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Abstract

With the development of video technology, high definition video and 3D video applica-

tions are becoming increasingly accessible to customers. The interactive and vivid 3D

video experience of realistic scenes relies greatly on the amount and quality of the tex-

ture and depth map data. However, due to the limitations of video capturing hardware

and transmission bandwidth, transmitted video has to be compressed which degrades,

in general, the received video quality. This means that it is hard to meet the users’ re-

quirements of high definition and visual experience; it also limits development of future

applications. Therefore, image/video super-resolution techniques have been proposed

to address this issue.

Image super-resolution aims to reconstruct a high resolution image from single or

multiple low resolution images captured of the same scene under different conditions.

Based on the image type that needs to be super-resolved, image super-resolution in-

cludes texture and depth image super-resolutions. If classified based on the implemen-

tation methods, there are three main categories: interpolation-based, reconstruction-

based and learning-based super-resolution algorithms. This thesis focuses on exploit-

ing depth data in interpolation-based super-resolution algorithms for texture video and

depth maps. Two novel texture and one depth super-resolution algorithms are proposed

as the main contributions of this thesis.

The first texture super-resolution algorithm is carried out in the Mixed Resolution

(MR) multiview video system where at least one of the views is captured at Low Reso-

lution (LR), while the others are captured at Full Resolution (FR). In order to reduce

visual uncomfortableness and adapt MR video format for free-viewpoint television, the

low resolution views are super-resolved to the target full resolution by the proposed

virtual view assisted super resolution algorithm. The inter-view similarity is used to

determine whether to fill the missing pixels in the super-resolved frame by virtual view

pixels or by spatial interpolated pixels. The decision mechanism is steered by the tex-
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ture characteristics of the neighbors of each missing pixel. Thus, the proposed method

can recover the details in regions with edges while maintaining good quality at smooth

areas by properly exploiting the high quality virtual view pixels and the directional

correlation of pixels. The second texture super-resolution algorithm is based on the

Multiview Video plus Depth (MVD) system, which consists of textures and the as-

sociated per-pixel depth data. In order to further reduce the transmitted data and

the quality degradation of received video, a systematical framework to downsample

the original MVD data and later on to super-resolved the LR views is proposed. At

the encoder side, the rows of the two adjacent views are downsampled following an

interlacing and complementary fashion, whereas, at the decoder side, the discarded

pixels are recovered by fusing the virtual view pixels with the directional interpolated

pixels from the complementary downsampled views. Consequently, with the assistance

of virtual views, the proposed approach can effectively achieve these two goals. From

previous two works, we can observe that depth data has big potential to be used in 3D

video enhancement. However, due to the low spatial resolution of Time-of-Flight (ToF)

depth camera generated depth images, their applications have been limited. Hence, in

the last contribution of this thesis, a planar-surface-based depth map super-resolution

approach is presented, which interpolates depth images by exploiting the equation of

each detected planar surface. Both quantitative and qualitative experimental results

demonstrate the effectiveness and robustness of the proposed approach over benchmark

methods.
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Chapter 1

Introduction

1.1 Motivation

The development of video technologies make high definition video and 3D video appli-

cations increasingly accessible to consumers through products, such as, High-Definition

(HD) TVs, computer monitors, HD cameras, smart phones, and many other handheld

devices. However, the demands for High Resolution(HR) and 3D video put pressure on

the acquisition, storage and transmission processes, especially for bandwidth limited

applications [10]. Hence, the popularity of HR or 3D video in the multimedia market

still faces many challenges.

Perceived image quality relies greatly on the capture and delivery process. For im-

age quality assessment, one essential factor is spatial resolution (or pixel density) in

one image, which is affected by the camera sensor (e.g., Couple Charge Device (CCD))

[2] [3]. High resolution images can be obtained by increasing the total number of pixels

on a CCD chip either via reducing pixel size or increasing chip size. Whereas, the

effectiveness of the first approach is limited by shot noise which severely degrades the

image quality. The second approach increases chip size, on one hand, it will lead to

an increase in capacitance which will decrease the charge transfer rate. On the other

hand, it will cause an additional increase in cost due to the high precision optics and

image sensors required [3]. In spite of the limitations of the camera sensor, in reality,

due to the capture conditions and digital camera techniques, the captured images usu-

ally cannot reflect all of the information in a scene. The image acquisition process is

shown in Fig.1.1, where the atmosphere turbulence, the motion transformation caused

distortion, the downsampling introduced distortion and the hardware caused additive

noise can degrade the captured image quality [11]. Since the transmission of images,

1



especially HR images, requires much higher bitrate than text, before transmitting,

high compression rates are required, resulting in annoying compression artifacts, such

as, block artifacts, blurred details and ringing artifacts around edges [12]. Therefore,

a new approach toward increasing spatial resolution, so as to increase the quality, is

needed. One effective solution to solve these kinds of problem is the super-resolution

technique, which could provide a cost-effective solution to increase image resolution.

Original 

scene 
Transformation 

Blur 

effect 
Downsampling 

Actual captured 

image 

Noise 

Figure 1.1: The image acquisition process.

Since Super-Resolution(SR) techniques are targeted at increasing the spatial reso-

lution of low-cost hardware obtained LR images and limited bandwidth obtained LR

images by using software, they have played an important role in many applications. For

example, in surveillance video applications, SR can be used to obtain higher quality

video sequences from several low resolution cameras [13] and to recognize car license

plates and faces robustly and efficiently even under bad capture conditions [14] [15].

In the remote sensing and astronomy fields, due to the size and weight limitation of

satellite cameras, power supply and transmission bandwidth, the obtained images are

usually in low resolution. Therefore, SR techniques become essential for earth en-

vironment observation [16]. Medical imaging has become an important aid tool for

medical diagnosis. Using SR to enhance the quality of medical images, the condition

and position of a lesion can be well determined, so that the accuracy of diagnoses can

be improved [17]. In consumer electronics, entertainment and digital communication

applications, multimedia content occupies a dominant share. SR techniques can offer

an improved viewing experience for customers by enlarging the resolution of perceived

images/video and removing the visual artifacts caused by video compression [18].

More than 30 years ago, researchers began to work on extracting information from

multiple digital images to enhance the spatial resolution of LR images [19]. In general,

the SR algorithms for images can be mainly classified into 3 categories: reconstruction-

based algorithms [20], learning-based algorithms [7][21] and interpolation-based algo-

rithms [22][23]. Techniques in the first category are based on the assumption that

high frequency details are available in a LR image as aliased frequencies, and these ap-

2



proaches can be realized in both the frequency and spatial domains [24] [25]. However,

this kind of method highly relies on the choice of the regularization parameters and the

number of LR images, which are not easy to obtain in reality [26]. In contrast, learning-

based SR approaches assume that it is possible to predict the missing high frequency

details in a single LR image by a group of LR and FR image pairs [27]. Since image

information hides underlying models, it can be modeled as a mathematical function.

Unfortunately, their performance largely depends on the choice of training samples,

so unsuitable training samples can produce artifacts in the recovered High Resolution

(HR) image [26]. Free from the suffering from the dependency problem on training

data and having well time performance, especially for real time systems, interpolation-

based SR algorithms are widely adopted. The interpolation-based SR algorithms are

implemented based on the fact that the missing HR pixels can be estimated by using

the information from neighboring LR pixels. However, the main drawback of these

methods is their inability to fully exploit the scene content during the interpolation

process, and consequently they are prone to blur high frequency details (edges).

1.2 Objectives

The main goal of the thesis is to propose specific and sophisticated interpolation-based

3D SR solutions for different purposes, so that to fill the gaps with respect to current

2D SR algorithms. With one more cue in depth, the SR methods designed for 3D video

can achieve better results than directly applying 2D SR algorithms on 3D video. To

fulfil this objective, the research work was carried out by introducing depth information

into the SR process. However, the depth camera generated depth images have lower

resolution than the corresponding textures which makes them cannot be used directly.

Hence, the depth camera generated depth images need to be super-resolved to the same

resolution as the textures. To achieve the final goal, this thesis addresses the following

objectives:

• Providing a review of classic and the state-of-the-art 2D SR methods as the

general background.

• Developing a 3D SR algorithm for 3D-MR video.

• Developing a 3D SR algorithm for MVD video.

3



• Developing a robust and accurate planar surface detection algorithm on the depth

camera generated depth images.

• Developing an efficient depth image SR algorithm based on the planar surface

detection results.
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1.3 Overview of this thesis

1.3.1 Contribution of This Thesis

This thesis provides an investigation of efficient texture and depth image SR algorithms

for different applications by using depth information. The main contributions of the

thesis are:

• Depth-map-assisted texture super-resolution for multiview mixed-resolution

video system

A new virtual-view-assisted SR and enhancement algorithm is proposed, where

the exploitation of the virtual view information and the interpolated frames of-

fers two benefits. Firstly, the high frequency information contained in the FR

views can be properly utilized to super-resolve LR views; secondly, the inter-view

redundancy is used to enhance the original LR pixels in the super-resolved views

and to compensate for the luminance difference between views. The experimen-

tal results show that the proposed algorithm achieves superior performance with

respect to interpolation-based algorithms. This work was published in [28], and

is presented in Chapter 3.

• Depth-map-assisted texture super-resolution for multiview video plus

depth system

In Chapter 3, the FR views generated virtual views and traditional interpolated

views are used in conjunction to super-resolve the LR view in a multiview mixed-

resolution video system. While, in this framework, in addition to super-resolving

one LR view, the two FR views are downsampled before encoding and super-

resolved after decoding by exploiting inter-view redundancy via virtual views.

