
Derandomizing Isolation Lemma for K3,3-free and
K5-free Bipartite Graphs
Rahul Arora1, Ashu Gupta2, Rohit Gurjar∗3, and
Raghunath Tewari4

1 University of Toronto, Canada; and
Indian Institute of Technology Kanpur, India
arorar@cs.toronto.edu, arorar@iitk.ac.in

2 University of Illinois at Urbana-Champaign, USA
agupta80@illinois.edu

3 HTW Aalen, Germany
rgurjar@iitk.ac.in

4 Indian Institute of Technology Kanpur, India
rtewari@iitk.ac.in

Abstract
The perfect matching problem has a randomized NC algorithm, using the celebrated Isolation
Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random
weight assignment to the edges of a graph ensures that it has a unique minimum weight perfect
matching, with a good probability. We derandomize this lemma for K3,3-free and K5-free bipart-
ite graphs. That is, we give a deterministic log-space construction of such a weight assignment
for these graphs. Such a construction was known previously for planar bipartite graphs. Our
result implies that the perfect matching problem for K3,3-free and K5-free bipartite graphs is in
SPL. It also gives an alternate proof for an already known result – reachability for K3,3-free and
K5-free graphs is in UL.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.2 Graph Theory

Keywords and phrases bipartite matching, derandomization, isolation lemma, SPL, minor-free
graph

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.10

1 Introduction

The perfect matching problem is one of the most extensively studied problem in combinatorics,
algorithms and complexity. In complexity theory, the problem plays a crucial role in the study
of parallelization and derandomization. In a graph G(V,E), a matching is a set of disjoint
edges and a matching is called perfect if it covers all the vertices of the graph. Edmonds [12]
gave the first polynomial time algorithm for the matching problem. Since then, there have
been improvements in its sequential complexity [24], but an NC (efficient parallel) algorithm
for it is not known. The perfect matching problem has various versions:

Decision-PM: Decide if there exists a perfect matching in the given graph.
Search-PM: Construct a perfect matching in the given graph, if it exists.

∗ Supported by TCS Research Fellowship.

© Rahul Arora, Ashu Gupta, Rohit Gurjar, and Raghunath Tewari;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

A randomized NC (RNC) algorithm for Decision-PM was given by [23]. Subsequently,
Search-PM was also shown to be in RNC [18, 25]. The solution of Mulmuley et al. [25] was
based on the powerful idea of Isolation Lemma. They defined a notion of an isolating weight
assignment on the edges of a graph. Given a weight assignment on the edges, weight of a
matching is defined to be the sum of the weights of all the edges in it.

I Definition 1 ([25]). For a graph G(V,E), a weight assignment w : E → N is isolating if
G either has a unique minimum weight perfect matching according to w or has no perfect
matchings.

The Isolation Lemma states that a random integer weight assignment (polynomially
bounded) is isolating with a good probability. Other parts of the algorithm in [25] are
deterministic. They showed that if we are given an isolating weight assignment (with
polynomially bounded weights) for a graph G, then a perfect matching in G can be constructed
in NC2. Later, Allender et al. [2] showed that the Decision-PM would be in SPL, which is
in NC2, if an isolating weight assignment can be constructed in L (see also [9]). A language L
is in the class SPL if its characteristic function χL : Σ∗ → {0, 1} can be (log-space) reduced
to computing determinant of an integer matrix.

Derandomizing the Isolation Lemma remains a challenging open question. A general
version of Isolation Lemma has also been studied, where one has to ensure a unique minimum
weight set in a (non-explicitly) given family of sets (or multisets). Arvind and Mukhopadhyay
[4] have shown that derandomizing this version of Isolation Lemma would imply circuit size
lower bounds. While Reinhardt and Allender [26] have shown that derandomizing Isolation
Lemma for some specific families of paths in a graph would imply NL = UL.

With regard to matchings, Isolation Lemma has been derandomized for some special
classes of graphs: planar bipartite graphs [9, 29], constant genus bipartite graphs [10],
graphs with small number of matchings [14, 1] and graphs with small number of nice cycles
[15]. In a result subsequent to this work, Fenner et al. [13] achieved an almost complete
derandomization of the isolation lemma for bipartite graphs. They gave a deterministic
construction but with quasi-polynomially large weights. A graph G is bipartite if its vertex
set can be partitioned into two parts V1, V2 such that any edge is only between a vertex in
V1 and a vertex in V2. A graph is planar if it can be drawn on a plane without any edge
crossings.

It is well known that a graph is planar if and only if it is both K3,3-free and K5-free [33].
For a graph H, G is an H-free graph if H is not a minor of G. K3,3 is the complete bipartite
graph with (3, 3) nodes and K5 is the complete graph with 5 nodes. A natural generalization
of planar bipartite graphs would be K3,3-free bipartite graphs or K5-free bipartite graphs.
We make a further step towards the derandomization of Isolation Lemma by derandomizing
it for these two graph classes. Note that these graphs are not captured by the classes of
graphs mentioned above. In particular, a K3,3-free or K5-free graph can have arbitrarily
high genus, exponentially many matchings or exponentially many nice cycles.

I Theorem 2. Given a K3,3-free or K5-free bipartite graph, an isolating weight assignment
(polynomially bounded) for it can be constructed in log-space.

