6 research outputs found

    Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

    Get PDF
    The perfect matching problem has a randomized NC algorithm, using the celebrated Isolation Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random weight assignment to the edges of a graph, ensures that it has a unique minimum weight perfect matching, with a good probability. We derandomize this lemma for K3,3-free and K5-free bipartite graphs, i.e. we give a deterministic log-space construction of such a weight assignment for these graphs. Such a construction was known previously for planar bipartite graphs. Our result implies that the perfect matching problem for K3,3-free and K5-free bipartite graphs is in SPL. It also gives an alternate proof for an already known result – reachability for K3,3-free and K5-free graphs is in UL.

    Trading Determinism for Time in Space Bounded Computations

    Get PDF
    Savitch showed in 19701970 that nondeterministic logspace (NL) is contained in deterministic O(log2n)\mathcal{O}(\log^2 n) space but his algorithm requires quasipolynomial time. The question whether we can have a deterministic algorithm for every problem in NL that requires polylogarithmic space and simultaneously runs in polynomial time was left open. In this paper we give a partial solution to this problem and show that for every language in NL there exists an unambiguous nondeterministic algorithm that requires O(log2n)\mathcal{O}(\log^2 n) space and simultaneously runs in polynomial time.Comment: Accepted in MFCS 201

    Derandomizing Isolation in Space-Bounded Settings

    Get PDF
    We study the possibility of deterministic and randomness-efficient isolation in space-bounded models of computation: Can one efficiently reduce instances of computational problems to equivalent instances that have at most one solution? We present results for the NL-complete problem of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance on shallow semi-unbounded circuits. A common approach employs small weight assignments that make the solution of minimum weight unique. The Isolation Lemma and other known procedures use Omega(n) random bits to generate weights of individual bitlength O(log(n)). We develop a derandomized version for both settings that uses O(log(n)^{3/2}) random bits and produces weights of bitlength O(log(n)^{3/2}) in logarithmic space. The construction allows us to show that every language in NL can be accepted by a nondeterministic machine that runs in polynomial time and O(log(n)^{3/2}) space, and has at most one accepting computation path on every input. Similarly, every language in LogCFL can be accepted by a nondeterministic machine equipped with a stack that does not count towards the space bound, that runs in polynomial time and O(log(n)^{3/2}) space, and has at most one accepting computation path on every input. We also show that the existence of somewhat more restricted isolations for reachability on digraphs implies that NL can be decided in logspace with polynomial advice. A similar result holds for certifying acceptance on shallow semi-unbounded circuits and LogCFL

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF
    corecore