In the proposed downsampling approach, the rows of two adjacent texture views

are discarded following an interlacing and complementary pattern, before com-

pression. The aim of this downsampling approach is to systematically facilitate

the super-resolution task at the decoder end, where the LR views will be super-

resolved by fusing the virtual view pixels with directional interpolated pixels with

the aid of pattern direction of the discarded pixels. This approach has two bene-

fits. Firstly, the high frequency information contained in the counterpart LR view

can be properly utilized to super-resolve the other LR view through the generated
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virtual views. Secondly, since the virtual view quality depends on many factors,

including the DIBR technique and depth map quality, it generally has low quality

in areas where the corresponding depth data suffers from discontinuities. On the

other hand, directional interpolation approaches can work well. Hence, by taking

advantage of these two kinds of strategy, the discarded pixels can be recovered

efficiently. The experimental results have shown that the proposed algorithm

achieves superior performance with respect to the filter-based interpolation al-

gorithms and state-of-the-art algorithms. This work could be regarded as an

extension of the work presented in Chapter 3.

• Super-resolution of depth map by exploiting planar surfaces

In the previous chapters, depth data has shown the big potential to be used to

super-resolve LR views and the techniques of generating depth map become more

mature and accurate. However, the ToF depth camera generated depth maps

still suffer from low resolution. Therefore, in Chapter 5, this thesis focuses on

depth map SR by exploiting planar surfaces on a single depth map. In this way,

the super-resolved depth maps can expand the application domains of texture SR

algorithm.

Depth maps, different from common texture images due to their large homoge-

neous areas, are delimitated by sharp edges at the discontinuities between objects.

After projecting 3D objects, they can be represented by several planar surfaces

with different shapes in a 2D image, each surface will have linearly changing depth

values in the corresponding depth map and the boundaries of surfaces represent

the discontinuities of the depth values. If the equation of each surface can be

obtained, the SR of the LR depth map can be obtained by inserting pixels based

on this equation. Therefore, the whole depth map can be classified into three

categories: planar surfaces, non-planar surfaces, and edges. In [29], the SR of

depth map relied on the local planar hypothesis and the candidates for potential

HR depth values were obtained by either linear interpolation along horizontal

and vertical directions or the estimated local planar surface equations. However,

since the surface equation was evaluated locally, it may be biased by noise affect-

ing local pixels which later on will magnify the estimated error of the generated

HR depth map. Therefore, to address the above problem, we propose the use
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of global analytical equations of the detected surfaces in the scene. For each of

these three categories a proper up-sampling approach is proposed to exploit its

intrinsic properties. The related work was published in [30] [31], and is presented

in Chapter 5.

1.3.2 Organization of This Thesis

This thesis is organized as follows: Chapter 2 provides general background on image

acquisition and assessment. The advantages and challenges of current SR algorithms are

reviewed and discussed. Then, the related concepts and techniques are also introduced.

Chapters 3 and 4 give the details of the two proposed texture SR algorithms, re-

spectively, while Chapter 5 changes the focus to the depth map SR algorithm. Chapter

6 summarizes the whole thesis and discusses possible future research directions in the

area of efficient super-resolution techniques.
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Chapter 2

Background

2.1 Introduction of Texture Image

2.1.1 Texture Image Acquisition

The history of the first generation of the photographic camera dates back to the fifth

century B.C. Its working principle, camera obscura, was discovered by the Chinese

philosopher Mo Di [32]. However, it was not until 1826 when the first permanent

photographic image from a camera obscura was captured by Joseph Nicphore Nipce

on a bitumen-coated metal plate. From that time the floodgates of using photographs

to record human actions were opened. Subsequently many recording techniques have

been developed, themselves diverse in nature and in many cases easier to use than

before. In 1888, Kodak invented a new photographic material, photographic film,

and produced the first photographic film camera. The invention of photographic film

greatly improved the usage of the camera. In 1975, the first digital camera was invented;

formally heralding the human progression into the digital imaging era.

The working principle of the digital camera is completely different from that of

the conventional camera. A conventional film camera captures the image based on

chemical reactions that take place in an emulsion covering the surface of the film when

it is exposed to light. The emulsion is commonly composed of silver salt, whose particles

are sensitive to the quantum effect of light. The spatial variations of light intensity are

captured in the salt and appear after developing the film. Instead of using a chemical

approach, the digital camera relies on a physical approach, using electronic sensors to

perceive spatial variations in light intensity. With the aid of some image processing

algorithms, the sensor data is converted into color images and stored in a visible digital

format (Fig.2.1) [2].
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Figure 2.1: The working principle of digital camera [2].

Currently, there are two major types of imaging sensor, namely CCD (Charge Cou-

pled Device) and CMOS (Complementary Metal Oxide Semiconductor). The CCD

consists of tiny light-sensitive diodes, called photosites, which can convert photons into

electrons [33]. In this way, light can be represented by electrical charge. The brighter

the light on a single photosite, the greater the electrical charge that will accumulate

at that photosite. The CMOS imaging chip, as a kind of active pixel sensor, is made

by semiconductors. Both types of image sensor can convert light into electrons at the

photosites and then an analog-to-digital converter will turn each pixel’s value into a

digital value. CCD sensors have the ability to accumulate the charges and extract

them from the chip without distortion, therefore, CCD sensors have high fidelity and

light sensitivity and also have been widely used in professional, medical, and scientific

applications where high-quality image data is required. On the other hand, CMOS

sensors with a more consolidated manufacturing process have a lower price and quality

than that of CCD sensors. Hence, for applications with less demand on quality, such

as consumer digital cameras, the CMOS sensor is popular [34].

On these sensors, each sensitive element can be called a “pixel” and the pixel is the

basic unit in a digital image. In general, the number of pixels in each dimension of a

rectangular image represents the spatial size of an image in that dimension (known as

resolution) and the per-unit quality of captured images is determined by the number

of pixels on the sensors. The more pixels the camera has, the more detail that can
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be recorded in the captured image. For example, nowadays the popular HDTV (High

Definition TV) which has a resolution of 1920 × 1080 means that each frame has 1920

and 1080 pixels along the horizontal and vertical directions, respectively. In texture

images, each pixel consists of three color components, Red, Green, and Blue (RGB).

The perceived color differences are caused by mixing these three components with

various intensities. An example is shown in Fig.2.2, two crops from the color image

Lenna have different values of the RGB components.

(a) (b) (c)

Figure 2.2: Testing image Lenna (a) and RGB values on the two highlighted parts. (b)
the RGB values on white square region; (c) the RGB values on black square region.

In the common configuration each sensor element responds to one colour component

only, hence there is a Color Filter Array (CFA) in the digital camera, located on the

top of the sensor array, to decompose incoming light into the three primary colors.

One common CFA arrangement pattern is called the Bayer pattern [35]. As shown in

Fig.2.3, the number of green mosaics is twice the number of the red and blue mosaics.

This is due to the fact that the Human Vision System (HVS) is more sensitive to the

color green than the other two. At each pixel position, there is only one color intensity,

hence, the values for the other two missing colors are interpolated from the adjacent

corresponding colors. This process is known as “demosaicing”. Each pixel is to be an

RGB triplet. After some post-processing procedures, the captured images are stored

in a digital storage device.

In the process of capturing a digital image, there are some factors that affect the

quality of the obtained images. For example, optical distortions affect spatial resolution,

limited shutter speed causes the motion blur effects and the camera sensors result in

inevitable noise. Thus, in fact, the recorded image usually suffers from blur, noise, and
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Figure 2.3: The Bayer color filter mosaic. (a) The Bayer arrangement of color filters
on the pixel array of an image sensor; (b) cross-section of sensor.

aliasing effects (Fig.2.4).

Common Imaging System
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Figure 2.4: Low resolution images acquisition [3].

2.1.2 Texture Quality Assessment

In image transmission systems, between being captured and being received, the image

passes through many steps and the techniques adopted in these steps may result in an

aggregate degradation of the visual quality of the final received image. The SR approach

is one of the image post-processing techniques, aimed at improving image quality. In

order to quantify the received image quality and the efficiency of SR approaches, some

quality assessment methods are required.

Assessment of the quality of an image can be carried out objectively or subjec-

tively, each of which has its own strengths and associated applications. The objective

image quality assessment is usually focused on two aspects: fidelity and intelligibility

[36]. Fidelity is used to measure “how close/similar a received image is to the origi-
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nal image”. It mainly focuses on the detailed differences in the two images and the

higher the fidelity is, the better the image quality is. While, intelligibility is used to

indicate “how well the image can deliver the original information to its viewers in spite

of the distortion affecting the image”. It focuses on the global quality of the received

images. Many researchers have worked on these two factors and tried to develop quan-

titative measures that can accurately describe the perceived image quality. To date, the

objective quality assessment approaches can be classified into: ground truth approach

which uses the available original image, and those are called the full-reference approach;

the no-reference approach which uses no original image, and the reduced-reference ap-

proach which uses only part of the original image (e.g. the region of interest). For

the full-reference approach, since the original image is known, it is more straightfor-

ward to measure the quality. The most widely used full-reference quality assessment

metrics are the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity (SSIM). These assessment metrics are popularly used in many

applications mainly due to their computational simplicity, clear physical meanings and

the mathematical convenience in the context of optimization. However, in many prac-

tical applications, the reference image is not available, and the no-reference or blind

quality assessment approach is desirable.

For an original image, IGT with size W × H, the quality of a received image I

measured by MSE is:

MSE =

W

∑
i=1

H

∑
j=1
(IGT (i, j) − I(i, j))2

W ×H
(2.1)

The quality of a received image I measured by PSNR can be calculated through

MSE:

PSNR = 10 lg(
B2

MSE
) (2.2)

where B represents the quantization level. In general, 8-bit images have pixel values

within the range [0,255], B = 255. Since either MSE or PSNR globally measures

an image similarity to the original one by averaging the intensity differences between

pixels, they do not provide assessment results consistent with the perceived visual

quality. Thus, Wang et al. [37] proposed the SSIM matrix to assess image quality

based on the image structure information at the pixel level. The quality of received

image I measured by SSIM is:
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SSIM(x, y) = (2µxµy + c1)(2σxy + c2)(µ2x + µ2y + c1)(σ2x + σ2y + c2) (2.3)

For each pixel (x, y) within the N × N windows Wx and Wy, its mean value and

variance for window Wx are µx and σ2x, respectively and for window Wy, are µy and

σ2y , respectively. σxy is the covariance of pixels within Wx and Wy and c1 and c2 are

two constant values. The final SSIM result is obtained by averaging all values.

