28,914 research outputs found

    Students' difficulties with vector calculus in electrodynamics

    Full text link
    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.Comment: 14 pages, 11 figure

    The history of the concept of function and some educational implications

    Get PDF
    Several fields of mathematics deal directly or indirectly with functions: mathematical analysis considers functions of one, two, or n variables, studying their properties as well as those of their derivatives; the theories of differential and integral equations aim at solving equations in which the unknowns are functions; functional analysis works with spaces made up of functions; and numerical analysis studies the processes of controlling the errors in the evaluation of all different kinds of functions. Other fields of mathematics deal with concepts that constitute generalizations or outgrowths of the notion of function; for example, algebra considers operations and relations, and mathematical logic studies recursive functions. It has long been argued that functions should constitute a fundamental concept in secondary school mathematics (Klein, 1908/1945) and the most recent curriculum orientations clearly emphasize the importance of functions (National Council of Teachers of Mathematics, 1989). Depending on the dominant mathematical viewpoint, the notion of function can be regarded in a number of different ways, each with different educational implications. This paper reviews some of the more salient aspects of the history of the concept of function,1 looks at its relationship with other sciences, and discusses its use in the study of real world situations. Finally, the problem of a didactical approach is considered, giving special attention to the nature of the working concept underlying the activities of students and the role of different forms of representation

    A versatile approach to calculus and numerical methods

    Get PDF
    Traditionally the calculus is the study of the symbolic algorithms for differentiation and integration, the relationship between them, and their use in solving problems. Only at the end of the course, when all else fails, are numerical methods introduced, such as the Newton-Raphson method of solving equations, or Simpson’s rule for calculating areas. The problem with such an approach is that it often produces students who are very well versed in the algorithms and can solve the most fiendish of symbolic problems, yet have no understanding of the meaning of what they are doing. Given the arrival of computer software which can carry out these algorithms mechanically, the question arises as to what parts of calculus need to be studied in the curriculum of the future. It is my contention that such a study can use the computer technology to produce a far more versatile approach to the subject, in which the numerical and graphical representations may be used from the outset to produce insights into the fundamental meanings, in which a wider understanding of the processes of change and growth will be possible than the narrow band of problems that can be solved by traditional symbolic methods of the calculus

    Canonical endomorphism field on a Lie algebra

    Full text link
    We show that every Lie algebra is equipped with a natural (1,1)(1,1)-variant tensor field, the "canonical endomorphism field", naturally determined by the Lie structure, and satisfying a certain Nijenhuis bracket condition. This observation may be considered as complementary to the Kirillov-Kostant-Souriau theorem on symplectic geometry of coadjoint orbits. We show its relevance for classical mechanics, in particular for Lax equations. We show that the space of Lax vector fields is closed under Lie bracket and we introduce a new bracket for vector fields on a Lie algebra. This bracket defines a new Lie structure on the space of vector fields.Comment: 18 page

    Students’ Evolving Meaning About Tangent Line with the Mediation of a Dynamic Geometry Environment and an Instructional Example Space

    Get PDF
    In this paper I report a lengthy episode from a teaching experiment in which fifteen Year 12 Greek students negotiated their definitions of tangent line to a function graph. The experiment was designed for the purpose of introducing students to the notion of derivative and to the general case of tangent to a function graph. Its design was based on previous research results on students’ perspectives on tangency, especially in their transition from Geometry to Analysis. In this experiment an instructional example space of functions was used in an electronic environment utilising Dynamic Geometry software with Function Grapher tools. Following the Vygotskian approach according to which students’ knowledge develops in specific social and cultural contexts, students’ construction of the meaning of tangent line was observed in the classroom throughout the experiment. The analysis of the classroom data collected during the experiment focused on the evolution of students’ personal meanings about tangent line of function graph in relation to: the electronic environment; the pre-prepared as well as spontaneous examples; students’ engagement in classroom discussion; and, the role of researcher as a teacher. The analysis indicated that the evolution of students’ meanings towards a more sophisticated understanding of tangency was not linear. Also it was interrelated with the evolution of the meaning they had about the inscriptions in the electronic environment; the instructional example space; the classroom discussion; and, the role of the teacher
    • …
    corecore