is now easy to see that F -algebras and their morphisms again
form a category.

Dually, given a category C and an endofunctor F on C, an F -coalgebra
(X, γ) consists of an object X ∈ C0 and a C-morphism γ : X → FX. A
C-morphism f : X → Y is called a F -coalgebra morphism from a F -coalgebra
(X, γ) to a F -coalgebra (Y, δ) whenever the diagram

X
f - Y

FX

γ

? Ff- FY

δ

?

commutes. Once again, F -coalgebras and their morphisms form a category.

The following proposition instantiates in Chapter 2 as ‘bijective S-automata
morphisms are isomorphisms of S-automata’:

Proposition B.1. If a C-morphism f is both an C-isomorphism and a F -
coalgebra morphism, then f is an isomorphism in the category of F -coalgebras.

Proof. See [Rut00, Proposition 2.3] (the proof works for arbitrary categories).

150 Appendix B. Category theory and universal coalgebra

B.2 Natural transformations and monads

Given categories C and D and functors F,G : C→ D, a natural transformation
θ : F ⇒ G is a C0-indexed family of morphisms θX : FX → GX, such that for
any morphism f : X → Y in C1, the diagram

FX
θX- GX

FY

Ff

? θY - GY

Gf

?

commutes.

Given a category C, a monad is a triple (T, η, µ), where T is an endofunctor
on C, η : 1C → T is a natural transformation, called the unit of the monad, and
µ : T 2 → T is a natural transformation, called the multiplication of the monad,
and moreover for all X ∈ C0, the two diagrams

T 3X
µTX- T 2X TX

TηX- T 2X

T 2X

TµX

?
µX- TX

µX

?
T 2X

ηTX

?
µX- TX

µX

?

1TX

-

commute.

It is common to show these diagrams as diagrams of natural transformations,
which we indicate with double arrows:

T 3 ======
µT
⇒ T 2 T =======

Tη
⇒ T 2

T 2

Tµ�
wwwwwwww

=======
µ
⇒ T

µ�
wwwwwwwww

T 2

ηT�
wwwwwwww

=======
µ
⇒ T

µ�
wwwwwwwww1

============⇒

Given a monad T over a category C, an (Eilenberg-Moore) algebra for the

Appendix B. Category theory and universal coalgebra 151

monad T is a T -algebra (X,α) such that the diagrams

X T 2X
µX- TX

TX

ηX

? α - X

1X

-

TX

Tα

? α - X

α

?

commute. Algebras for the monad T , and the T -algebra morphisms between
them again form a category, called the Eilenberg-Moore category of T .

When (X,α) is an algebra for the monad (T, η, µ) in a category C, Y is any
object in C, and f : Y → X a morphism in C, there is a unique T -algebra
morphism f̂ extending f from TX to Y , in other words, f̂ is the unique T -
algebra morphism making the diagram

Y ⊂
ηY - TY

X

f

?

f̂

�..
....

....
....

....
....

....
....

.

commute. Moreover, f̂ can be given by α ◦ Tf .

C

A suite of streams

You are standing at the end of a road before a small brick building.
Around you is a forest. A small stream flows out of the building and
down a gully.

– Colossal Cave Adventure1

This appendix shows a selection of coinductively defined streams, together
with the Haskell specification (from which behavioural differential equations can
directly be derived), and their entry in the OEIS.

Some of the specifications below have been derived from the generation func-
tion specifications given in [Plo92], where generating functions for 1031 integer
sequences are provided; others have been derived from specifications in terms of
a grammar, a (divide and conquer recurrence) or have been found by accident.
Many more examples of coinductively defined streams can be found in the file
Catalog.hs in the QStream package.

In the cases where systems of streams are considered, the notation n 7→
followed by an OEIS index indicates that the nth component of the system is
equal to the sequence with that index. The notation n ↑ indicates that the
equation does not actually evaluate to a stream, because the specification is not
guarded (in the case of n).