Since the received image/video is finally viewed by a human, then subjective eval-

uation is more “proper” to quantify visual image quality than objective evaluation. In

practice, however, subjective assessment requires a human participant which makes it

inconvenient, time-consuming and expensive. Hence, some advanced objective assess-

ment approaches are needed.

2.2 Introduction of Depth Map

Depth map is a grey image with each pixel value between 0 and 255. Larger the pixel

value is, closer this point to the depth camera. Hence, depth map can represent the

relative distance between objects in a scene and the capturing depth camera. Due to

this feature, it has been widely utilized in 3D applications to provide an immersive 3D

and free-viewpoint experience for the viewer.

In this section, firstly, various depth map acquisition methods will be described,

highlighting their corresponding weaknesses. The quality assessment methods and some

useful depth map applications will also be introduced.

2.2.1 Depth Map Acquisition

Depth maps can be generated using software or hardware driven techniques, such as

stereo or multiview matching-based methods, Structure-from-Motion (SfM), 3D laser

scanner and depth-camera-based methods [38].

Since depth maps have many applications in computer vision and visual perception

field, various software-based algorithms which compute correspondences from stereo

or multiple views, have been proposed for the acquisition of depth map [39]. Stereo

matching and SfM are two common depth map estimation methods in the computer

vision field and since they do not rely on active illumination, they are regarded as

passive methods.
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Figure 2.5: Working principle of stereo matching method.

Matching-based methods require at least two color images of the same scene cap-

tured from slightly different viewpoints. The common features and areas in these two

captured images are then analyzed to extract depth information. Referring to Fig.2.5,

a point P in the 3D scene is viewed from two viewpoints with the same focus length f

and the line distance between the two focus center points is known as the view baseline,

b. The distance of the projection point of P in the left and right view planes to the

corresponding focus center on this plane are xl and xr, respectively. Assuming the

perpendicular depth of point P to the two view planes is Z, based on the parallel line

theorem, we get ⎧⎪⎪⎪⎨⎪⎪⎪⎩
xl

f
=

X+ b
2

Z
;

xr

f
=

X− b
2

Z
;

(2.4)

Then

Z =
bf

xl − xr
(2.5)

where xl − xr is the position difference between corresponding points in two images,

called “disparity” and it is inversely proportional to the scene depth Z. Therefore, in

theory, knowing the disparity of two counterpart points in the two captured images,

the depth of corresponding 3D point can be obtained.

There are two approaches in stereo matching: the area-based method and the

feature-based method. Area-based methods are, in general, used to obtain a dense

depth map by finding the highest correlation between left and right image areas [40].

Feature-based methods are mainly used to obtain sparse depth maps. The working

principle of stereo matching is straightforward. However, it is well-known that the
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matching-based approaches may fail when no matching is found between some areas

in the two views or textless areas. For example, some areas are occluded in one view

and not in the other view. Although a considerable amount of effort has been exerted

to cope with such problems, most methods are computationally expensive or iterative

which make matching-based methods impractical.

SfM aims to recover both the structure of the 3D scene and the camera locations

where the images where captured based on the analysis of motion of the feature points

in a set of input images. Start from feature extraction, SfM matches the extracted

feature points in different input images, and reconstructs the 3D structure. Hence, it

can be used to estimate the depth information of the scene. Sequential methods (S-

SfM) [41] and Factorization methods (F-SfM) [42] are two commonly used approaches

in SfM. S-SfM works with each view sequentially, in contrast, F-SfM computes the

structure of the scene and motion/calibration of the camera using all points in all

views simultaneously.

Recently, with the development of sensor and lens technology, many hardware-

based depth map acquisition approaches have been proposed. The 3D laser scanner is

a mature 3D capturing technique and there are in general two different types of devices,

Time-of-Flight (ToF) laser range finders and triangulation 3D laser scanners as shown

in Fig.2.6.

 

(a) (b)

Figure 2.6: (a) ToF laser range finder scanner; (b) NextEngine 3D Scanner (triangula-
tion 3D laser scanners).

Equipped with an emitter, ToF 3D laser scanners are active scanners, which probe

the subject distance using laser light. The core technique is measuring the round-trip

15



time of a pulse of light, which is carried out by a time-of-flight laser range finder. A laser

is used to emit a pulse of light and the amount of time before the reflected light seen by

a detector is measured. The laser range finder can provide long-distance measurements

in 1D and is capable of scanning large structures like buildings or geographic features.

However, due to the difficulty of measuring the incredibly short time involved in light

traveling short distances, the accuracy of the distance measurement is low.

Target 

Modulated/Pulsed 

LED/LASER Source 

Z 

Lens 

Sensor 

Figure 2.7: ToF detection system.

There are two kinds of ToF cameras, one is based on measuring the time of flight

and the other is based on measuring the phase shift of a modulated optical signal, which

can be related to measuring the time [43]. A typical ToF measuring setup consists of a

modulated or pulsed light source such as a LED or a laser, a lens for focusing the light

onto the sensor and an array of pixels, each capable of detecting the incoming light

[44]. A sketch of the corresponding structure is shown in Fig.2.7. The measurement

principle is straight-forward for the time-of-flight method. A highly accurate stopwatch

begins to count the time synchronized with the light pulse emission. When the reflected

light from the object surface arrives at the sensor, the count is stopped. Assuming the

round-trip time of one surface point is ti, the distance of this surface point Zi can be

obtained by the equation:

Zi =
c

2
⋅ ti (2.6)

where c represents the speed of light propagating through the air. For phase-shift-based

ToF cameras (referring to Fig.2.8), the distance is measured by the differences of the

phase modulation envelop between the emitted and received light. If one pixel’s phase

shift is noted by ∆φi, its distance to the capturing camera is

Zi =
λm

2

∆φi
2π

(2.7)

where λm is the wave length of the modulation signal. For these two methods, af-
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ter calculating the distance of each surface point, a 2D per-pixel depth map can be

generated.

time
 

 

Emitted signal 
Received signal

∆ φ

Figure 2.8: Received sinusoidally modulated input signal, sampled with 2 sampling
points per modulation period T .

Similar to ToF scanners, triangulation 3D laser scanners are also active scanners.

They emit a laser on the subject surface and utilize a camera to look for the location

of the laser dot. Due to the varying object distances, the locations of the laser dot

on the camera sensor are different. In this way, the object distance can be obtained.

This technique is called triangulation because the laser dot, the camera and the laser

emitter form a triangle. Compared to ToF 3D laser scanners, triangulation scanners

have a limited scanning range, but the accuracy is relatively high.

Hardware-based approaches can overcome most of the shortcomings of the software-

based ones. The corresponding depth maps can be generated in real-time and free from

texture interference. Compared with matching-based approaches, the depth-camera-

based approaches have higher accuracy. However, due to the intrinsic physical con-

straints of sensors and the active scanning approaches, depth-camera-generated depth

maps, compared with traditional texture images, typically have low resolutions (e.g.

176 × 144 for SR4000 [45] and 640 × 480 for Kinect [46]) due to intrinsic noise and ex-

trinsic environmental interference. Therefore, in order to successfully use depth maps

in 3D applications, several depth map SR techniques have been proposed to increase

the spatial resolution and the quality of depth maps.
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2.2.2 Depth Map Quality Assessment

Some of the depth map assessment techniques are similar to those used for texture’s,

for example, PSNR and SSIM. However, in [47], a new depth map assessment, named

Relative Error of Depth (REoD), has been proposed. The value of REoD can be

obtained by

REoD =
1

H ×W

W

∑
i=1

H

∑
j=1

∣D(i, j) −DGT (i, j)∣
DGT (i, j) (2.8)

where DGT is the ground truth depth map, D is the assessed depth map.

Depth maps have special features in which most of the areas are homogeneous

areas, sharp edges only exist between objects and they are not directly viewed by

users. Therefore, some researchers argue that the assessment matrices of depth maps

should not be the ones used for textures. Moreover, depth maps are usually used with

2D textures to reconstruct the 3D world, therefore, by using the DIBR technique the

depth map errors often lead to object shifting or ghost artifacts on the synthesized views

and these artifacts are different from the ordinary 2D distortions such as Gaussian noise,

blur, and compression errors [48]. Hence, the depth map quality assessment should take

the quality of the rendered view into consideration.

2.2.3 Depth Map Applications

3D video is replacing 2D video in many applications as it provides the viewers a novel

spatial feeling and multiviews of a scene. Benefiting from the associated depth in-

formation, 2D-plus-depth and MVD are the two most commonly used 3D representa-

tions for real world reconstruction. Moreover, since the depth images represent three-

dimensional (3D) scene information, they are commonly used for the DIBR technique

to support 3D video and free-viewpoint video applications. A virtual view can be gen-

erated by the DIBR technique and its quality depends highly on the quality of depth

image. Besides that, the depth information can also be applied to the navigation system

of robots or walking aids for blind people.

2.3 Overview of Image/Video Super-Resolution

In sections 2.1.1 and 2.2.1, the acquisition of texture and depth maps have been intro-

duced. In this section, firstly, the generation of observed LR images is described by a

mathematical model. Secondly, a review of the methodologies from existing literature
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relating to texture SR will be introduced based on the type of the input and output

(image SR or video SR) as well as the implementation of SR algorithms (in the spatial

and frequency domains). Next, depth map SR approaches will be presented and finally,

four popular SR applications will be introduced.