Another motivation to study these graphs came from the fact that Count-PM (counting
the number of perfect matchings) is in NC2 for K3,3-free graphs [31] and in TC2 (⊆ NC3)
for K5-free graphs [28]. These were the best known results for Decision-PM too. The
counting results, together with the known NC-reduction from Search-PM to Count-PM
(for bipartite graphs) [20], implied an NC algorithm for Search-PM. Thus, a natural

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:3

question was to find a direct algorithm for Search-PM via isolation, which we do here.
One limitation of the earlier approach is that Count-PM is #P-hard for general bipartite
graphs. Thus, there is no hope of generalizing this approach to work for all graphs. While
the isolation approach can potentially lead to a solution for general/bipartite graphs.

Theorem 2 together with the results of Allender et al. [2] and Datta et al. [9] gives us the
following results about matching.

I Corollary 3. For a K3,3-free or K5-free bipartite graph,
Decision-PM is in SPL.
Search-PM is in FLSPL.
Min-Weight-PM is in FLSPL.

FLSPL is the set of function problems which can be solved by a log-space Turing ma-
chine with access to an SPL oracle. Like SPL, FLSPL also lies in NC2. The problem
Min-Weight-PM asks to construct a minimum weight perfect matching in a given graph
with polynomially bounded weights on its edges.

The crucial property of these graphs, which we use, is that their 4-connected components
are either planar or small sized. This property has been used to reduce various other
problems on K3,3-free or K5-free graphs to their planar version, e.g. graph isomorphism [11],
reachability [30]. However, their techniques do not directly work for the matching problem.
There has been an extensive study on more general minor-free graphs by Robertson and
Seymour. In a long series of works, they gave similar decomposition properties for these
graphs [27]. Our approach for matching can possibly be generalized to H-free graphs for a
larger/general graph H.

Our techniques. We start with the idea of Datta et al. [9] which showed that a skew-
symmetric weight function on the edges (w(u, v) = −w(v, u)) such that every cycle has a
nonzero circulation (weight in a fixed orientation) implies isolation of a perfect matching in
bipartite graphs. To achieve nonzero circulation in a K3,3-free or K5-free graph, we work
with its 3-connected or 4-connected component decomposition given by [33, 5], which can
be constructed in log-space [30, 28]. The components are either planar or constant-sized
and share a pair/triplet of vertices. These components form a tree structure, when each
component is viewed as a node and there is an edge between two components if they share a
pair/triplet. For any cycle C in the graph, we break it into its fragments contained within
each of these components, which we call projections of C. Any such projection can be
made into a cycle by adding virtual edges for separating pairs/triplets in the corresponding
component.

Circulation of any cycle can be seen as a sum of circulations of its projections. The
projections of a cycle can have circulations with opposite signs and thus, can cancel each
other. To avoid this cancellation, we observe that the components, where a cycle has a
non-empty projection form a subtree of the component tree. The idea is to assign edge
weights using a different scale for each level of nodes in the tree. This ensures that for any
subtree, its root node will contribute a weight higher than the total weight from all its other
nodes. To avoid any cancellations within a component, weights in a component are given by
modifying some known techniques for planar graphs [9, 19] and constant sized graphs.

This idea would work only if the component tree has a small depth, which might not be
true in general. Thus, we create an O(logn)-depth working tree by finding ‘centers’ for the
component tree and its subtrees recursively. The construction of such a balanced working
tree has been studied in context of evaluating arithmetic expressions [7]. In the literature,

STACS 2016

10:4 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

this construction is also known as ‘centroid decomposition’ or ‘recursive balanced separators’.
Its log-space implementation is more involved.

As the working tree has O(logn) depth, the straightforward way of using a different scale
for each level will lead to edge weights being nO(logn). So instead, in a component node, we
assign weights to only those edges which surround a separating pair/triplet. The weighting
scheme ensures that the total weight grows only by a constant multiple, when we move one
step higher in the working tree.

Achieving non-zero circulation in log-space also puts directed reachability in UL [26, 6, 29].
Thus, we get an alternate proof for the result – directed reachability for K3,3-free and K5-free
graphs is in UL [30].

In Section 2, we introduce the concepts of nonzero circulation, clique-sum, graph decom-
position and the corresponding component tree. In Section 3, we give a log-space construction
of a weight assignment with nonzero circulation for every cycle, for a class of graphs defined
via clique-sum operations on planar and constant-sized graphs. This class contains K3,3-free
and K5-free graphs (a proof can be found in the full version of this paper [3]).

2 Preliminaries

Let us first define a skew-symmetric weight function on the edges of a graph. For this,
we consider the edges of the graph directed in both directions. We call this directed set
of edges ~E. A weight function w : ~E → Z is called skew-symmetric if for any edge (u, v),
w(u, v) = −w(v, u).

I Definition 4 (Circulation). For a cycle C, whose edges are given by {(v1, v2), (v2, v3), . . . ,
(vk−1, vk), (vk, v1)}, its circulation is defined to be w(v1, v2) + w(v2, v3) + · · ·+ w(vk, v1).

Clearly, as our weight function is skew-symmetric, changing the orientation of the cycle only
changes the sign of the circulation. The following lemma [29, Theorem 6] gives the connection
between nonzero circulations and isolation of a matching. For a bipartite (undirected)
graph G(V1, V2, E), a skew-symmetric weight function w : ~E → Z on its edges has a natural
interpretation on the undirected edges as w : E → Z such that w(u, v) = w(u, v), where
u ∈ V1 and v ∈ V2.