C.1 Rational streams

The constant stream of ones: A000012

ones = 1 : ones

The natural numbers: A000027

nats = 1 : ones + nats

1One of the first computer games

153

154 Appendix C. A suite of streams

Fibonacci numbers: A000045

fibonacci = 1 : 1 : fibonacci + d fibonacci

Lucas numbers: A000032

lucas = 2 : 1 : lucas + d lucas

Powers of 2: A000079

dups = 1 : 2 * dups

Lazy caterer’s sequence: A000124

caterer = 4 : caterer + nats + 2 * ones

Triangular numbers: A000217

triang = 1 : triang + d nats

Stream of squares: A000290

squares = 1 : squares + 2 * nats + ones

Stream of cubes: A000578

cubes = 1 : cubes + 3 * squares + 3 * nats + ones

Narayana’s cows sequence: A000930

narayana = 1 : 1 : 1 : dd 2 narayana + narayana

Jacobsthal sequence: A001045

jacobsthal = 0 : 1 : 2 * jacobsthal + d jacobsthal

Number of edges in a k-dimensional hypercube: A001787

hypercube = 1 : 2 * (hypercube + dups)

Number of walks of length n between non-adjacent nodes on the Petersen graph:
A091002

petersen = 1 : 3 * petersen + d petersen_

petersen_ = 1 : ones - 2 * petersen_

Appendix C. A suite of streams 155

Powers of n:
1 7→ ones, 2 7→ dups, 3 7→ A000244, 4 7→ A000302, 5 7→ A000351, . . .

powersof n = 1 : n * powersof n

Pascal’s triangle:
1 7→ ones, 2 7→ nats, 3 7→ triang, 4 7→ A000292, 5 7→ A000332, . . .

pascal n = 1 : sum [pascal i | i<-[1..n]]

pascal2 = (ones^) -- (alternate version)

Stirling numbers of the 2nd kind:
1 7→ ones, 2 7→ A000225, 3 7→ A000392, 4 7→ A000453, 5 7→ A000481, . . .

stirling2 n = 1 : sum [i * stirling2 i | i<-[1..n]]

Bernoulli’s triangle:
1 7→ ones, 2 7→ nats, 3 7→ caterer, 4 7→ A000125, 5 7→ A000127, . . .

bernoulli n = 2^(n-1) : sum [bernoulli i | i<-[1..n]]

nth Powers:
1 7→ nats, 2 7→ squares, 3 7→ cubes, 4 7→ A000583, 5 7→ A000584, . . .

nthpow n = 1 : sum [choose n i * nthpow i | i <-[0..n]]

C.2 Algebraic streams

Catalan numbers: A000108

catalan = 1 : catalan^2

Central binomial coefficients: A000984

binomial = 1 : 2 * catalan * binomial

Large Schröder numbers: A006318

lschroeder = 1 : lschroeder^2 + lschroeder

Small Schröder numbers: A001003

sschroeder = 1 : sschroeder * lschroeder

156 Appendix C. A suite of streams

Central Delannoy numbers: A001850

delannoy = 1 : 2 * lschroeder * delannoy + delannoy

Motzkin numbers: A001006

motzkin = 1 : 1 : motzkin^2 + d motzkin

Riordan numbers: A005043

riordan = 1 : 0 : riordan * motzkin

Number of ternary search trees on k keys: A019497

ternary = 1 : 1 : ternary^3

Pfaff-Fuss sequences:
1 7→ ones, 2 7→ catalan, 3 7→ A001764, 4 7→ A002293, 5 7→ A002294, . . .

pfafffuss n = 1 : pfafffuss n^n

Number of n-ary search trees on k keys:
1 ↑, 2 7→ catalan, 3 7→ ternary, 4 7→ A019498, 5 7→ A19499, . . .

searchtrees n = take (n-1) ones ++ searchtrees n^n

C.3 k-Automatic and k-regular streams

Prouhet-Thue-Morse sequence: A010060

ptm = 0 : xzip [ones - ptm, d ptm]

Cantor sequence: A088917

cantor = 1 : xzip [0, cantor, d cantor]

Nørg̊ard’s infinity sequence: A004718

noergaard = 1 : xzip [-noergaard, noergaard + ones]

Kimberling’s sequence: A003602

kimberling = 1 : xzip [kimberling, nats + ones]

Number of 1s in the binary expansion of k: A000120

Appendix C. A suite of streams 157

count1 = 1 : xzip [count1, count1 + ones]

Moser-de Bruijn sequence (sums of distinct powers of 4): A000695

mdb = 1 : xzip [4 * mdb, 4 * mdb + ones]

Sorting numbers (maximal number of comparisons for sorting k elements by
binary insertion): A001855

srt = 0 : xzip [2 * (srt + nats) - ones, d srt + srt + 2 * nats]

Josephus problem sequence: A006257

josephus = 1 : xzip [2 * josephus - ones, 2 * josephus + ones]

Numbers whose set of base n digits is {0, 1}:
1 7→ count1, 2 7→ nats, 3 7→ A005836, 4 7→ mdb, 5 7→ A033042, . . .