Super-resolution is a process of reconstructing one or more HR images from input

LR images based on the relationship model between the HR and LR images. Depending

on the types of the input and output, the SR problem can be classified as a single input

single output, a multiple input single output, and a multiple input multiple output

spatial resolution increment problem. The first two categories have inputs of single

or multiple images, which can be taken by a camera from one or several different

viewpoints. The output is a single image with higher resolution than the input. They

can be specified as image super-resolution problems and can be easily extrapolated

to the third category, video super-resolution problems. In terms of implementation

for SR problems, SR techniques can be classified into spatial and frequency domain

techniques. The commonly used SR approaches, like reconstruction-based, learning-

based and interpolation-based approaches, all belong to spatial domain SR techniques.

Super-Resolution Problem

Image Super-Resolution Video Super-Resolution

Super-Resolution Techniques

Spatial Domain Techniques Frequency Domain Techniques

Reconstruction-based Learning-based Interpolation-based

Figure 2.9: Classification of SR problems and approaches.

2.3.1 General Super-Resolution Observation Model

Fig.2.10 shows a model that describes the relationship between the observed LR im-

ages and the original HR image. Let us assume a desired or original HR image with

size L1N1 × L2N2 denoted as x and L1 and L2 are the down-sampling factors in the

horizontal and vertical directions, respectively. Consequently, after warping, blurring,

and subsampling performed on the HR image x, the observed LR image is denoted as
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yk with size N1 ×N2. Corrupted by additive noise, each LR image can be represented

by a mathematical model as

yk =DBkMkx + nk,1 ≤ k ≤K (2.9)

All image variables in (2.9) are represented as column vectors composed of the pixel

intensity of corresponding images in lexicographical order, thus, the transformation or

effects applied to images can be represented as matrix multiplication operations. That

is to say, in (2.9), the original HR image written lexicographically will be noted as

the vector x = [x1, x2, x3, ..., xN ]T , where N = L1N1 × L2N2 and the kth observed

LR image is denoted as yk and yk = [yk,1, yk,2, yk,3, ..., yk,M ]T where k = 1,2....K and

M = N1 ×N2. D is a subsampling matrix with size N1N2×L1N1L2N2. Bk represents a

L1N1L2N2×L1N1L2N2 blur matrix of the kth LR image which has the same size as the

warping matrix Mk and the latter contains the motion information of the camera and

the scene while capturing the images. nk represents the noise matrix, and is usually

assumed to be Gaussian white noise.

Original HR image, 

 x  

(L1N1 x L2N2) 

Noise, nk 

-Translation 

-Rotation 

-… 

Mk 

Warping 

-Optical Blur 

-Motion Blur 

-Sensor PSF 

-… 

Bk 

Blur 

kth observed LR  

image, yk  

(N1 x N2) 

Subsampling 

D 

Downsampling 

Figure 2.10: Block diagram of the SR observation model.

Since scene motion occurs during the image acquisition process, it may contain some

global or local translation, rotation information, and so on. In general, this information,

Mk is unknown. Therefore, the scene motion for each image has to be estimated by

referring to one particular image. As one of the possible results of an optical system

(e.g., out of focus and aberration), relative motion between the imaging system and

the original scene, and the LR sensor, blurring matrix Bk can be either Linear Space

Invariant (LSI) or Linear Space Variant (LSV). The downsampling matrix D results in

an aliased LR image and finally, white Gaussian noise nk is encountered both in the

image acquisition and transmission process.
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In reality, with the observed LR images, it is hard to distinguish each effect of these

distortions. Hence, the model (2.9) can be unified in a simple matrix-vector form, as

shown in (2.10).

yk =Hkx +nk,1 ≤ k ≤K (2.10)

where Hk is the combination of the operations D, Bk and Mk. Based on this obser-

vation model, the aim of the SR image reconstruction is to solve the inverse problem

and to estimate the underlying HR image x [49].

2.3.2 Texture Image Super-Resolution

Some existing SR algorithms for texture image SR are reviewed in the following subsec-

tions. Firstly, interpolation-based SR approaches that convey an intuitive comprehen-

sion of the SR image reconstruction are presented. Secondly, the reconstruction-based

SR approaches are explained mainly focusing on the Iterative Back Projection (IBP) ap-

proach. Finally, one of the most popular SR trends, the learning-based SR approaches

are presented.

Interpolation-based Super-Resolution

Interpolation-based SR approaches build on the image smoothness assumption, inter-

polating for the missing HR pixels by the surrounding LR pixels which can be achieved

using a single image input. Nearest neighbor, bilinear and bicubic interpolations [50]

[51] are conventional and typical interpolation-based approaches. Nearest neighbor in-

terpolation is the simplest approach. Rather than calculating an average value by some

weighting criteria or generating an intermediate value based on complicated rules, this

method simply determines the “nearest” neighboring pixel, and uses this value to fill

the missing pixel. As shown in Fig.2.11 below, the 2× 2 checkerboard image is upsam-

pled to a 176×144 image without any changes. Due to the simplicity of this algorithm,

the operation takes little time to complete. Although the LR image is scaled by 6336

times, the HR image still has sharp horizontal and vertical edges. However, such good

performance mainly exists in the integer interpolation ratio cases, and when it is ap-

plied on other patterns with non-integer ratio, it causes undesirable jaggedness. For

example, in Fig.2.12 (b), the diagonal lines of the “x” in the interpolated image show

the characteristic “stairway” shape.

Compared with nearest neighbor interpolation, bilinear and bicubic can reduce
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Figure 2.11: Using nearest neighbor to interpolate a checkerboard image. (a) the
original LR image with size 2 × 2, (b) the interpolated HR image with size 176 × 144.

(a) (b)

(c) (d)

Figure 2.12: Comparison between common used interpolation methods. (a) the original
LR image with size 53×49, the interpolated results of HR image with size 176×144 by
using (b) nearest neighbor, (c) bilinear and (d) bicubic. In order to have a clear view
of the original LR image, it has been shown in the same size as the other three images.

the visual distortion caused by the fractional interpolation ratio (Fig.2.12). Instead

of copying the neighboring pixels (which often results in jaggy images), these two

interpolation methods utilize the surrounding pixels to produce a smoother scaling at

edges (Fig.2.12 (c) and (d)). The constructed HR pixels are generated by using 2 linear

interpolations along the x and y axes, respectively. In this way, any pixel between the
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Figure 2.13: The working principle of bilinear interpolation.

LR pixels can be constructed by bilinear interpolation. Referring to Fig.2.13, A, B, C

and D are four LR pixels and located at the corners of one texture area at positions

(1,1), (1,W ), (H, 1) and (H,W ), respectively. P is the targeted HR pixel at position

(i, j). The first linear interpolation is carried out along the x axis and the pixels P1

and P2 at position (1, j) and (H,j) are obtained by

P1−A
j
= B−A

W
P2−C

j
= D−C

W

(2.11)

Then, the second linear interpolation is carried out by using the pixels P1 and P2.

P − P1

i
=
P2 − P1

H
(2.12)

Substituting Eq.2.11 into 2.12 we get,

P =
1

HW
[A(W − j)(H − i) +Bj(H − i) +Ci(W − j) +Dji] (2.13)

Similarly, all HR pixels among these four LR pixels can be interpolated.

In terms of performance, bicubic interpolation produces less blurring of edges and

other distortion artifacts in comparison to bilinear interpolation, but it is more com-

putationally demanding. Instead of using four pixels, bicubic interpolation fits a series

of cubic polynomials to the intensity values contained in a 4 × 4 array of LR pixels

surrounding the target HR pixel. It is also carried out in two steps. First, four cu-

bic polynomials (f(1), f(2), f(3) and f(4)) are fitted to four HR pixels along the

y-direction (the choice of starting direction is arbitrary). Next, these four HR pixels

are used to fit another cubic polynomial (F (1)) in the x-direction based on the inter-

polated brightness values that lie on the curves. In this way, the HR pixels at any
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position can be obtained (Fig.2.14). Since the polynomial used in the bicubic interpo-

lation algorithm can have a significant impact on the accuracy and visual quality of the

interpolated image, splines as piecewise polynomial functions are often used.

f(1) f(2) f(3) 

f(4) 

F(1) 

Intensity level of pixel 

Target HR 

pixel  

Figure 2.14: The working principle of bicubic interpolation.

Different from other types of SR methods, interpolation-based SR approaches gain

their popularity in real-time applications mainly due to their computational simplicity

and they have lower requirements on the number of input LR images. Therefore,

interpolation-based SR approaches are suitable for applications with single input single

image where only one degraded LR image is available at the input terminal. They

have a good performance on smooth areas (low-frequency areas), but, work poorly on

edges (high-frequency areas) [52]. This is a common drawback of the conventional

interpolation methods where they cannot fully exploit the scene content during the

interpolation process, and consequently they are prone to blur high frequency details

(edges). In order to overcome these weaknesses, in [4], Li and Orchard proposed an

edge-directed interpolation algorithm for nature images. The interpolation algorithm

is composed of two steps, firstly, the local covariance coefficients of LR image are

estimated and then based on the geometric duality between the LR covariance and the

HR covariance, these estimated coefficients are used to steer the interpolation process.

Plenty of simulation results were used to demonstrate the effectiveness of the edge-

directed interpolation algorithm over conventional linear interpolations. In [5], a small-

kernel bilateral filter was proposed to implement image SR based on a novel maximum

posterior estimation. While maintaining local edge correlations, the global consistency
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is constrained by the pixel-based soft-decision estimation [53] within a local window.

