54 research outputs found

    Face Hallucination via Deep Neural Networks.

    Get PDF
    We firstly address aligned low-resolution (LR) face images (i.e. 16X16 pixels) by designing a discriminative generative network, named URDGN. URDGN is composed of two networks: a generative model and a discriminative model. We introduce a pixel-wise L2 regularization term to the generative model and exploit the feedback of the discriminative network to make the upsampled face images more similar to real ones. We present an end-to-end transformative discriminative neural network (TDN) devised for super-resolving unaligned tiny face images. TDN embeds spatial transformation layers to enforce local receptive fields to line-up with similar spatial supports. To upsample noisy unaligned LR face images, we propose decoder-encoder-decoder networks. A transformative discriminative decoder network is employed to upsample and denoise LR inputs simultaneously. Then we project the intermediate HR faces to aligned and noise-free LR faces by a transformative encoder network. Finally, high-quality hallucinated HR images are generated by our second decoder. Furthermore, we present an end-to-end multiscale transformative discriminative neural network (MTDN) to super-resolve unaligned LR face images of different resolutions in a unified framework. We propose a method that explicitly incorporates structural information of faces into the face super-resolution process by using a multi-task convolutional neural network (CNN). Our method not only uses low-level information (i.e. intensity similarity), but also middle-level information (i.e. face structure) to further explore spatial constraints of facial components from LR inputs images. We demonstrate that supplementing residual images or feature maps with additional facial attribute information can significantly reduce the ambiguity in face super-resolution. To explore this idea, we develop an attribute-embedded upsampling network. In this manner, our method is able to super-resolve LR faces by a large upscaling factor while reducing the uncertainty of one-to-many mappings remarkably. We further push the boundaries of hallucinating a tiny, non-frontal face image to understand how much of this is possible by leveraging the availability of large datasets and deep networks. To this end, we introduce a novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very LR out-of-plane rotated face images (including profile views) and aggressively super-resolve them by 8X, regardless of their original poses and without using any 3D information. Besides recovering an HR face images from an LR version, this thesis also addresses the task of restoring realistic faces from stylized portrait images, which can also be regarded as face hallucination

    RFormer: Transformer-based Generative Adversarial Network for Real Fundus Image Restoration on A New Clinical Benchmark

    Full text link
    Ophthalmologists have used fundus images to screen and diagnose eye diseases. However, different equipments and ophthalmologists pose large variations to the quality of fundus images. Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis. Thus, real fundus image restoration is worth studying. Unfortunately, real clinical benchmark has not been explored for this task so far. In this paper, we investigate the real clinical fundus image restoration problem. Firstly, We establish a clinical dataset, Real Fundus (RF), including 120 low- and high-quality (HQ) image pairs. Then we propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images. The key component in our network is the Window-based Self-Attention Block (WSAB) which captures non-local self-similarity and long-range dependencies. To produce more visually pleasant results, a Transformer-based discriminator is introduced. Extensive experiments on our clinical benchmark show that the proposed RFormer significantly outperforms the state-of-the-art (SOTA) methods. In addition, experiments of downstream tasks such as vessel segmentation and optic disc/cup detection demonstrate that our proposed RFormer benefits clinical fundus image analysis and applications. The dataset, code, and models are publicly available at https://github.com/dengzhuo-AI/Real-FundusComment: IEEE J-BHI 2022; The First Benchmark and First Transformer-based Method for Real Clinical Fundus Image Restoratio