digits01 n = 1 : xzip [n * digits01 n, n * digits01 + ones]

C.4 Transcendental streams

Factorials: A000142

factorials = 1 : hadamard factorials nats

Bell or exponential numbers: number of ways to partition a set of n labeled
elements: A000110

bell = 1 : shuffle bell ones

Number of λ-terms of size k with at most n free de Bruijn indices:
1 7→ A220894, 2 7→ A220895, 3 7→ A220896, ...

lambda n = n : lambda n^2 + lambda (n+1)

Samenvatting

De automatentheorie is een vakgebied binnen de theoretische informatica, waarin
abstracte machines, ofwel automaten, bestudeerd worden. De automatentheorie
is nauw verbonden met de studie van formele talen, en met klassen van formele
talen die door diverse typen automaten en formele grammatica’s herkend of
beschreven kunnen worden. Belangrijke voorbeelden van zulke klassen worden
gegeven door de reguliere en contextvrije talen, die tevens de eerste twee niveaus
van de Chomskyhiërarchie vormen.

In dit proefschrift worden diverse klassen uit de automatentheorie bestudeerd
vanuit een coalgebräısch oogpunt. Coalgebra biedt een abstracte kijk op een
variëteit aan toestandsgebaseerde systemen, die geworteld is in de categoriethe-
orie, een deel van de wiskunde waarin de structurele overeenkomsten tussen
verschillende wiskundige theorieën op een abstract niveau bestudeerd worden.

Een ander voorbeeld van automatentheoretische klassen die in dit proef-
schrift bestudeerd worden, naast de formele talen, zijn de stromen2, ofwel onein-
dige rijen die cöınductief beschreven worden. Meer in het algemeen worden er
klassen bestudeerd van formele machtsreeksen in niet-commuterende variabe-
len: zowel formele talen als stromen kunnen gezien worden als voorbeelden
hiervan. Zulke cöınductieve beschrijvingen hebben, in het algemeen, de vorm
van (systemen van) gedragsdifferentiaalvergelijkingen3. In veel gevallen bestaat
er een correspondentie tussen een bepaald formaat van (gedrags)differentiaalver-
gelijkingen, en een daarmee overeenkomende automatentheoretische klasse.

In hoofdstuk 2 wordt een coalgebräısche presentatie gegeven van determi-
nistische, niet-deterministische, en gewogen automaten, die de reguliere talen
en hun generalisaties beschrijven. In dit hoofdstuk worden vooral bestaande re-
sultaten en ideeën (van o.a. Brzozowski, Schützenberger, Rutten, Bonsangue en
Silva) gepresenteerd. Deze presentatie wordt in hoofdstuk 3 uitgebreid naar de
contextvrije talen en de generalisaties ervan, die coalgebräısch beschreven kun-

2Eng. streams
3Eng. behavioural differential equations

159

160 Samenvatting

nen worden in een formaat dat correspondereert met contextvrije grammatica’s
in de Greibach-normaalvorm.

Op de resultaten uit de twee voorgaande hoofdstukken wordt in hoofdstuk
4 verder gebouwd met een bestudering van de zipk-operator en het Hadamard-
product. De zipk-operator is een operator die k stromen als argument neemt,
en beurtelings het initiële element van elk van die stromen neemt, om zo een
nieuwe stroom te vormen. Het Hadamardproduct kan gezien worden als een
puntsgewijs product, en wordt gebruikt als een basis voor een coalgebräısche
beschrijving van pushdownautomaten, die ook in dit hoofdstuk gegeven wordt.

In hoofdstuk 5 wordt er vervolgens een coalgebräısche beschrijving gegeven
van de k-automatische en k-reguliere rijen, gebaseerd op de eerder gegeven zipk
operator. Hierna wordt er in hoofdstuk 6 gekeken naar term-algebra’s en µ-
expressies, die een alternatieve methode geven om de contextvrije talen (en de
generalisaties ervan) coalgebräısch te beschrijven.

In hoofdstuk 7 wordt een deel van het eerdere materiaal beschouwd vanuit
een bialgebräısch perspectief, en wordt er een connectie gelegd met het abstracte
raamwerk van λ-bialgebra’s en distributieve wetten. In het bijzonder wordt
er gekeken naar diverse manieren waarop een synthese gevormd kan worden
tussen het werk uit hoofdstuk 3 en bialgebra’s, en de problemen die zich hierbij
voordoen.