Zhang et al. proposed a fast and effective image interpolation algorithm using a median

filter. The pixels with clear directions are interpolated firstly in a non-linear iterative

procedure. For the remaining pixels, a fast median-filter-based interpolation method is

utilized [6]. These two filter-based methods are faster than other interpolation methods,

which can be exploited for some real-time applications. In [54], Li et al. proposed to use

the edge-direction information implicitly in the interpolation process, with the aid of a

Markov Random Field (MRF) model. In this proposed algorithm, the edge directions

are implicitly estimated with a statistical-based approach and represented by some

weighting vectors. These weighting vectors are used to formulate geometric regularity

constraints (smoothness along edges and sharpness across edges), which will be applied

to the interpolated image through an MRF model. The experimental results indicate

that compared with other edge-directed interpolation methods, the proposed MRF-

model-based edge-directed image interpolation can improve the subjective quality of

the final interpolated image, while not compromising the PSNR quality of the image.

In Fig.2.15, three of these methods have been compared with the bicubic interpolation

method.

Although interpolation-based single-frame SR algorithms are efficient in nature im-

ages, they have inevitable limitations. For example, the recovered information in most

cases cannot represent all of the lost information and the high-frequency components

that are lost or degraded during the LR sampling process. Super-resolving from a

single LR image is known to be an ill-posed inverse problem due to the small number

of observed LR images relative to the large number of missing HR pixels. Thus, the

gain in quality in the single-frame SR approach is limited by the minimal information

provided to recover missing details in the reconstructed HR signal. However, multiple-

input image SR can overcome this weakness due to the multiple acquisitions of the

same scene and more available inputs. In this thesis, we will try to benefit from the

interpolation-based SR approaches, meanwhile, using multiple-input images/frames to

generate HR images/video.

Reconstruction-based Super-Resolution

Reconstruction-based methods are usually applied on multiple input image SR and

in order to regularize the ill-posed inverse problem, many approaches have been pro-
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Figure 2.15: The interpolation results of (a) bicubic method (b) [4], (c) [5] and (d) [6]
interpolate the 128 × 128 lena to 256 × 256.

posed, such as, Iterative Back Projection(IBP), Projection Onto Convex Sets (POCS),

Maximum A Posteriori (MAP), and Maximum Likelihood (ML). Having more input

information, multiple input SR approaches have better performance than single ones.

The Iterative Back Projection (IBP) method iteratively uses prior information of

the previous results to get a better SR performance [55]. Given an initial estimated

HR image, x̂ and an image quality degradation model, H, it is possible to simulate

a series of LR images, ŷ, where ŷ = Hx̂. The “back projection” procedure refers to

backward projection of the error between the j-th simulated LR image ŷj and the

observed LR image y via a backward projection operator HBP . All of the backward

projected errors are added to x̂ to form the next iterative HR image. The whole process

will be repeated until the stop rule is achieved, which is usually the minimum error

between the stimulated LR image and the observed LR image. The IBP method can
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be represented by (2.14).

x̂n+1 = x̂n +HBP
K

∑
j=1
(yj − ŷ

n
j )

= x̂n +HBP
K

∑
j=1
(yj −Hx̂n

j ) (2.14)

where n is the current iteration number, K is the number of LR images, ŷn
j is the final

version of the simulated j-th LR image after n iterations. Since it has a simple but

powerful simulate-and-correct approach to reconstruct an image, many applications of

the IBP method can be found in [56]. However, because SR problems are ill-posed,

the solution to (2.14) is not unique and the choice of the priori image has a huge effect

on the final outcome. Improper choice of the priori image constraint could result in a

non-convergent or slowly convergent solution. All of these factors limit the adoption of

IBP method.

Learning-based Super-Resolution

Although some reconstruction-based SR algorithms which use regularized constraints

can tackle the ill-posed SR problem, the regularized constraints are usually defined as

the prior smoothness knowledge of the HR image. However, when the magnification

factor of the SR image increases, these constraints lead to over-smooth edges and the

reconstruction model provides little useful information [57]. Moreover, the parameters

of the capturing camera’s point spread function have been assumed to be known in

advance, which is not always a valid assumption. Therefore, in this situation, to obtain

the priori knowledge from the image itself is very important and learning-based SR

algorithms can overcome the weaknesses of reconstruction-based SR algorithms.

The basic implementation of learning-based SR algorithms is based on obtaining the

relationship between HR and LR images by learning from the HR and LR image pairs

[7]. Instead of the pre-defined priori knowledge in reconstruction-based SR algorithms,

priori knowledge is obtained by learning from a huge training data set. The generation

of the training set starts from a collection of many HR images and degrades each HR

image to produce its corresponding LR version. Typically, an LR image with half the

number of original pixels in each dimension (one-quarter the total number of pixels)

of the HR image is obtained by blurring and downsampling the HR image. Then an

initial analytic interpolation, such as bicubic interpolation, is applied to the LR image

and generates an interpolated HR image with the same size as the original HR one but
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without high frequency components. Only the high frequency component of the HR

image will be stored. Moreover, passing through a high-pass filter, the high frequency

component of the LR image can also be obtained. Fig.2.16 shows the training process.

HR image, I
HR

Blurring

Downsampling
LR image, I

LR
Interpolation

Image, I’
HR HF component of LR image

HF component of HR image

HR image, I
HR

LR image, I
LR

HF component 

of LR image

HF component 

of HR image

Figure 2.16: Training process.

Freeman et al. [7] proposed a learning (example)-based scheme which was applied

to generic images where the low to high resolution patch models are learned via a

MRF model and loopy belief propagation is used for inference. It is worth noting that

without considering the spatial neighbor information of the input LR image patch,

due to insufficient geometry features, the closest LR training patches may result in

different HR patches (Fig.2.17). Therefore, the spatial neighbor information should

also be taken into account. As a result, two matching criteria should be met: 1) the

matched LR training image patch should have similar content as the input LR image

patch; 2) the corresponding HR training image patch should have content continuity

with neighboring HR patches, which means they should not suffer from block artifacts

(content discontinuity) in the reconstructed HR image. Although, the method can

significantly preserve sharp edges and image details, it is somewhat dependent on the

training set and the patch size. So the result is not stable and sometimes produces
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Figure 2.17: First row: an input patch; middle row: similar low-resolution patches;
bottom rows: paired high-resolution patches. For many of these similar low-resolution
patches, the high-resolution patches are different from each other [7].

artifacts in real applications [58].

With the aid of training data consisting of multiple LR-HR image patch pairs,

Chang et al. [59] proposed to use Locally Linear Embedding (LLE) for single image

SR purposes. For a given input LR image x, it is broken into patches with the same

size as the training LR image patches and each LR image patch xi is used to search

for similar patches x1
i ,x

2
i ,⋯,x

k
i , from LR training images. Then the corresponding

training HR patches y1
i ,y

2
i ,⋯,y

k
i linearly reconstruct the HR output image patch yi

with the weights w1
i ,w

2
i ,⋯,w

k
i determined by LLE. The optimal weights should satisfy

wk
i = argmin

wk
i

∣xi −

K

∑
k=1

wk
i x

k
i ∣2 (2.15)

where K is the number of neighbors searched in the training dataset. By linearly

combining all the found training HR patches, the reconstructed HR image y can be

expressed as

y = ∑
i=1

K

∑
k=1

wk
i y

k
i (2.16)

However, using a fixed number of K neighbors for reconstruction often results in blur-

ring effects, due to over- or under-fitting.

Based on the suggestion that the linear relationships among HR signals can be

well recovered from their low-dimensional projections [60], Yang et al. [61] applied the

sparse representation coefficients of LR image patches which were obtained from its

over-complete dictionary to that of HR image patches to generate the target HR image.

Instead of working directly with the LR-HR image patch pairs, the proposed approach
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learns a compact representation for these patch pairs to capture the co-occurrence prior,

and significantly improve implementation speed.

Besides utilizing one-to-one LR-HR image patch pairs, in [62] the distribution of HR

patches relating to the same or similar LR counterpart(s) are adopted as the training

data set. If the one-to-one correspondence between a previous LR-HR image patch pair

is regarded as “hard information” in information theory, the one-to-many correspon-

dence in this conditional distribution can be considered as “soft information”. Relying

on this prior knowledge, as well as the local consistency in the recovered HR image,

the optimal HR counterpart can be selected among different HR image patches relating

to the same given LR image patch. In this way, the ambiguity during patch mapping

(Fig.2.17) can be reduced to a large extent.

In [63], the relationship between image patches are learned from different image

scales rather than searching for similar patches from training image data or from dif-

ferent down-scaled versions of the original image. Therefore, in this way, the proposed

method does not need a collection of training data or the HR image in advance and

also removes the assumption of image patch self-similarity. Supported by Bayes theory,

the optimal Support Vector Regression (SVR) is learned and picked up to form the SR

output image. Extensive experimental results indicate the quantitative and qualitative

effectiveness of the proposed self-learning SR method.

2.3.3 Texture Video Super-Resolution

Having an extra dimension of information than images, the video super-resolution prob-

lem can be implemented in two ways, one is spatial resolution enhancement, the other

one is frame rate enhancement or frame rate up-conversion. As a multiple input, multi-

ple output SR problem, the input video can be captured either from different viewpoints

with the same frame rate or from the same viewpoint but with different frame rate.

The former input type can generate super-solved multiview HR video (spatial resolu-

tion enhancement), while, the latter one can generate video with a high frame rate

(frame rate up-conversion). It is worth noting that, the input videos can have different

resolutions forming mixed-resolution inputs.
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Spatial Resolution Enhancement

Since video can be regarded as many images that are captured at different times, most

of the image SR problem approaches can be applied to implement video SR. Each frame

of a LR video can be super-resolved to the target HR frame, and then the whole LR

video has been super-resolved to the desired HR video.