I Lemma 5 ([29]). Let w : ~E → Z be a skew-symmetric weight function on the edges of a
bipartite graph G such that every cycle has a non-zero circulation. Then, w : E → Z is an
isolating weight assignment for G.

The bipartiteness assumption is needed only in the above lemma. We will construct a
skew-symmetric weight function that guarantees nonzero circulation for every cycle, for a
given K3,3-free or K5-free graph, i.e. without assuming bipartiteness.

2.1 Clique-sum
First, we will construct a nonzero circulation weight assignment for a special class of graphs,
defined via a graph operation called clique-sum.

I Definition 6 (Clique-sum). Let G1 and G2 be two graphs each containing a clique (of
the same size). A clique-sum of graphs G1 and G2 is obtained from their disjoint union
by identifying pairs of vertices in these two cliques to form a single shared clique, and by
possibly deleting some of the edges in the clique. It is called a k-clique-sum if the cliques
involved have at most k vertices.

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:5

One can form clique-sums of more than two graphs by a repeated application of clique-sum
operation on two graphs. Using this, we define a new class of graphs. Let Pc be the class of
all planar graphs together with all graphs of size at most c, where c is a constant. Define
〈Pc〉k to be the class of graphs constructed by repeatedly taking k-clique-sums, starting from
the graphs which belong to the class Pc. In other words, it is the closure of Pc under k-clique
sums. The starting graphs are called the component graphs. We will construct a nonzero
circulation weight assignment for the graphs which belong to the class 〈Pc〉3.

Taking 1-clique-sum of two graphs will result in a graph which is not biconnected. For
the perfect matching problem, one can assume without loss of generality that the given graph
is biconnected (see the full version [3] for details). Thus, we assume that every clique-sum
operation involves either 2-cliques or 3-cliques. A 2-clique which is involved in a clique-sum
operation is called a separating pair. Similarly, a 3-clique is called a separating triplet. In
general, they are called separating sets. Note that deletion of any separating pair/triplet will
make the graph disconnected. We emphasize here that there can be other pairs/triplets in
the graph which are not involved in a clique-sum operation, but whose deletion will make
the graph disconnected. In this work, the term separating pair/triplet does not refer to such
pairs/triplets.

2.2 Component Tree

In general, clique-sum operation can be performed many times using the same separating set.
In other words, many components can share a separating set. One can modify a graph in class
〈Pc〉3 via some matching preserving operations such that on decomposition, any separating
set is shared by only two components (see the full version [3] for details). Henceforth, in this
section we assume this property.

Using this assumption, we can define a component graph for any graph G ∈ 〈Pc〉3 as
follows: each component is represented by a node and two such nodes are connected by an
edge if the corresponding components share a separating set. Observe that this component
graph is actually a tree. This is because when we take repeated clique-sums, a new component
can be attached with only one of the already existing components, as a clique will be contained
within one component. In literature [16, 30], the component tree also contains a node for
each separating set and it is connected by all the components which share this separating
set. But, here we can ignore this node as we have only two sharers for each separating set.

In the component tree, each component is shown with all the separating sets it shares with
other components. Thus, a copy of a separating set is present in both its sharer components.
Moreover, in each component, a separating set is shown with a virtual clique, i.e., a virtual
edge for a separating pair and a virtual triangle for a separating triplet. These virtual
cliques represent the paths between the nodes via other components If any two vertices in
a separating set have a real edge in G, then that real edge is drawn in one of the sharing
components, parallel to the virtual edge. Note that while a vertex can have its copy in two
components, any real edge is present in exactly one component.

3 Nonzero Circulation

In this section, we construct a nonzero circulation weight assignment for a given graph in
the class 〈Pc〉3, provided that the component tree and the planar embeddings of the planar
components are given. Moreover, to construct this weight assignment we will make some
assumptions about the given graph and its component tree.

STACS 2016

10:6 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

u v

u v

a

G2

G1

c

b

G3

c

a
b

G

u v

a
b

c

Figure 1 Breaking a cycle into its component cycles (projections) in the component tree. Notice
that the original cycle and its components share the same set of real edges.

1. In any component, a vertex is a part of at most one separating set.
2. Each separating set is shared by at most two components.
3. Any virtual triangle in a planar component is always a face.

Given a K3,3-free or K5-free graph, a component tree can be constructed which has these
properties (see the full version [3] for details). The third property comes naturally, as the
inside and outside parts of any virtual triangle can be considered as different components
sharing this separating triplet. All these constructions are in log-space.

3.1 Components of a cycle

We look at a cycle in the graph as sum of many cycles, one from each component the cycle
passes through. Intuitively, the original cycle is broken at the separating set vertices which
were part of the cycle, thereby generating fragments of the cycle in various nodes of the
component tree. In all the component nodes containing these fragments, we include the
virtual edges of the separating sets in question to complete the fragment into a cycle, thus
resulting in component cycles in the component nodes (see Figure 1).

Consider a directed cycle C = {(v0, v1), (v1, v2), . . . , (vk−1, v0)} in a graph G = (V,E).
Without loss of generality, consider that G is separated into two components G1 and G2 via
a separating pair (vi, v0) or a separating triplet (vi, v0, u), where 1 ≤ i < k and u ∈ V . Then,
one of the components, say G1, will contain the vertices vi, vi+1 mod k, . . . , vk−1, v0, and the
other (G2) will contain the vertices v0, v1, . . . , vi−1, vi. Then the cycles C1 = {(vi, vi+1 mod k),
. . . , (vk−1, v0), (v0, vi)} and C2 = {(v0, v1), . . . , (vi−1, vi), (vi, v0)} in G1 and G2 respectively
are the component cycles of C, and we say that C is the sum of C1 and C2. Observe that
the edges (vi, v0) and (v0, vi) are virtual.