Ten slotte wordt in hoofdstuk 8 een implementatie van de cöınductieve
stromencalculus in de functionele programmeertaal Haskell gegeven, waarmee
de gepresenteerde formaten uit de eerdere hoofdstukken direct beschreven kun-
nen worden. Aansluitend hierop wordt in appendix C het materiaal uit de
eerdere hoofdstukken gëıllustreerd met een aantal interessante voorbeelden van
oneindige rijen, cöınductief beschreven als stromen (in een notatie ontleend aan
de Haskell-implementatie uit hoofdstuk 8).

Bibliography

[AMT09] Katsutoshi Amano, Akira Masuoka, and Mitsuhiro Takeuchi. Hopf
algebraic approach to Picard-Vessiot theory. In M. Hazewinkel,
editor, Handbook of Algebra, volume 6 of Handbook of Algebra, pages
127–171. North-Holland, 2009.

[AS92] Jean-Paul Allouche and Jeffrey O. Shallit. The ring of k-regular
sequences. Theoretical Computer Science, 98:163–197, 1992.

[AS03a] Jean-Paul Allouche and Jeffrey O. Shallit. Automatic Sequences—
Theory, Applications, Generalizations. Cambridge University Press,
2003.

[AS03b] Jean-Paul Allouche and Jeffrey O. Shallit. The ring of k-regular
sequences, II. Theoretical Computer Science, 307:3–29, 2003.

[Awo10] Steve Awodey. Category Theory. Oxford University Press, 2010.

[Bar04] Falk Bartels. On Generalized Coinduction and Probabilistic Speci-
fication Formats. PhD thesis, Vrije Universiteit Amsterdam, 2004.

[BBB+12] Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan Rut-
ten, and Alexandra Silva. A coalgebraic perspective on linear
weighted automata. Information and Computation, 211:77–105,
2012.

[BHKR13] Marcello M. Bonsangue, Helle H. Hansen, Alexander Kurz, and
Jurriaan Rot. Presenting distributive laws. In Heckel and Milius
[HM13], pages 95–109.

[BR11] Jean Berstel and Christophe Reutenauer. Noncommutative Rational
Series with Applications. Cambridge University Press, 2011.

161

162 Bibliography

[BRW12] Marcello M. Bonsangue, Jan Rutten, and Joost Winter. Defining
context-free power series coalgebraically. In Dirk Pattinson and
Lutz Schröder, editors, CMCS, volume 7399 of Lecture Notes in
Computer Science, pages 20–39. Springer, 2012.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal
of the ACM, 11:481–494, 1964.

[Cho59] Noam Chomsky. On certain formal properties of grammars. Infor-
mation and Control, 2(2):137–167, June 1959.

[Chr70] Gilles Christol. Sur une opération analogue à l’opération de Cartier
en caractéristique nulle. C. R. Acad. Sc. Paris., t. 271, série A:1–3,
1970.

[Cob72] A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–
192, 1972.

[Con71] John H. Conway. Regular Algebra and Finite Machines. Printed in
GB by William Clowes & Sons Ltd, 1971.

[CS63] Noam Chomsky and Marcel-Paul Schützenberger. The algebraic
theory of context-free languages. In Paul Braffort and David
Hirschberg, editors, Computer Programming and Formal Systems,
pages 118–161. North-Holland, 1963.

[DI06] Hal Daumé III. Yet another haskell tutorial, 2006.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Hand-
book of Weighted Automata. Springer, 2009.

[DvE04] Kees Doets and Jan van Eijck. The Haskell Road to Logic, Maths
And Programming. College Publications, London, 2004.

[Eil76] Samuel Eilenberg. Automata, Languages, and Machines. Academic
Press, Inc., 1976.

[ÉL05] Zoltán Ésik and Hans Leiß. Algebraically complete semirings and
Greibach normal form. Annals of Pure and Applied Logic, 133(1-
3):173–203, 2005.

[FD97] James Allen Fill and Robert P. Dobrow. The number of m-ary
search trees on n keys. Combinatorics, Probability & Computing,
6(4):435–453, 1997.

Bibliography 163

[Fli74] Michel Fliess. Sur divers produits de séries formelles. Bulletin de la
S.M.F., 102:181–191, 1974.

[FR83] Michel Fliess and Cristophe Reutenauer. Théorie de Picard-Vossiot
des systèmes réguliers (ou bilinéaires). In Mathematical tools and
models for control, systems analysis and signal processing, Vol. 3,
pages 557–581. CNRS, 1983.