Based on the LR image observed model, in [64] a Bayesian-based approach was used

for adaptive video SR by simultaneously estimating the camera motion, blur kernel,

and noise level while reconstructing the original HR frames. Due to the generalization

of the motion and blur kernel, on one hand, it can achieve high accuracy for the estima-

tion algorithm and high quality for the reconstructed HR frames. On the other hand, it

involves many equations and many unknown parameters. Therefore, it is too complex

and time consuming for real time video SR applications. Instead of using a Bayesian

Maximum A Posteriori (Bayesian MAP) to determine the unknown parameters of each

pixel, in [65], the Bayesian MAP is used to solve the block-based unknown parameters

reducing the whole complexity while promising results are maintained. Work in [8]

adopted a mixed-resolution video system where at least one of the views is captured

at LR, while the others are captured at HR. Hence, in [8] the high frequency content

has been extracted from the virtual view frame-by-frame and then added to the cor-

responding LR frame to reconstruct the HR frame. However, in this work, the high

frequency content is extracted from the whole frame, thus the local characteristics of

the scene are not taken into account.

Figure 2.18: SR approach for multiview images. A super-resolved image V̂n is cre-
ated from its low-resolution version, V D

n , a neighboring HR view, Vk, and the depth
information for each of these views, Dn and Dk [8].
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In this thesis, Chapters 3 and 4 propose two solutions to video spatial resolution

enhancement. In Chapter 3, virtual views have been utilized to recover FR frames in

a Mixed-Resolution Multiview Video plus Depth (MR-MVD) framework. The local

similarity between the LR view and its corresponding virtual view has been used to

steer the FR recovery mechanism. In Chapter 4, in addition to super-resolving one

LR view, the two FR views are downsampled before encoding and super-resolved after

decoding by exploiting inter-view redundancy via virtual views.

Frame Rate Up-conversion

Frame Rate Up-conversion (FRUC) is required for applications such as NTSC- PAL

conversion and display on HDTV, where high frame rates are desired [66] [67]. The most

commonly used frame rate up-conversion methods are frame repetition, linear interpo-

lation, and motion compensated interpolation. Relying on temporal correlation of the

original video sequence, many FRUC algorithms adopt a motion compensation tech-

nique to construct the up-sampled frame [68]. Motion compensation is bi-directionally

carried out in order to take into account frames on both sides of the up-converted

frame. From a theoretical point of view, the implementation of linear interpolation and

motion compensation-based interpolation are simple, however, they cannot deal with

temporal aliasing caused by capturing the video below the Nyquist frequency of the

motion trajectory, the true motion of the object cannot be recovered even by perform-

ing ideal temporal interpolation (Fig.2.19). Hence, an insufficient frame rate will result

in inaccuracy in the motion estimation by FRUC.

Spatio-temporal Resolution Enhancement

Recently, many consumer digital cameras support a dual shooting mode of both LR

video and HR image. By periodically switching between the video and image modes,

this type of camera makes it possible to super-resolve the LR video with the assistance

of neighboring HR still images. Zhai and Wu proposed the convertion of LR video to

HR video which has the same resolution as the auxiliary HR still images [69]. The

target HR frames are modeled by a 2D Piecewise Autoregressive (PAR) process and

the PAR model parameters are learned from these HR still images.

32



Time

H
e

ig
h

t

t2

(a)

t3 t4t1

Time

H
e

ig
h

t

t2

(b)

t3 t4t1

Time

H
e

ig
h

t

t2

(c)

t3 t4t1

Figure 2.19: Temporal aliasing. (a) Trajectory of a ball over time. (b) Trajectory
sampled over time by a low frame rate camera. Perceived trajectory is along a straight
line. (c) Illustration that even with ideal temporal interpolation of (b) the true motion
trajectory cannot be recovered.

2.3.4 Depth Map Super-Resolution

In the section 2.2.1, we have introduced four methods that can be applied to obtain

a depth map. However, the captured depth maps have, in general, limited spatial

resolution which is much lower compared to that of the corresponding color image

(1280×1024). Hence, in reality, depth camera generated depth maps need to be super-

resolved, so that it can be used in future applications. Based on the input source

information, depth map super-resolution can be classified into two types of approach:

depth map SR based on depth information and depth map SR based on texture and

depth information.

The observation model of a LR texture image is also suitable for the depth camera

generated depth map which contains warping, blurring, subsampling operators, and

additional noise.

dL
k =DBkMkd

H
k +nk,1 ≤ k ≤K (2.17)

where dH
k is the depth map of the original HR scene and D, Bk, Mk are the subsam-
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pling, blurring and warping matrices, respectively. According to the above mathemat-

ical model, the super-resolution of a depth map can be realized by similar approaches

as the texture SR. However, a depth map has a piecewise smooth property which is

different from the texture and the depth image contains less information compared with

texture. Consequently, it is difficult to directly adopt the texture image SR algorithm.

Xie et al. [70] developed a coupled dictionary learning approach with a locality con-

straint for single depth image SR. Due to the piecewise smoothness of a depth map,

directly using sparse features to constrain the dictionary learning will result in a dic-

tionary over-fitting problem, i.e. similar LR patches, which are properly represented

by the learned dictionary bases produce significantly different HR patches. Inspired by

Local Coordinate Coding (LCC) [71], coupled dictionary learning becomes beneficial

with a locality constraint and it can make sure the input depth patches are similar to

the dictionary atoms with non-zero coefficients. In this way, the over-fitting problem

can be prevented. An adaptively regularized Shock Filter was also applied to reduce

jagged noises in the depth image while sharpening edges.

Since the information contained in a single depth map is fairly small and the same

scene information contained in multiple depth maps can be complementary, when com-

pared with a single depth map SR, fusion of multiple LR depth maps to get a HR

image can achieve superior results in SR. Following the general principle of texture im-

age SR methods, Schuon et al. [72] modeled the depth map SR problem as an energy

minimization problem that jointly employs a data term, enforcing similarity between

the input and output images, and a bilateral regularization term for edge-preserving

smoothness. However, they rely on the assumptions that multiple range images are

available with small camera movement and the objects motion is global or rigid, which

may not be true for many practical applications. Hence, this approach may fail when

large movement occurs. In order to tackle this problem, in [73] Ismaeil et al. put

forward a novel dynamic SR algorithm that is capable of accurately super-resolving a

depth sequence containing one or multiple moving objects without prior assumption of

their shape or motion, and no additional post-processing is needed.

On one hand, due to the textureless nature of a depth map, with little useful depth

information, the single depth map SR is still a challenging problem. On the other

hand, cheaper and more easily accessible texture cameras with HR texture images

have been utilized in depth map SR. Recently, a framework called the RGB and Depth
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images (RGBD) system, in which a depth camera coupled with a RGB camera becomes

popular in depth map SR. Fig.2.20 shows two kinds of RGBD systems. Fig.2.20 (a) is a

framework with a ToF camera, SR4000 and a RGB camera. While, Fig.2.20 (b) shows a

Microsoft developed camera, Kinect, which consists of one depth camera and one RGB

camera. After good synchronization, depth and texture image cameras can capture

the same scene at the same time. Based on RGBD systems, many methods have been

(a)
 

(b)

Figure 2.20: (a) framework consists of a 3D-ToF camera, SR4000 and a RGB camera
(b) Microsoft developed depth camera, Kinect.

proposed to exploit the co-occurrence of depth and texture image discontinuities on

depth textureless areas with careful registration for the object of interest. Kopf et al.

proposed to upsample the LR depth map by using a Joint Bilateral Upsampling (JBU)

filter. Aided by the associated HR texture, the edges of the upsampled depth map can

be well preserved [74]. A similar but advanced joint bilateral filtering technique was

proposed in [75] which iteratively refines the input LR depth map by referring to the

registered HR textures. Although the adoption of texture information can help to get

sharp depth edges, the color or lighting variations on the same areas of the texture

images can cause false discontinuities in HR depth maps. Hence, texture images need

to be used in a more sophisticated way. By applying the MRF to super-resolve the

LR depth map, Diebel et al. formulated the SR process as an energy minimization

problem to fuse LR depth images and HR texture images. Lo et al. [76] proposed

the incorporation of a texture-guided weighting factor into the MRF model to reduce

the texture copying artifacts with the weighting factor obtained based on a learning

approach. Although the demonstrated results were good, the learning-based approaches

usually have a higher computational complexity, which might prevent their adoption

to real-time applications.
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In conclusion, there are still some challenges that need to be addressed in depth

map SR problems.

2.3.5 Super-Resolution Applications

Thanks to many researchers for dedicating themselves to the development of SR tech-

niques, SR techniques have been adopted in many applications. Among them, there

are four primary applications: target recognition in the video surveillance field, remote

sensing, medical imaging [77] and consumer electronics.

In video surveillance applications, the target of interest is hard to identify and

recognize under tough lighting conditions and capture equipment in degraded videos

and images. Therefore, given a series of LR images and video, SR can be used to

reconstruct HR images and video to make the target of interest clear. He and Schultz

proposed a coarse-to-fine SR algorithm in [77] to recover the HR video captured from a

LR unmanned aircraft digital imaging payload in real-time. Firstly, the coarsely super-

resolved video is obtained by piece-wise registration and bicubic interpolation between

every additional frame and a fixed reference frame. The refined video is generated by

calculating pixel-wise medians in the coarsely super-resolved video. In this way, no

iterations are involved in this implementation.

Satellite remote sensing contributes to Earth observation, vegetation health, bodies

of water, and climate change based on image data gathered by wireless equipments over

time. However, due to the size and weight limitation of satellite camera and affections

from transmission, the obtained images are usually of low resolution quality. Therefore,

it limits higher spatial resolution applications (e.g., intra-urban). Pan et al. proposed

an SR method that consists of Compressive Sensing (CS), Structural Self-Similarity

(SSSIM), and dictionary learning for reconstructing remote sensing images [78]. The

dictionary is formed by extracting similar structures which often exist in remote sensing

images, thereby, an HR image can be reconstructed using the dictionary in the CS

framework. In this work, the effectiveness of the proposed SR method is evaluated by

a new SSSIM index. In order to solve the SR problem in multi-angle remote sensing

images, Zhang et al. proposed an adaptive weighted SR reconstruction algorithm that

uses different weights to determine the contributions of different multi-angle LR images

[79]. Since multifractal characteristics are common in natural images and based on self-

similarity, some details in one natural image can be estimated from its larger or smaller
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scale version. Therefore, in [80], the presence of multifractal characteristics is firstly

explored in the LR remote sensing images, and then parameters of the information

transfer function and noise are estimated. Finally, a fractal coding-based denoising

and downscaling method is utilized to generate a noise-free and super-resolved image.