Repeat the processes recursively for C1 and C2 until no separating set breaks a cycle
component, and we get the component cycles of the cycle C. Note that any edge in a cycle
C is contained in exactly one of its component cycles. Moreover for any component cycle, all
its edges, other than the virtual edges, are contained in C.

Observe that for any separating set in a component, a cycle can use one of its vertices to
go out of the component and another vertex to come in (this transition is represented by a
virtual edge in the component). As any separating set has size at most 3, a cycle can visit a
node of the component tree only once. In other words, a cycle can have only one component
cycle in any component tree node (this would not be true if we had separating sets of size 4).
Also, a component cycle can take only one edge of any virtual triangle.

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:7

I Definition 7 (Projection of a cycle). For a given component node N in the component
tree, the component cycle of a cycle C in N is called the projection of C on N . If there is no
component cycle of C in N , then C is said to have an empty projection on N .

It is easy to see that for any cycle C, the components on which C has a non-empty projection,
form a subtree of the component tree. To construct the weight assignment (Section 3.2), we
will work with the component nodes of the component tree. Within any component, weight
of a virtual edge will always be set to zero. Along with the fact that each cycle has the same
set of real edges as the union of the edges in all its projections, this leads to the following
lemma.

I Lemma 8. The circulation of a cycle is the sum of circulations of its component cycles.

Note that for a cycle, its component cycles can have circulations with different signs (positive
or negative) as they can have different orientations (clockwise or anti-clockwise) in the planar
components. Hence the total circulation can potentially be zero. Our idea is to ensure that
one of the component cycles get a circulation greater than all the other component cycles
put together. This will imply a nonzero circulation.

3.2 Weighting Scheme
The actual weight function we employ is a combination of two weight functions w0 and w1.
They are combined with an appropriate scaling so that they do not interfere with each other.
w1 ensures that all the cycles which are within one component have a non-zero circulation
and w0 ensures that all the cycles which project on at least two components have a non-zero
circulation. We first describe the construction of w0.

Working Tree: The given component tree can have arbitrary depth, while our weight
construction would need the tree-depth to be O(logn). Thus, we re-balance the tree to
construct a new working tree. It is a rooted tree which has the same nodes as the component
tree, but the edge relations are different. The working tree, in some sense, ‘preserves’ the
subtree structure of the original tree.

For a tree S, its working tree wt(S) is constructed as follows: Find a ‘center’ node c(S)
in the tree S and mark it as the root of the working tree, r(wt(S)). Deleting the node c(S)
from the tree S would give a set of disjoint trees, say {S1, S2, . . . , Sk}. Apply this procedure
recursively on these trees to construct their working trees wt(S1),wt(S2), . . . ,wt(Sk). Connect
each wt(Si) to the root r(wt(S)), as a subtree. In other words, r(wt(Si)) is a child of r(wt(S)).
For the base case, when the tree is a node, its working tree is the node itself. This completes
the construction. If the component c(S) shares the separating set τi with Si, then the subtree
wt(Si) is said to be attached to the root r(wt(S)) at τi.

The ‘center’ nodes are chosen in a balanced way so that the working tree depth is O(logn).
Von Braunmühl and Verbeek [32], and later Limaye et al. [21], gave a log-space construction
of such a balanced tree, but in terms of well-matched strings (also see [8]). In Section 3.3,
we present the log-space construction in terms of a tree, along with a precise definition of a
‘center’ node.

Note that for any two nodes v1 ∈ Si and v2 ∈ Sj such that i 6= j, path(v1, v2) in S passes
through the node c(S) = r(wt(S)). Thus, we get the following property for the working tree.

I Claim 9. For any two nodes u, v ∈ S, let their least common ancestor in the working tree
wt(S) be the node a. Then path(u, v) in the tree S passes through a.

STACS 2016

10:8 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

The root r(wt(S)) of the working tree wt(S) is said to be at depth 0. For any other node in
wt(S), its depth is defined to be one more than the depth of its parent. Henceforth, depth of
a node will always mean its depth in the working tree. From Claim 9, we get the following.

I Claim 10. Let S′ be an arbitrary subtree of S, with its set of nodes being {v1, v2, . . . , vk}.
There exists i∗ ∈ {1, 2, . . . , k} such that for any j ∈ [k] with j 6= i∗, vj is a descendant of vi∗
in the working tree wt(S).

Proof. Let d∗ be the minimum depth of any node in S′, and let vi∗ be a node in S′ with
depth d∗. We claim that every other node in S′ is a descendant of vi∗ in the working tree
wt(S). For the sake of contradiction, let there be a node vj ∈ S′ which is not a descendant
of vi∗ . Then, the least common ancestor of vj and vi∗ in wt(S) must have depth strictly
smaller than d∗. By Claim 9, this least common ancestor must be present in the tree S′.
But, we assumed d∗ is the minimum depth value in S′. Thus, we get a contradiction. J

This claim plays a crucial role in our weight assignment construction, as for any cycle C
the components with a non-empty projection of C form a subtree of the component tree. To
assign weights in the graph, we work with the working tree of its component tree. Let the
working tree be T . We start by assigning weight to the nodes having the largest depth, and
move up till we reach depth 0, that is, the root node r(T). The idea is that for any cycle C,
its unique least-depth projection should get a circulation higher than the total circulation of
all its other projections.