[Fur67] Harry Furstenberg. Algebraic functions over finite fields. Journal
of Algebra, 7(2):271–277, 1967.

[GEH+12] Clemens Grabmayer, Jörg Endrullis, Dimitri Hendriks, Jan Willem
Klop, and Lawrence S. Moss. Automatic sequences and zip-
specifications. In Proceedings of the 2012 27th Annual IEEE/ACM
Symposium on Logic in Computer Science, pages 335–344, 2012.

[GH11] Neil Ghani and Peter Hancock. An algebraic foundation and imple-
mentation of induction recursion and indexed induction recursion,
2011. Draft paper.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Con-
crete Mathematics: A Foundation for Computer Science. Addison-
Wesley Longman Publishing Co., Inc., 2nd edition, 1994.

[GL14] Katarzyna Grygiel and Pierre Lescanne. Counting terms in the
binary lambda calculus. CoRR, abs/1401.0379, 2014.

[GMS14] Sergey Goncharov, Stefan Milius, and Alexandra Silva. Towards a
coalgebraic Chomsky hierarchy. CoRR, abs/1401.5277, 2014.

[Gre65] Sheila A. Greibach. A new normal-form theorem for context-free,
phrase structure grammars. Journal of the Association for Com-
puting Machinery, 12:42–52, 1965.

[HF92] P. Hudak and J. Fasel. A gentle introduction to Haskell. ACM
SIGPLAN Notices, 27(5), May 1992.

[Hin11] Ralf Hinze. Concrete stream calculus—an extended study. Journal
of Functional Programming, 20(5-6):463–535, 2011.

[HKRW14] Helle H. Hansen, Clemens Kupke, Jan Rutten, and Joost Winter.
A final coalgebra for k-regular sequences, 2014. Accepted for pub-
lication in Prakash Panangaden’s festschrift.

164 Bibliography

[HM13] Reiko Heckel and Stefan Milius, editors. Algebra and Coalgebra
in Computer Science—5th International Conference, CALCO 2013,
Warsaw, Poland, September 3-6, 2013. Proceedings, volume 8089 of
Lecture Notes in Computer Science. Springer, 2013.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and Computation (3rd
edition). Addison-Wesley, 2006.

[Jac06] Bart Jacobs. A bialgebraic review of deterministic automata, reg-
ular expressions and languages. In Essays Dedicated to Joseph A.
Goguen, pages 375–404, 2006.

[JM00] Daniel Jurafsky and James H. Martin. Speech and Language Pro-
cessing: An Introduction to Natural Language Processing, Compu-
tational Linguistics, and Speech Recognition. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 2000.

[Kli11] Bartek Klin. Bialgebras for structural operational semantics: An
introduction. Theoretical Computer Science, 412(38):5043–5069,
2011.

[Koz90] Dexter Kozen. On Kleene algebras and closed semirings. In
Branislav Rovan, editor, MFCS, volume 452 of Lecture Notes in
Computer Science, pages 26–47. Springer, 1990.

[KPS14] Robbert Krebbers, Louis Parland, and Alexandra Silva. Moessner’s
theorem: an exercise in coinductive reasoning in Coq, 2014. Draft
paper.

[KR12] Clemens Kupke and Jan Rutten. On the final coalgebra of auto-
matic sequences. In Robert L. Constable and Alexandra Silva, ed-
itors, Logic and Program Semantics, volume 7230 of Lecture Notes
in Computer Science, pages 149–164. Springer, 2012.

[LB99] Saunders Mac Lane and Garrett B. Birkhoff. Algebra. AMS Chelsea
Pub., 1999.

[LGCR09] Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais, and Grigore
Rosu. Circ: A behavioral verification tool based on circular coin-
duction. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki,
editors, CALCO, volume 5728 of Lecture Notes in Computer Sci-
ence, pages 433–442. Springer, 2009.

Bibliography 165

[Mac71] Saunders MacLane. Categories for the Working Mathematician.
Springer-Verlag, New York, 1971. Graduate Texts in Mathematics,
Vol. 5.

[McI99] M. Douglas McIlroy. Power series, power serious. Journal of Func-
tional Programming, 9(3):325–337, May 1999.

[McI01] M. Douglas McIlroy. The music of streams. Inf. Process. Lett.,
77(2-4):189–195, 2001.

[Mil10] Stefan Milius. A sound and complete calculus for finite stream
circuits. In LICS, pages 421–430. IEEE Computer Society, 2010.