    Multiplexed photography : single-exposure capture of multiple camera settings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 115-124).The space of camera settings is large and individual settings can vary dramatically from scene to scene. This thesis explores methods for capturing and manipulating multiple camera settings in a single exposure. Multiplexing multiple camera settings in a single exposure can allow post-exposure control and improve the quality of photographs taken in challenging lighting environments (e.g. low light or high motion). We first describe the design and implementation of a prototype optical system and associated algorithms to capture four images of a scene in a single exposure, each taken with a different aperture setting. Our system can be used with commercially available DSLR cameras and photographic lenses without modification to either. We demonstrate several applications of our multi-aperture camera, such as post-exposure depth of field control, synthetic refocusing, and depth-guided deconvolution. Next we describe multiplexed flash illumination to recover both flash and ambient light information as well as extract depth information in a single exposure. Traditional photographic flashes illuminate the scene with a spatially-constant light beam. By adding a mask and optics to a flash, we can project a spatially varying illumination onto the scene which allows us to spatially multiplex the flash and ambient illuminations onto the imager. We apply flash multiplexing to enable single exposure flash/no-flash image fusion, in particular, performing flash/no-flash relighting on dynamic scenes with moving objects. Finally, we propose spatio-temporal multiplexing, a novel image sensor feature that enables simultaneous capture of flash and ambient illumination.(cont.) We describe two possible applications of spatio-temporal multiplexing: single-image flash/no-flash relighting and white balancing scenes containing two distinct illuminants (e.g. flash and fluorescent lighting).by Paul Elijah Green.Ph.D

    Viewpoint-Free Photography for Virtual Reality

    Get PDF
    Viewpoint-free photography, i.e., interactively controlling the viewpoint of a photograph after capture, is a standing challenge. In this thesis, we investigate algorithms to enable viewpoint-free photography for virtual reality (VR) from casual capture, i.e., from footage easily captured with consumer cameras. We build on an extensive body of work in image-based rendering (IBR). Given images of an object or scene, IBR methods aim to predict the appearance of an image taken from a novel perspective. Most IBR methods focus on full or near-interpolation, where the output viewpoints either lie directly between captured images, or nearby. These methods are not suitable for VR, where the user has significant range of motion and can look in all directions. Thus, it is essential to create viewpoint-free photos with a wide field-of-view and sufficient positional freedom to cover the range of motion a user might experience in VR. We focus on two VR experiences: 1) Seated VR experiences, where the user can lean in different directions. This simplifies the problem, as the scene is only observed from a small range of viewpoints. Thus, we focus on easy capture, showing how to turn panorama-style capture into 3D photos, a simple representation for viewpoint-free photos, and also how to speed up processing so users can see the final result on-site. 2) Room-scale VR experiences, where the user can explore vastly different perspectives. This is challenging: More input footage is needed, maintaining real-time display rates becomes difficult, view-dependent appearance and object backsides need to be modelled, all while preventing noticeable mistakes. We address these challenges by: (1) creating refined geometry for each input photograph, (2) using a fast tiled rendering algorithm to achieve real-time display rates, and (3) using a convolutional neural network to hide visual mistakes during compositing. Overall, we provide evidence that viewpoint-free photography is feasible from casual capture. We thoroughly compare with the state-of-the-art, showing that our methods achieve both a numerical improvement and a clear increase in visual quality for both seated and room-scale VR experiences