Complementary to the depth, we also define height of every node in the working tree.
Let the maximum depth of any node in the working tree be D. Then, the height of a node is
defined to be the difference between its depth and D + 1.

Circulations of cycles spanning multiple components. For any subtree T of the working
tree T , the weights to the edges inside the component r(T) will be given by two different
schemes depending on whether the corresponding graph is planar or constant sized.

Let the maximum possible number of edges in a constant sized component be m. Then,
let K be a constant such that K > max (2m+2, 7). Also, suppose that the height of a node
N is given by the function h(N), and the number of leaves in subtree T is given by l(T).
Lastly, suppose the set of subtrees attached at r(T) is {T1, T2, . . . , Tk}.

Constant sized graph: Let the set of (real) edges of the graph be {e1, e2, . . . , em}. The
edge ej will be given weight 2j ×Kh(r(T))−1 × l(T) for an arbitrarily fixed direction. The
intuition behind this scheme is that powers of 2 ensure that sum of weights for any non-empty
subset of edges remain nonzero even when they contribute with different signs.

Planar graph: We work with a given planar embedding of the graph. For any weight
assignment w : ~E → Z on the edges of the graph, we define the circulation of a face as the
circulation of the corresponding cycle in the clockwise direction, i.e., traverse the boundary
edges of the face in the clockwise direction and take the sum of their weights. Instead of
directly assigning edge weights, we will fix circulations for the inner faces of the graph. As
we will see later, fixing positive circulations for all inner faces will avoid any cancellations.
Lemma 14 describes how to assign weights to the edges of a planar graph to get the desired
circulation for each of the inner faces.

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:9

Assigning circulations to the faces: Here, only those inner faces are assigned nonzero
circulations which are adjacent to some separating pair/triplet shared with a subtree. This
is a crucial idea. As we will see in Lemma 11, this ensures that the maximum possible
circulation of a cycle grows only by a constant multiple as we move one level higher up in
the working tree.

If T is a singleton, i.e., there are no subtrees attached at T , we give a zero circulation to
all the faces (and thus zero weight to all the edges) of r(T). Otherwise, consider a separating
pair {a, b} where a subtree Ti is attached to r(T). The two faces adjacent to the virtual edge
(a, b) will be assigned circulation 2×Kh(r(Ti)) × l(Ti). Similarly, consider a triplet {a, b, c}
where a subtree Tj is attached. Then all the faces (at most 3) adjacent to the virtual triangle
{a, b, c} get circulation 2×Kh(r(Tj)) × l(Tj). Repeat this procedure for all the faces adjacent
to any pairs and/or triplets where subtrees are attached. If a face is adjacent to more than
one virtual edge/triangle, then we just take the sum of different circulations due to each
virtual edge/triangle.

Recall that by definition, each face has a positive circulation in the clockwise direction.
The intuition behind this scheme is the following: circulation of any cycle in the planar
component is just the sum of circulations of the faces inside it (Claim 12). As all of them
have the same sign, they cannot cancel each other. Moreover, it will be ensured that
the contribution to the circulation from this planar component is higher than the total
contribution from all its subtrees, and thus, cannot be canceled.

Now, we formally show that this weighting scheme ensures that all the cycles spanning
multiple components in the tree get non-zero circulation.

Nonzero Circulation of a cycle. First, we derive an upper bound on the circulation of any
cycle completely contained in a subtree T of the working tree.

I Lemma 11. The upper bound on the circulation of any cycle contained in a subtree T of
the working tree T is UT = Kh(r(T)) × l(T).

Proof. We prove this using induction on the height of r(T).
Base case: The height of r(T) is 1. Notice that this means that r(T) has the maximum

depth amongst all the nodes in T , and therefore, r(T) is a leaf node, and T is a singleton.
Consider the two cases: i) when r(T) is a planar graph, ii) when it is a constant sized graph.

By our weight assignment, if r(T) is planar, the total weight of all the edges is zero. On
the other hand, if r(T) is a constant sized graph, the maximum circulation of a cycle is the
sum of weights of its edges, that is,

∑m
i=1(K0 × 1× 2i) < 2m+1 ≤ K. Thus, the circulation

is upper bounded by Kh(r(T)) × l(T) (as l(T) = 1).
Induction hypothesis: For any tree T ′ with h(r(T ′)) ≤ j − 1, the upper bound is

UT ′ = Kh(r(T ′)) × l(T ′).
Induction step: We will prove that for any tree T with h(r(T)) = j, the upper bound is

UT = Kh(r(T)) × l(T).
Let the subtrees attached at r(T) be {T1, T2, . . . , Tk}. For any cycle in T , sum of the

circulations of its projections on the subtrees T1, T2, . . . , Tk can be at most
∑k
i=1 UTi

.
First, we handle the case when r(T) is planar. For any subtree Ti, the total circulation

of faces in r(T) due to connection to Ti can be 6 ×Kh(r(Ti)) × l(Ti). This is because the
circulation of each face adjacent to the separating set connecting with Ti is 2×Kh(r(Ti))×l(Ti),
and there can be at most 3 such faces. Thus,