[Moe51] A. Moessner. Eine Bemerkung über die Potenzen der natürlichen
Zahlen. Sitzungsberichten der Bayerischen Akademie der Wis-
senschaften, Matematischnaturwissenschaftlische Klasse 1952, 29,
March 1951.

[NR10] Milad Niqui and Jan Rutten. Sampling, splitting and merging in
coinductive stream calculus. In Claude Bolduc, Jules Desharnais,
and Béchir Ktari, editors, Mathematics of Program Construction,
volume 6120 of Lecture Notes in Computer Science, pages 310–330.
Springer, 2010.

[NR11] Milad Niqui and Jan J. M. M. Rutten. A proof of moessner’s
theorem by coinduction. Higher-Order and Symbolic Computation,
24(3):191–206, 2011.

[OGS08] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World
Haskell. O’Reilly Media, Inc., 1st edition, 2008.

[Plo92] Simon Plouffe. Approximations de séries génératrices et quelques
conjectures. Master’s thesis, Université du Québec à Montréal, 1992.

[Pou13] Damien Pous. Coalgebraic up-to techniques. In Heckel and Milius
[HM13], pages 34–35.

[PS09] Ion Petre and Arto Salomaa. Algebraic systems and pushdown
automata. In Droste et al. [DKV09], pages 257–289.

[RBR13] Jurriaan Rot, Marcello M. Bonsangue, and Jan Rutten. Coalgebraic
bisimulation-up-to. In Peter van Emde Boas, Frans C. A. Groen,
Giuseppe F. Italiano, Jerzy R. Nawrocki, and Harald Sack, editors,

166 Bibliography

SOFSEM, volume 7741 of Lecture Notes in Computer Science, pages
369–381. Springer, 2013.

[Ros67] Daniel J. Rosenkrantz. Matrix equations and normal forms for
context-free grammars. J. ACM, 14(3):501–507, 1967.

[Rut98] Jan Rutten. Automata and coinduction (an exercise in coalgebra).
In Davide Sangiorgi and Robert de Simone, editors, CONCUR, vol-
ume 1466 of Lecture Notes in Computer Science, pages 194–218.
Springer, 1998.

[Rut99] Jan Rutten. Automata, power series, and coinduction: Taking input
derivatives seriously. In Jǐŕı Wiedermann, Peter van Emde Boas,
and Mogens Nielsen, editors, ICALP, volume 1644 of Lecture Notes
in Computer Science, pages 645–654. Springer, 1999.

[Rut00] Jan Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3–80, 2000.

[Rut02] Jan Rutten. Coinductive counting: bisimulation in enumerative
combinatorics. Electronic Notes in Theoretical Computer Science,
65(1):286–304, 2002.

[Rut03a] Jan Rutten. Behavioural differential equations: a coinductive cal-
culus of streams, automata, and power series. Theoretical Computer
Science, 308(1-3):1–53, 2003.

[Rut03b] Jan Rutten. Coinductive counting with weighted automata. Journal
of Automata, Languages and Combinatorics, 8(2):319–352, 2003.

[Rut05] Jan Rutten. A coinductive calculus of streams. Mathematical Struc-
tures in Computer Science, 15(1):93–147, 2005.

[Rut08] Jan Rutten. Rational streams coalgebraically. Logical Methods in
Computer Science, 4(3), 2008.

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge
University Press, 2009.

[SBBR10] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan
Rutten. Generalizing the powerset construction, coalgebraically. In
Kamal Lodaya and Meena Mahajan, editors, FSTTCS, volume 8
of LIPIcs, pages 272–283. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, 2010.

Bibliography 167

[SBBR13] Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rut-
ten. Generalizing determinization from automata to coalgebras.
Logical Methods in Computer Science, 9(1), 2013.

[SBR10] Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten.
Non-deterministic Kleene coalgebras. Logical Methods in Computer
Science, 6(3), 2010.

[Sch61a] Marcel-Paul Schützenberger. On a theorem of R. Jungen. Proceed-
ings of the American Mathematical Society, 13:885–889, 1961.

[Sch61b] Marcel-Paul Schützenberger. On the definition of a family of au-
tomata. Information and Control, 4(2-3):245–270, 1961.

[Sil10] Alexandra Silva. Kleene Coalgebra. PhD thesis, Radboud Univer-
siteit Nijmegen, 2010.

[SS78] Arto Salomaa and Matti Soittola. Automata-theoretic aspects of
formal power series. Texts and monographs in computer science.
Springer, 1978.

[Ste03] Ralf Stephan. Divide-and-conquer generating functions. part I. El-
ementary sequences. ArXiv Mathematics e-prints, jul 2003.