Medical imaging has become an important tool for medical diagnosis. Due to the

nature of its usage, medical images have much less tolerance for image processing

artifacts than other applications [81]. Therefore, it has higher requirement on the

resolution and quality. Fortunately, medical imaging systems usually work within highly

controlled environments (e.g. illumination) with highly similar objects (e.g. human

organs), that is to say, plenty of prior knowledge about the anatomy or biology can be

used to improve medical image quality. For example, in [81] a three-stage (registration,

reconstruction, and restoration) SR algorithm was proposed to address two challenges

in X-ray image SR that the large amount of data associated with digital mammogram

images and the limited total radiation exposure which should be less than that of a

normal X-ray image dosage. In [82], a SR technique was used to increase the resolution

of coronal images. For further information, a comprehensive literature review of SR

applications in medical imaging can be found in [83].

Entertainment and digital communication applications occupy a huge part in con-

sumer electronics. In 2015, Samsung Display said they were planning to develop an

11K super-resolution display in the next five years together with industry and educa-

tion. However, the development of capturing cameras can not reach the 11K frame

size, therefore, SR techniques can offer a good solution by enlarging the resolution of

perceived images/video and removing the visual artifacts caused by video compression

[18]. In order to extend the appeal and usefulness of the broadcast service, meanwhile,

reducing the unnecessary cost of HR video delivery, Boon et al. proposed a fast SR

approach, which is based on recent sparse recovery SR techniques. In this way, the

mobile terminals can show a much enhanced version of the broadcast video on nearby

high-resolution devices without further cost [84].

2.3.6 Summary

In this Chapter, the basic concepts of texture and depth map have been

introduced via the acquisition and assessment. In terms of color informa-

tion, texture images contain more information than depth maps, therefore,
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texture are usually compressed before transmission. Due to the high visual

requirement from viewers, the low quality views need to be super-resolved.

Thus, in this Chapter, the working principles, advantages and disadvan-

tages of different texture and depth map SR approaches are also discussed.

Among three mainly used SR methods which are reconstruction-based,

learning-based and interpolation-based methods, due to easy implementa-

tion and well time performance, interpolation-based methods are prevailing

in texture SR. However, most of the methods are still based on 2D video

systems which may not take the depth information into account. Hence,

directly applying these methods on 3D video systems does not fully exploit

the 3D information. Motivated by this fact, in this thesis the depth infor-

mation is introduced into the SR process in 3D video systems. Finally, the

four most frequently used SR applications are investigated.
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Chapter 3

Depth-Map-Assisted Texture
Super-Resolution for
Mixed-Resolution System

3.1 Introduction

In recent years, 3D video technology has drawn significant attention with more and

more products and services becoming available on the consumer markets. They can

provide viewers the perception of real-world scenes relying on large amounts of texture

and depth map data captured from various viewpoints. Hence, this puts pressure on

the acquisition, storage and transmission processes, especially for limited bandwidth

applications [10]. One effective solution, for such kind of problem, has been proposed

in [85] [86] that uses MR video, in which at least one of the views is captured at LR,

while the others are captured at FR. The MR video in comparison with FR video

significantly reduces the amount of captured, transmitted, and stored data as well as

processing time, which is the bottleneck in real-time applications. Nevertheless, in

order to meet the requirements of high definition, reduce visual uncomfortableness and

make the video format more suitable for FTV, the LR video needs to be super-resolved

to FR size using SR techniques at the decoder side [85]. Therefore, in a MR video

system, the final quality will depend on the performance of the SR algorithm.

In general, image SR algorithms can be classified into three categories: reconstruction-

based SR algorithms [87] [88], learning-based SR algorithms [7] [89] and interpolation-

based SR algorithms [90] [54]. Compared with the previous two kinds of SR methods,

interpolation-based SR methods have gained more popularity in real-time applications

mainly due to their computational simplicity. However, the main drawback of this kind
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of method is the inability to fully exploit the scene content during the interpolation

process, and consequently they are prone to blurring high frequency details (edges).

In order to overcome this weakness, Zhang et al. proposed to adaptively fuse the LR

pixels on the two diagonal directions according to the Linear Minimum Mean Squares-

error Estimation (LMMSE) technique [90]. Garcia et al. in [8] proposed the use of high

frequency content from neighboring FR views and the corresponding depth information

to recover the high frequency content in the LR view.
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Figure 3.1: The framework of the proposed super-resolution method.

In this chapter, a new depth-map-assisted SR and enhancement algorithm is pro-

posed where virtual view information and interpolated frames are exploited to provide

two benefits. Firstly, the high frequency information contained in FR views can be

properly utilized to super-resolve LR views. Secondly, the inter-view redundancy will

be used to enhance the original LR pixels in the super-resolved views and to compen-

sate the luminance difference between views. Experimental results have shown that the

proposed algorithm achieves superior performance with respect to interpolation-based

algorithms.

The rest of this chapter is organized as follows. Details of the proposed SR method

will be introduced in Section 3.2. Several algorithms and explanation for choosing

the thresholds are given in Section 3.3. Generalization of the proposed method is

presented in Section 3.4, and experimental results are presented in Section 3.5. Section

3.6 concludes this chapter and discusses future work based on this current work.

3.2 Proposed Super-Resolution Method

In [91] and [92] it has been shown that a comfortable viewing of MR format could be

achieved when the resolution of the FR view is twice as much as the resolution of the
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LR view in both horizontal and vertical directions, whereas, higher ratios of the FR to

LR resolutions will result in unacceptable subjective quality. In the following this ratio

will be dubbed the resolution factor for brevity. This work will only address resolution

factor two based on the findings in [91] and [92]. The framework of the proposed virtual

view assisted interpolation-based SR algorithm is depicted in Fig.3.1. At viewpoint 1

the FR textures and associated depth maps with frame size W × H are compressed

and transmitted to the receiver side. Meanwhile, the texture at viewpoint 2 has half

the resolution of the FR view in both horizontal and vertical directions. The FR

decoded textures and depth maps will be denoted by VF
1 and DF

1 , respectively, while,

the decoded LR texture sequence will be denoted by VL
2 . At the decoder side, the

decompressed LR view is used to generate two intermediate FR versions at viewpoint

2. The first version (VI
2) is obtained by using an interpolation method, such as bilinear

or bicubic. The second version (VZ
2 ) is the zero-fill version of the LR view, where

the original LR pixels placed at positions with indices (2i − 1,2j − 1) are separated by

inserted zeros. This version will be used as a basis to generate the final super-resolved

FR version at viewpoint 2. The zero-inserted positions in this frame will be replaced

by pixels from either the interpolated view, VI
2, or from the FR view generated virtual

view at viewpoint 2 using the 1D DIBR process [93] from one reference view to another

without any post-processing (i.e., no hole filling). This virtual view will be referred to

VV
1,2 in the following sections. Deciding which pixels to use to replace the inserted zeros

will be driven by a similarity and smoothness check mechanism which will be explained

in Section 3.2.1. To further improve the quality of the super-resolved FR frames at

viewpoint 2, the enhancement methods will be proposed in Section 3.2.2.

3.2.1 Zero-filled View Filling

To generate an FR frame from the corresponding LR version and recover most of the

lost high frequency information in the capturing stage, both the virtual view and the

interpolated frame are used as candidates in this work. Since the virtual view is only

synthesized from the neighboring FR view, the inter-view redundancy and the high

frequency component of the FR frame, can be exploited in the proposed SR approach.

However, the virtual view might be affected by holes and cracks due to the wrapping

process and inaccurate depth map. Therefore, the similarity between the original LR

pixels in VZ
2 and the corresponding pixels in the virtual view is measured to ensure
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Figure 3.2: A pictorial representation of the similarity check process and the generation
of FR frame.

that only proper virtual view pixels are selected to replace the zero-filled pixels in VZ
2 .

This process will minimize the probability of copying holes from the virtual view into

VZ
2 . The similarity check mechanism consists of two 3 × 3 scanning windows WZ and

W V which synchronously scan the zero-filled view and the virtual view, respectively. A

pictorial representation of this process is shown in Fig.3.2. The centers of these windows

are used as the origin of their coordinate systems, thus for example WZ(−1,−1) stands
for the upper left corner pixel in the window WZ . The two windows move in a raster-

scan mode by sliding two pixels at a time, so as to be always centered at the zero-filled

pixels, i.e., (2i,2j) with 1 ≤ i ≤ H/2 and 1 ≤ j ≤ W /2. This ensures that for the zero-

filled view, there are four LR pixels at the corners of the window WZ to measure the

local texture similarity between the zero-filled view and the virtual view. In this work,

the Sum of Absolute Difference (SAD) is used for this purpose as below1:

DSC = ∑
η∈{−1,1};θ∈{−1,1}

∣WZ(η, θ) −W V (η, θ)∣ (3.1)

In this case, a hole due to the DIBR process in any corner of W V will lead, in

general, to a large SAD value. Therefore, this will be used as an indication that the

local virtual view pixels in the current window, W V , are not appropriate for filling the

corresponding zero positions in the zero-filled view. Consequently, the zero-filled pixel

(2i,2j) and its two causal neighbors, i.e., (2i−1,2j) and (2i,2j−1), will be filled by the

corresponding interpolated pixels from VI
2 if the SAD value is larger than a threshold

1The SAD and Euclidean distance in this case will almost lead to the same results.
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Tsi, as shown in the following equation:

V Z
2 (η, θ) = V I

2 (η, θ) ; DSC ≥ Tsi (3.2)

where (η, θ) ∈ C and C = {(2i,2j), (2i − 1,2j), (2i,2j − 1)}. Hence, except for pixel-size

holes located at the zero-filled positions, this mechanism will minimize the possibility

of mistakenly copying hole pixels from W V into WZ .