UT =
k∑
i=1

UTi +
k∑
i=1

(
6×Kh(r(Ti)) × l(Ti)

)

STACS 2016

10:10 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

=
k∑
i=1

(
Kh(r(Ti)) × l(Ti)

)
+

k∑
i=1

(
6×Kh(r(Ti)) × l(Ti)

)
= 7×Kh(r(T))−1 ×

k∑
i=1

l(Ti) (∵ ∀i, h(r(Ti)) = h(r(T))− 1)

< Kh(r(T)) ×
k∑
i=1

l(Ti) (∵ K > 7)

= Kh(r(T)) × l(T)

Now, consider the case when r(T) is a small non-planar graph. The maximum possible
contribution from edges of r(T) to the circulation of a cycle in T is less than 2m+1 ×
Kh(r(T))−1 × l(T). Similar to the case when r(T) is planar, contribution from all subtrees
is at most Kh(r(T))−1 × l(T). The total circulation of a cycle in T can be at most the sum
of these two bounds, and is thus bounded above by (2m+1 + 1)×Kh(r(T))−1 × l(T). Since,
K > 2m+2, the total possible circulation is less than Kh(r(T)) × l(T).

Therefore, the upper bound UT = Kh(r(T)) × l(T). J

To see that each cycle gets a nonzero circulation, recall Lemma 8, which says that the
circulation of the cycle is the sum of circulations of its projections on different components.
Consider a cycle C. Recall that components with a non-empty projection of C form a subtree
SC in the component tree. From Claim 10, we can find a node v∗ ∈ SC such that all other
nodes in SC are its descendants in the working tree T . Thus, v∗ is the unique minimum
depth component on which C has a non-empty projection. Now, we show two things: (i) the
contribution to the circulation from this component is nonzero, and (ii) it is larger than sum
of all the circulation contributions from all its subtrees in the working tree.

Let v∗ be the root of a subtree T in the working tree. Let the subtrees attached at r(T)
(= v∗) be {T1, T2, . . . , Tk} and the separating sets in r(T) at which they are attached be
{τ1, τ2, . . . , τk} respectively.

Case 1 : when r(T) is a constant-sized component. It is easy to see that the circulation
of any cycle in this component will be nonzero as long as it takes a real edge, because the
weights given are powers of 2. Also, the minimum weight of any edge in r(T) is 2×

∑k
i=1 UTi .

Thus, when a cycle takes a real edge, contribution to its circulation from r(T) is larger than
the contribution from higher depth components (components in the subtrees attached at
r(T)). And any cycle has to take a real edge, as the virtual edges and triangles all have
disjoint set of vertices. (Here, the virtual triangle does not count as a cycle).

Case 2 : when r(T) is a planar component. The crucial observation here is that in a
planar graph, all the faces inside a cycle contribute to its circulation in the same orientation.

I Claim 12 ([6]). In a planar graph, circulation of a cycle in clockwise orientation is the
sum of circulations of the faces inside it (a proof can be found in [3]).

Since C passes through at least one of the subtrees attached at r(T), say Ti, it must go
through the separating set τi. Hence, the projection of C in r(T), say C ′, must use the virtual
edge (or one of the edges in the virtual triangle) corresponding to τi. This would imply that
at least one of the faces adjacent to τi is inside C ′. This is true for any subtree Ti which C
passes through. As the faces adjacent to separating sets have nonzero circulations and each
face has a positive circulation in clockwise direction, the circulation of C ′ is nonzero.

Recall that circulation of any face adjacent to τi is 2UTi , where UTi is the upper bound
on circulation contribution from Ti. This implies that the circulation of C ′ will surpass the

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:11

total circulation from all the subtrees which C passes through. Thus, we can conclude the
following.

I Lemma 13. Circulation of any cycle which passes through at least two components is
nonzero.

Face circulations using edge weights: Now, we come back to the question of assigning
weights to the edges in a planar component such that the faces get the desired circulations.
Lemma 14 describes this procedure for any planar graph.

I Lemma 14 ([19]). Let G(V,E) be a planar graph with F being its set of inner faces in some
planar embedding. For any given function on the inner faces w′ : F → Z, a skew-symmetric
weight function w : ~E → Z can be constructed in log-space such that each face f ∈ F has a
circulation w′(f) (a proof can be found in the full version [3]).

This scheme can assign weight to any edge in the given graph, while we are not allowed to
give weights to virtual edges/triangles. So, we first collapse all the virtual triangles to one
node and all the virtual edges to one node. As no two virtual triangles/edges are adjacent,
after this operation, every face remains a non-trivial face (except the virtual triangle face).
Now, we apply the procedure from Lemma 14. After undoing the collapse, the circulations
of the faces will not change and we will have the desired circulations.

Circulation of cycles contained within a single component: To construct w1 for planar
components, we assign +1 circulation to every face using Lemma 14 (similar to the case
of multiple components). This would ensure nonzero circulation for every cycle within the
planar component. This construction has been used in [19] for bipartite planar graphs. [29]
also gives a log-space construction which ensures nonzero circulation for all cycles in a planar
graph, using Green’s theorem.

For the non-planar components, w0 already ensures that each cycle has non-zero circulation.
Therefore, we set w1 = 0. Use a linear combination of w0 and w1 such that they do not
interfere with each other. Such a combination is easy to achieve by multiplying w1 by n2

or a higher power of n since since w0 is O(n). This together with Lemma 13 gives us the
following.