[TP97] Daniele Turi and Gordon D. Plotkin. Towards a mathematical oper-
ational semantics. In LICS, pages 280–291. IEEE Computer Society,
1997.

[WBR11] Joost Winter, Marcello M. Bonsangue, and Jan Rutten. Context-
free languages, coalgebraically. In Andrea Corradini, Bartek Klin,
and Corina Ĉırstea, editors, CALCO, volume 6859 of Lecture Notes
in Computer Science, pages 359–376. Springer, 2011.

[WBR13] Joost Winter, Marcello M. Bonsangue, and Jan J. M. M. Rut-
ten. Coalgebraic characterizations of context-free languages. Logical
Methods in Computer Science, 9 (3:14), 2013.

[WBR14] Joost Winter, Marcello M. Bonsangue, and Jan Rutten. Context-
free coalgebras, 2014. Accepted for publication in the Journal of
Computer and System Sciences.

[Wil06] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., 2006.

168 Bibliography

[Win13] Joost Winter. QStream: a suite of streams. In Heckel and Milius
[HM13], pages 353–358.

[Wor09] James Worthington. Automata, Representations, and Proofs. PhD
thesis, Cornell University, 2009.

[ZE11] Hans Zantema and Jörg Endrullis. Proving equality of streams au-
tomatically. In Manfred Schmidt-Schauß, editor, RTA, volume 10
of LIPIcs, pages 393–408. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, 2011.

Titles in the IPA Dissertation Series since 2008

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in
Embedded Systems. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Pars-
ing, and Assimilation of Language
Conglomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Ver-
ification of Optimistic Fair Exchange

Protocols. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2008-07

I.S.M. de Jong. Integration and
Test Strategies for Complex Manufac-
turing Machines. Faculty of Mechan-
ical Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of

Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Dürr. Resource-based Ver-
ification for Robust Composition of
Aspects. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-15

E.M. Bortnik. Formal Meth-
ods in Support of SMC Design.
Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-

perimental Aspects of Pattern Evalu-
ation. Faculty of Mathematics and
Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for
Hybrid Systems: Comparison and
Development. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless
Sensor Networks in Motion: Cluster-
ing Algorithms for Service Discovery

and Provisioning. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded
Real-Time Control Systems. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-
Tolerant Software Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata
Theory and Modal Logic. Faculty
of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Appli-
cations. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Programming
Ready for Prime Time. Faculty of
Science, UU. 2009-9

K.R. Olmos Joffré. Strategies
for Context Sensitive Program Trans-
formation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Rea-
soning about Java programs in PVS
using JML. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluat-
ing Dynamic Analysis Techniques for
Program Comprehension. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters:
Privacy in Voting and Fairness

in Digital Exchange. Faculty of
Mathematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshap-
ing Trust Management. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and
Availability: Building Computer Al-
gebra on top of Proof Assistants
and making Proof Assistants available
over the Web. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-18

R.S.S. O’Connor. Incompleteness
& Completeness: Formalizing Logic
and Analysis in Type Theory. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-19

B. Ploeger. Improved Verifica-
tion Methods for Concurrent Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis
and Analysis of Probabilistic Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimiza-
tion and Their Applications to Med-
ical Image Analysis. Faculty of

Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Com-
putational Complexity of Probabilis-
tic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools
for Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visual-
isation for Crime Analysis and Ge-
nomics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction,
Prices and Probability in Model
Checking Timed Automata. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented
Discovery of Knowledge - Founda-
tions, Implementations and Applica-
tions. Faculty of Mathematics and
Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.

Faculty of Sciences, Department of
Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refine-
ment. Faculty of Mathematics and
Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in
Networks of Organizations. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Analy-
sis of Information Leakage in Prob-
abilistic and Nondeterministic Sys-
tems. Faculty of Science, Math-
ematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Ver-
ification of Distributed Failure Detec-
tors. Faculty of Mathematics and
Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From Com-
putability to Executability – A
process-theoretic view on automata
theory. Faculty of Mathematics and
Computer Science, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic methods
for model comparison and model
co-evolution. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and
Hiding in Concurrent Processes. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2011-13

S. Malakuti. Event Composi-
tion Model: Achieving Naturalness
in Runtime Enforcement. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-14

M. Raffelsieper. Cell Libraries
and Verification. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of
Flow and Visibility on Triangu-

lated Terrains. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models
for Quality of Service of Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of States
in OO Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assess-
ing and Improving the Quality of
Model Transformations. Faculty of
Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct
Programs in Practice. Faculty of
Science, Mathematics and Computer
Science, RU. 2011-20

H.J.S. Basten. Ambiguity De-
tection for Programming Language
Grammars. Faculty of Science,
UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks for
Language Workbenches. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis
of Real-Time Coordination Patterns.