    Depth-Map-Assisted Texture and Depth Map Super-Resolution

    Get PDF
    With the development of video technology, high definition video and 3D video applications are becoming increasingly accessible to customers. The interactive and vivid 3D video experience of realistic scenes relies greatly on the amount and quality of the texture and depth map data. However, due to the limitations of video capturing hardware and transmission bandwidth, transmitted video has to be compressed which degrades, in general, the received video quality. This means that it is hard to meet the users’ requirements of high definition and visual experience; it also limits development of future applications. Therefore, image/video super-resolution techniques have been proposed to address this issue. Image super-resolution aims to reconstruct a high resolution image from single or multiple low resolution images captured of the same scene under different conditions. Based on the image type that needs to be super-resolved, image super-resolution includes texture and depth image super-resolutions. If classified based on the implementation methods, there are three main categories: interpolation-based, reconstruction-based and learning-based super-resolution algorithms. This thesis focuses on exploiting depth data in interpolation-based super-resolution algorithms for texture video and depth maps. Two novel texture and one depth super-resolution algorithms are proposed as the main contributions of this thesis. The first texture super-resolution algorithm is carried out in the Mixed Resolution (MR) multiview video system where at least one of the views is captured at Low Resolution (LR), while the others are captured at Full Resolution (FR). In order to reduce visual uncomfortableness and adapt MR video format for free-viewpoint television, the low resolution views are super-resolved to the target full resolution by the proposed virtual view assisted super resolution algorithm. The inter-view similarity is used to determine whether to fill the missing pixels in the super-resolved frame by virtual view pixels or by spatial interpolated pixels. The decision mechanism is steered by the texture characteristics of the neighbors of each missing pixel. Thus, the proposed method can recover the details in regions with edges while maintaining good quality at smooth areas by properly exploiting the high quality virtual view pixels and the directional correlation of pixels. The second texture super-resolution algorithm is based on the Multiview Video plus Depth (MVD) system, which consists of textures and the associated per-pixel depth data. In order to further reduce the transmitted data and the quality degradation of received video, a systematical framework to downsample the original MVD data and later on to super-resolved the LR views is proposed. At the encoder side, the rows of the two adjacent views are downsampled following an interlacing and complementary fashion, whereas, at the decoder side, the discarded pixels are recovered by fusing the virtual view pixels with the directional interpolated pixels from the complementary downsampled views. Consequently, with the assistance of virtual views, the proposed approach can effectively achieve these two goals. From previous two works, we can observe that depth data has big potential to be used in 3D video enhancement. However, due to the low spatial resolution of Time-of-Flight (ToF) depth camera generated depth images, their applications have been limited. Hence, in the last contribution of this thesis, a planar-surface-based depth map super-resolution approach is presented, which interpolates depth images by exploiting the equation of each detected planar surface. Both quantitative and qualitative experimental results demonstrate the effectiveness and robustness of the proposed approach over benchmark methods

    Fehlerkaschierte Bildbasierte Darstellungsverfahren

    Get PDF
    Creating photo-realistic images has been one of the major goals in computer graphics since its early days. Instead of modeling the complexity of nature with standard modeling tools, image-based approaches aim at exploiting real-world footage directly,as they are photo-realistic by definition. A drawback of these approaches has always been that the composition or combination of different sources is a non-trivial task, often resulting in annoying visible artifacts. In this thesis we focus on different techniques to diminish visible artifacts when combining multiple images in a common image domain. The results are either novel images, when dealing with the composition task of multiple images, or novel video sequences rendered in real-time, when dealing with video footage from multiple cameras.Fotorealismus ist seit jeher eines der großen Ziele in der Computergrafik. Anstatt die Komplexität der Natur mit standardisierten Modellierungswerkzeugen nachzubauen, gehen bildbasierte Ansätze den umgekehrten Weg und verwenden reale Bildaufnahmen zur Modellierung, da diese bereits per Definition fotorealistisch sind. Ein Nachteil dieser Variante ist jedoch, dass die Komposition oder Kombination mehrerer Quellbilder eine nichttriviale Aufgabe darstellt und häufig unangenehm auffallende Artefakte im erzeugten Bild nach sich zieht. In dieser Dissertation werden verschiedene Ansätze verfolgt, um Artefakte zu verhindern oder abzuschwächen, welche durch die Komposition oder Kombination mehrerer Bilder in einer gemeinsamen Bilddomäne entstehen. Im Ergebnis liefern die vorgestellten Verfahren neue Bilder oder neue Ansichten einer Bildsammlung oder Videosequenz, je nachdem, ob die jeweilige Aufgabe die Komposition mehrerer Bilder ist oder die Kombination mehrerer Videos verschiedener Kameras darstellt

    Medical Image Modality Synthesis and Resolution Enhancement Based on Machine Learning Techniques