I Lemma 15. Circulation of any cycle is non-zero.

Complexity: The weights given by this scheme are polynomially bounded and the weight-
construction procedure can be done in log-space (see the full version [3] for details).

3.3 Construction of the Working Tree
Now, we describe a log-space construction of the working tree. The idea is obtained from
the construction of [21, Lemma 6], where they create a O(logn)-depth tree of well-matched
substrings of a given well-matched string. Recall that for a tree S, the working tree wt(S) is
constructed by first choosing a center node c(S) of S and marking it as the root of wt(S),
and then recursively finding the working trees for each component obtained by removing the
node c(S) from S and connecting them to the root of wt(S), as subtrees.

First, consider the following possible definition of the center: for any tree S with n nodes,
one can define its center to be a node whose removal would give disjoint components of size
≤ 1/2|S|. Finding such a center is an easy task and can be done in log-space. Clearly, the

STACS 2016

10:12 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

depth of the working tree would be O(logn). It is not clear if the recursive procedure of
finding centers for each resulting component can be done in log-space. Therefore, we give a
more involved way of defining centers, so that the whole recursive procedure can be done in
log-space.

First, we make the tree S rooted at an arbitrary node r. To find the child-parent relations
of the rooted tree, one can do the standard log-space traversal of a tree.

Tree traversal [22] : for every node, give its edges an arbitrary cyclic ordering. Start
traversing from the root r by taking an arbitrary edge. If you arrive at a node u using its
edge e then leave node u using the right neighbor of e. This traversal ends at r with every
edge being traversed exactly twice.

For any node v, let Sv denote the subtree of S, rooted at v. For any node v and one of its
descendant nodes v′ in S, let Sv,v′ denote the tree Sv \ Sv′ . Moreover Sv,ε would just mean
Sv, for any v. With our new definition of the center, at any stage of the recursive procedure,
the component under consideration will always be of the form Sv,v′ , for some nodes v, v′ ∈ S.
Now, we give a definition of the center for a rooted tree of the form Sv,v′ .

Center c(Sv,v′):
Case (i) When v′ = ε, i.e. the given tree is Sv. Let c be a node in Sv, such that its removal

gives components of size ≤ 1/2|Sv|. If there are more than one such nodes then choose
the lexicographically smallest one (there is at least one such center [17]). Define c as the
center of Sv,v′ .
Let the children of c in Sv be {c1, c2, . . . , ck}. Clearly, after removing c from Sv, the
components we get are Sc1 , Sc2 , . . . , Sck

and Sv,c. Thus, they are all of the form described
above, and have size ≤ 1/2|Sv|.

Case (ii) When v′ is an actual node in Sv. Let the node sequence on the path connecting
v and v′ be (u0, u1, . . . , up), with u0 = v and up = v′. Let 0 ≤ i < p be the least index
such that |Sui+1,v′ | ≤ 1/2|Sv,v′ |. This index exists because |Sup,v′ | = 0. Define ui as the
center of Sv,v′ .
Let the children of ui, apart from ui+1, be {c1, c2, . . . , ck}. After removal of ui from
Sv,v′ , the components we get are Sc1 , Sc2 , . . . , Sck

, Sui+1,v′ and Sv,ui
. By the choice of

i, |Sui,v′ | > 1/2|Sv,v′ |. Thus, |Sv,ui
| ≤ 1/2|Sv,v′ |. So, the only components for which

we do not have a guarantee on their sizes, are Sc1 , Sc2 , . . . , Sck
. Observe that when we

find a center for the tree Scj ,ε in the next recursive call, it will fall into case (i) and the
components we get will have their sizes reduced by a factor of 1/2.
Thus, we can conclude that in the recursive procedure for constructing the working tree,
we reduce the size of the component by half in at most two recursive calls. Hence, the
depth of working tree is O(logn).

Now, we describe a log-space procedure for the working tree.

I Lemma 16. For any tree S, its working tree wt(S) can be constructed in log-space.

Proof. We just describe a log-space procedure for finding the parent of a given node x in
the working tree. Running this procedure for every node will give us the working tree.

Find the center of the tree S. Removing the center would give many components. Find
the component S1, to which the node x belongs. Apply the same procedure recursively on
S1. Keep going to smaller components which contain x, till x becomes the center of some
component. The center of the previous component in the recursion will be the parent of x in
the working tree.

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:13

In this recursive procedure, to store the current component Sv,v′ , we just need to store
two nodes v and v′. Apart from these, we need to store center of the previous component
and size of the current component.

To find the center of a given component Sv,v′ , go over all possibilities of the center,
depending on whether v′ is ε or a node. For any candidate center c, find the sizes of the
components generated if c is removed. Check if the sizes satisfy the specified requirements.
Any of these components is also of the form Su,u′ and thus can be stored with two nodes.

By the standard log-space traversal of a tree, for any given tree Sv,v′ , one can count the
number of nodes in it and test membership of a given node. Thus, the whole procedure
works in log-space. J

4 Discussion

One of the open problems is to construct a polynomially bounded isolating weight assignment
for a more general class of graphs, in particular, for all bipartite graphs. Our approach
does not directly extend to more general minor-free graphs, because their decomposition
can involve separating sets of size more than 3. For example, when we have a separating
set of size 4, a cycle can have two different projections in a component, i.e., it enters the
component twice and leaves the component twice. These two projections can contribute to
the total circulation with opposite signs and can cancel each other.