Faculty of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Tech-
niques for the Design and Imple-
mentation of Domain-Specific Lan-
guages. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and
Practice. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2012-04

S. Sedghi. Towards Provably Se-
cure Efficiently Searchable Encryp-
tion. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2012-05

F. Heidarian Dehkordi. Stud-
ies on Verification of Wireless Sen-
sor Networks and Abstraction Learn-
ing for System Inference. Faculty of
Science, Mathematics and Computer
Science, RU. 2012-06

K. Verbeek. Algorithms for Car-
tographic Visualization. Faculty of
Mathematics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A Compo-
sitional Interchange Format for Hy-
brid Systems: Design and Implemen-
tation. Faculty of Mechanical Engi-
neering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by
Means of Annotated Graph Mining
Algorithms. Faculty of Mathematics
and Natural Sciences, UL. 2012-09

S.D. Vermolen. Software Language
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2012-10

L.J.P. Engelen. From Napkin
Sketches to Reliable Software. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2012-11

F.P.M. Stappers. Bridging For-
mal Models – An Engineering Per-
spective. Faculty of Mathematics and
Computer Science, TU/e. 2012-12

W. Heijstek. Software Architecture
Design in Global and Model-Centric
Software Development. Faculty of
Mathematics and Natural Sciences,
UL. 2012-13

C. Kop. Higher Order Termination.
Faculty of Sciences, Department of
Computer Science, VUA. 2012-14

A. Osaiweran. Formal Develop-
ment of Control Software in the Med-
ical Systems Domain. Faculty of
Mathematics and Computer Science,
TU/e. 2012-15

W. Kuijper. Compositional Synthe-
sis of Safety Controllers. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2012-16

H. Beohar. Refinement of Com-
munication and States in Models
of Embedded Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2013-01

G. Igna. Performance Analysis
of Real-Time Task Systems using
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Trans-
formation – Theory and Practice.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2013-03

B. Lijnse. TOP to the Rescue –
Task-Oriented Programming for Inci-
dent Response Applications. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Compre-
hension for Modular and Dynamic

Systems. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2013-06

L.E. Mamane. Interactive math-
ematical documents: creation and
presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-07

M.M.H.P. van den Heuvel. Com-
position and synchronization of real-
time components upon one processor.
Faculty of Mathematics and Com-
puter Science, TU/e. 2013-08

J. Businge. Co-evolution of the
Eclipse Framework and its Third-
party Plug-ins. Faculty of Math-
ematics and Computer Science,
TU/e. 2013-09

S. van der Burg. A Reference
Architecture for Distributed Software
Deployment. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-11

D.H.P. Gerrits. Pushing and
Pulling: Computing push plans for
disk-shaped robots, and dynamic la-
belings for moving points. Faculty of
Mathematics and Computer Science,
TU/e. 2013-12

M. Timmer. Efficient Modelling,
Generation and Analysis of Markov

Automata. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data
Structures in the Black-Box Model.
Faculty of Mathematics and Com-
puter Science, TU/e. 2013-14

L. Lensink. Applying Formal Meth-
ods in Software Development. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2013-15

C. Tankink. Documentation and
Formal Mathematics — Web Tech-
nology meets Proof Assistants. Fac-
ulty of Science, Mathematics and
Computer Science, RU. 2013-16

C. de Gouw. Combining Monitor-
ing with Run-time Assertion Check-
ing. Faculty of Mathematics and Nat-
ural Sciences, UL. 2013-17

J. van den Bos. Gathering
Evidence: Model-Driven Software
Engineering in Automated Digital
Forensics. Faculty of Science,
UvA. 2014-01

D. Hadziosmanovic. The Process
Matters: Cyber Security in Industrial

Control Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2014-03

C.-P. Bezemer. Performance Op-
timization of Multi-Tenant Software
Systems. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quanti-
tative Information Flow Analysis for
Multi-threaded Programs. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2014-05

A.W. Laarman. Scalable Multi-
Core Model Checking. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2014-06

J. Winter. Coalgebraic Charac-
terizations of Automata-Theoretic
Classes. Faculty of Science, Math-
ematics and Computer Science,
RU. 2014-07