    Get PDF
    To achieve satisfactory performance from automatic medical image analysis algorithms such as registration or segmentation, medical imaging data with the desired modality/contrast and high isotropic resolution are preferred, yet they are not always available. We addressed this problem in this thesis using 1) image modality synthesis and 2) resolution enhancement. The first contribution of this thesis is computed tomography (CT)-tomagnetic resonance imaging (MRI) image synthesis method, which was developed to provide MRI when CT is the only modality that is acquired. The main challenges are that CT has poor contrast as well as high noise in soft tissues and that the CT-to-MR mapping is highly nonlinear. To overcome these challenges, we developed a convolutional neural network (CNN) which is a modified U-net. With this deep network for synthesis, we developed the first segmentation method that provides detailed grey matter anatomical labels on CT neuroimages using synthetic MRI. The second contribution is a method for resolution enhancement for a common type of acquisition in clinical and research practice, one in which there is high resolution (HR) in the in-plane directions and low resolution (LR) in the through-plane direction. The challenge of improving the through-plane resolution for such acquisitions is that the state-of-art convolutional neural network (CNN)-based super-resolution methods are sometimes not applicable due to lack of external LR/HR paired training data. To address this challenge, we developed a self super-resolution algorithm called SMORE and its iterative version called iSMORE, which are CNN-based yet do not require LR/HR paired training data other than the subject image itself. SMORE/iSMORE create training data from the HR in-plane slices of the subject image itself, then train and apply CNNs to through-plane slices to improve spatial resolution and remove aliasing. In this thesis, we perform SMORE/iSMORE on multiple simulated and real datasets to demonstrate their accuracy and generalizability. Also, SMORE as a preprocessing step is shown to improve segmentation accuracy. In summary, CT-to-MR synthesis, SMORE, and iSMORE were demonstrated in this thesis to be effective preprocessing algorithms for visual quality and other automatic medical image analysis such as registration or segmentation

    Distributed texture-based terrain synthesis

    Get PDF
    Terrain synthesis is an important field of Computer Graphics that deals with the generation of 3D landscape models for use in virtual environments. The field has evolved to a stage where large and even infinite landscapes can be generated in realtime. However, user control of the generation process is still minimal, as well as the creation of virtual landscapes that mimic real terrain. This thesis investigates the use of texture synthesis techniques on real landscapes to improve realism and the use of sketch-based interfaces to enable intuitive user control

    Computational Methods for Segmentation of Multi-Modal Multi-Dimensional Cardiac Images

    Get PDF
    Segmentation of the heart structures helps compute the cardiac contractile function quantified via the systolic and diastolic volumes, ejection fraction, and myocardial mass, representing a reliable diagnostic value. Similarly, quantification of the myocardial mechanics throughout the cardiac cycle, analysis of the activation patterns in the heart via electrocardiography (ECG) signals, serve as good cardiac diagnosis indicators. Furthermore, high quality anatomical models of the heart can be used in planning and guidance of minimally invasive interventions under the assistance of image guidance. The most crucial step for the above mentioned applications is to segment the ventricles and myocardium from the acquired cardiac image data. Although the manual delineation of the heart structures is deemed as the gold-standard approach, it requires significant time and effort, and is highly susceptible to inter- and intra-observer variability. These limitations suggest a need for fast, robust, and accurate semi- or fully-automatic segmentation algorithms. However, the complex motion and anatomy of the heart, indistinct borders due to blood flow, the presence of trabeculations, intensity inhomogeneity, and various other imaging artifacts, makes the segmentation task challenging. In this work, we present and evaluate segmentation algorithms for multi-modal, multi-dimensional cardiac image datasets. Firstly, we segment the left ventricle (LV) blood-pool from a tri-plane 2D+time trans-esophageal (TEE) ultrasound acquisition using local phase based filtering and graph-cut technique, propagate the segmentation throughout the cardiac cycle using non-rigid registration-based motion extraction, and reconstruct the 3D LV geometry. Secondly, we segment the LV blood-pool and myocardium from an open-source 4D cardiac cine Magnetic Resonance Imaging (MRI) dataset by incorporating average atlas based shape constraint into the graph-cut framework and iterative segmentation refinement. The developed fast and robust framework is further extended to perform right ventricle (RV) blood-pool segmentation from a different open-source 4D cardiac cine MRI dataset. Next, we employ convolutional neural network based multi-task learning framework to segment the myocardium and regress its area, simultaneously, and show that segmentation based computation of the myocardial area is significantly better than that regressed directly from the network, while also being more interpretable. Finally, we impose a weak shape constraint via multi-task learning framework in a fully convolutional network and show improved segmentation performance for LV, RV and myocardium across healthy and pathological cases, as well as, in the challenging apical and basal slices in two open-source 4D cardiac cine MRI datasets. We demonstrate the accuracy and robustness of the proposed segmentation methods by comparing the obtained results against the provided gold-standard manual segmentations, as well as with other competing segmentation methods
    corecore