The isolation question is also open for general planar graphs and small genus bipartite
graphs.

Acknowledgements. We thank Arpita Korwar for various helpful discussions.

References
1 Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially bounded

perfect matching problem is in NC2. In Wolfgang Thomas and Pascal Weil, editors, STACS
2007, volume 4393 of Lecture Notes in Computer Science, pages 489–499. Springer Berlin
Heidelberg, 2007.

2 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform
and nonuniform upper bounds. J. Comput. Syst. Sci., 59(2):164–181, 1999.

3 Rahul Arora, Ashu Gupta, Rohit Gurjar, and Raghunath Tewari. Derandomizing isolation
lemma for K3,3-free and K5-free bipartite graphs. Technical Report TR14-161, Electronic
Colloquium on Computational Complexity (ECCC), 2014.

4 V. Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma and lower
bounds for circuit size. In Ashish Goel, Klaus Jansen, JoséD.P. Rolim, and Ronitt Rubinfeld,
editors, Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques, volume 5171 of Lecture Notes in Computer Science, pages 276–289. Springer
Berlin Heidelberg, 2008.

5 Takao Asano. An approach to the subgraph homeomorphism problem. Theoretical Com-
puter Science, 38(0):249 – 267, 1985.

6 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):4:1–4:17, February 2009.

7 Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, April 1974.

8 Bireswar Das, Samir Datta, and Prajakta Nimbhorkar. Log-space algorithms for paths and
matchings in k-trees. Theory of Computing Systems, 53(4):669–689, 2013.

STACS 2016

10:14 Derandomizing Isolation Lemma for K3,3-free and K5-free Bipartite Graphs

9 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47:737–757, 2010.

10 Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vinodchandran. Space
complexity of perfect matching in bounded genus bipartite graphs. J. Comput. Syst. Sci.,
78(3):765–779, 2012.

11 Samir Datta, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wagner. Graph iso-
morphism for K3,3-free and K5-free graphs is in log-space. In IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009,
December 15-17, 2009, IIT Kanpur, India, pages 145–156, 2009.

12 Jack Edmonds. Path, trees, and flowers. Canadian J. Math., 17:449–467, 1965.
13 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in

quasi-nc. Technical Report TR15-177, Electronic Colloquium on Computational Complex-
ity (ECCC), 2015.

14 Dima Grigoriev and Marek Karpinski. The matching problem for bipartite graphs with
polynomially bounded permanents is in NC (extended abstract). In 28th Annual Symposium
on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987,
pages 166–172, 1987.

15 Thanh Minh Hoang. On the matching problem for special graph classes. In IEEE Confer-
ence on Computational Complexity, pages 139–150. IEEE Computer Society, 2010.

16 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

17 Camille Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte
Mathematik, 70:185–190, 1869.

18 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in
random NC. Combinatorica, 6(1):35–48, 1986.

19 Arpita Korwar. Matching in planar graphs. Master’s thesis, Indian Institute of Technology
Kanpur, 2009.

20 Raghav Kulkarni, Meena Mahajan, and Kasturi R. Varadarajan. Some perfect match-
ings and perfect half-integral matchings in NC. Chicago Journal of Theoretical Computer
Science, 2008(4), September 2008.

21 Nutan Limaye, Meena Mahajan, and B.V.Raghavendra Rao. Arithmetizing classes around
NC1 and l. In STACS 2007, volume 4393 of Lecture Notes in Computer Science, pages
477–488. Springer Berlin Heidelberg, 2007.

22 Steven Lindell. A logspace algorithm for tree canonization (extended abstract). In Proceed-
ings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC ’92,
pages 400–404, New York, NY, USA, 1992. ACM.

23 László Lovász. On determinants, matchings, and random algorithms. In FCT, pages 565–
574, 1979.

24 Silvio Micali and Vijay V. Vazirani. An O(
√
V E) algorithm for finding maximum match-

ing in general graphs. In Proceedings of the 21st Annual Symposium on Foundations of
Computer Science, SFCS ’80, pages 17–27, Washington, DC, USA, 1980. IEEE Computer
Society.

25 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7:105–113, 1987.

26 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Com-
put., 29(4):1118–1131, 2000.

27 Neil Robertson and P.D Seymour. Graph minors. xvi. excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43 – 76, 2003.

R. Arora, A. Gupta, R. Gurjar, and R. Tewari 10:15

28 Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect
matchings in K5-free graphs. In IEEE 29th Conference on Computational Complexity,
CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 66–77, 2014.

29 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar
graphs. Inf. Comput., 215:1–7, 2012.

30 Thomas Thierauf and Fabian Wagner. Reachability in K3,3-free and K5-free graphs is in
unambiguous logspace. Chicago J. Theor. Comput. Sci., 2014, 2014.

31 Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in K3,3-
free graphs and related problems. Information and Computing, 80(2):152–164, 1989.

32 Burchard von Braunmühl and Rutger Verbeek. Input-driven languages are recognized in
log n space. In Marek Karpinski, editor, Foundations of Computation Theory, volume 158
of Lecture Notes in Computer Science, pages 40–51. Springer Berlin Heidelberg, 1983.

33 Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114, 1937.

STACS 2016

	Introduction
	Preliminaries
	Clique-sum
	Component Tree

	Nonzero Circulation
	Components of a cycle
	Weighting Scheme
	Construction of the Working Tree

	Discussion