For the case when the SAD measure is smaller than Tsi, which indicates that the

diagonal pixels in the two windows are relatively similar, a further check is carried out

to determine the proper approach to fill the zero-filled positions in V Z
2 . If the area

encompassing WZ is smooth then interpolation algorithms could be better than the

virtual view to estimate the zero-filled pixels. This is because chromatic discrepancies

among different viewpoints make the obtained virtual view pixels less accurate than

the interpolated pixels in representing the missed information for smooth areas. The

chromatic discrepancies phenomenon happens due to the scene illumination difference,

camera calibration and jitter speed, even if the capturing cameras have been adjusted to

the same configuration [94]. Hence, based on this fact zero-filled pixels in smooth areas

will be replaced by their counterparts from VI
2. On the other hand, for non-smooth

areas, such as edges, interpolation algorithms intrinsically fail to estimate proper values

for the zero-filled pixels, whereas, the virtual view generated from the FR view carries

significant amount of information related to those non-smooth areas. Thus, for this

kind of areas the zero-filled pixels will be replaced by their counterparts in the virtual

view VV
1,2.

The previous paradigm is implemented in the second step, where the smoothness

of a 3 × 3 area, W I , centered at the pixel (2i,2j) in VI
2 is checked; in this work, this

has been done by measuring the standard deviation, σs. The motivation behind using

the window W I to measure the local smoothness, is that a non-trivial interpolator

uses more than 8-connected neighbors in the estimation process to preserve the local

regularity [95]. Consequently, the five estimated pixels along with the four corners of

W I carry more information about the local smoothness of the area, than the four LR

pixels at the corners of the WZ window. The outcomes of the smoothness check stage

could be summarized by the following equation:

V Z
2 (η, θ) = { V I

2 (η, θ) ; σs < Tsm
V V
1,2(η, θ) ; σs ≥ Tsm

(3.3)
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where (η, θ) ∈ C. In Eq.(3.3), Tsm is a threshold to determine whether an area sur-

rounding the pixel (2i,2j) has smooth or non-smooth texture. A flowchart depicting

the similarity check and smoothness check stages is shown in Fig.3.3. As for the bound-

ary pixels, they are copied from the interpolated view directly.
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Figure 3.3: Flowchart of the Zero-filled View Filling stage.

3.2.2 Zero-filled View Enhancement

In the previous stage, all of the zero-filled positions will be filled by either virtual view

pixels or interpolated pixels. However, the recovered FR frame will be affected by

compression distortion, virtual view introduced distortion and interpolation induced

distortion, therefore, in this work two methods are proposed to reduce the overall

distortion, and enhance the final quality of the generated FR view.

Luminance compensation

In real video capturing scenarios, different views will have slightly different luminance.

In addition, the LR and FR views will have different quality after compression, espe-

cially at large Quantization Parameters (QP), this is demonstrated in Table 3.1 for

four sequences. This is because the LR view has more details in each macroblock than

the FR view, thus even with the same QP the quality of its compressed version will be

lower than its counterpart in the FR view. All of these factors cause jagged edges in the

reconstructed FR frames when using the virtual view to recover the zero-filled positions
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Table 3.1: The PSNR differences (dB) between the FR and LR views using H.264 for:
(a) Bookarrival; (b) Doorflower; (c) Laptop; (d) Champagne with QP = 22, 27, 32, 37,
42, 47

Seq. Bookarrival Doorflower Laptop Champagne

QP ∆PSNR(dB) ∆PSNR(dB) ∆PSNR(dB) ∆PSNR(dB)

22 1.00 0.78 0.83 0.65

27 1.48 1.15 1.22 1.28

32 2.07 1.88 1.82 2.23

37 2.55 2.42 2.31 2.75

42 2.69 2.68 2.56 2.80

47 2.22 2.20 2.19 3.05

(a) (b)

(c) (d)

Figure 3.4: Comparison of the effect of luminance compensation on the first frame of
“Pantomime” and “Bookarrival” sequences. The two images on the left show the arti-
facts in the super-resolved frames without luminance compensation and the two images
on the right show the visual effects of same frame but after luminance compensation
(better perception could be achieved by viewing the images at their full resolutions,
which are 620 × 775 for (a) and (b); 620 × 884 for (c) and (d)).

in VZ
2 , and an example of this artifact is shown in the highlighted areas in Fig.3.4 (a)

and (c). Hence, a luminance compensation mechanism is proposed, which adjusts the

brightness of the copied pixels from the virtual view into VZ
2 (i.e., the virtual-view-
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based recovered pixels) to have harmonious brightness with the surrounding LR pixels.

If the set of pixels C of the current pixel (2i,2j) is recovered from the virtual view, the

average luminance difference between the two sliding windows WZ and W V centered

at (2i,2j) will be evaluated as:

DLC =
1

4
∑

η∈{−1,1};θ∈{−1,1}
[WZ(η, θ) −W V (η, θ)] (3.4)

If the absolute value of DLC is larger than a threshold Tl, the compensation process will

be used to update the intensity of the pixels C. The reason behind using the threshold

Tl is to eliminate the effect of compression distortion on the luminance compensation

process. In fact, given that a small number of pixels are used to estimate DLC , it

will be highly likely that this estimated value is biased by the amount of compression

distortion affectingWZ andW V . Nevertheless, the use of the threshold will ensure that

mainly luminance differences get compensated, and the small window size will ensure

that luminance compensation is performed locally. Once the luminance compensation

process is invoked for a set C, then for each of its three pixels the proper amount of

compensation will be determined by using the closest available neighbors for each of

the pixels in C to avoid blurring edges. For example, for the pixel (2i − 1,2j) its two

horizontal neighbors (2i − 1,2j − 1) and (2i − 1,2j + 1) will be used to evaluate its

compensation value ∆Y h:

∆Y h =
1

2
[∆W (−1,−1) +∆W (−1,+1)] (3.5)

where ∆W (η, θ) = WZ(η, θ) −W V (η, θ). Now the position (2i − 1,2j) in the zero-

filled view will be filled by V V
1,2(2i − 1,2j) + ∆Y h instead of V V

1,2(2i − 1,2j). Simi-

larly, the compensation value for the pixel (2i,2j − 1) will be computed starting from

its two vertical neighbors as ∆Y v = 1
2 [∆W (−1,−1) +∆W (+1,−1)] and consequently

V Z
2 (2i,2j−1) = V V

1,2(2i,2j−1)+∆Y v. As for the center pixel, (2i,2j), it will be updated
as V Z

2 (2i,2j) = V V
1,2(2i,2j) +∆Y c. However, given that the pixel (2i,2j) is at equal

distance from the four corners its compensation value will be evaluated as:

∆Y c =
1

4
[∆W (−1,−1) +∆W (−1,+1)
+∆W (+1,−1) +∆W (+1,+1)] (3.6)

Some luminance compensation results are shown in Fig.3.4 (b) and (d).
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LR pixels enhancement in the super-resolved view

The previous subsection proposes an enhancement mechanism for the virtual-view-

based recovered pixels, whereas, in this subsection a mechanism to enhance the quality

of the other pixels in VZ
2 , i.e., the original LR pixels, is proposed. This is particularly

important given that these pixels suffer from more compression distortion than their

counterparts in the FR view, as shown in Table 3.1. The proposed enhancement method

in this subsection exploits the inter-view correlation to achieve its objective. In fact, in a

multiview system adjacent views have a large similarity, so the same content may appear

in two different positions in two adjacent views. Hence, if the same content is separately

encoded in the two views then their compression distortions could be partially canceled

out. To show why the proposed mechanism improves performance, and to show its

principle, let us consider a point in the scene v̂ which is viewed from two viewing

points, which means it is not occluded in either of these two views. Let us denote the

projection of this point into viewpoint 1 and viewpoint 2 by V̂ F
1 (µ, ν) and V̂ L

2 (i, j),
respectively. Apart from small differences, due to the nature and relative position of the

lighting source in the scene, the previous two values could be regarded as similar, i.e.,

V̂ F
1 (µ, ν) ≈ V̂ L

2 (i, j) = v̂, the smaller the baseline is the more correct this assumption is2.

Hence, in the following sections, we will assume that V̂ F
1 (µ, ν) = V̂ L

2 (i, j) = v̂. These

two projections will be compressed separately in the two viewpoints, so they become:

V F
1 (µ, ν) = v̂ + d1 and V L

2 (i, j) = v̂ + d2, where d1 and d2 are the distortion caused by

video compression on view 1 and 2, respectively. Since the compression can be treated

as a random process with the mean value being E{d1} = E{d2} = 0, the variance of

the distortion affecting view 1 and 2 will be σ21 = E{d21} and σ22 = E{d22}, respectively.
Then at the decoder side, and as explained previously, the zero-filled view is obtained

from the LR view by inserting zeros in between its pixels, thus:

V Z
2 (2i − 1,2j − 1) = V L

2 (i, j) = v̂ + d2 (3.7)

At this point, assume that the wrapping process works accurately and maps V F
1 (µ, ν)

into V V
1,2(2i−1,2j −1) without introducing tangible wrapping distortion. This assump-

tion implies that the depth information is accurate, in this case:

V V
1,2(2i − 1,2j − 1) = v̂ + d1 (3.8)

2Although the coordinate system in the two views are related, they are different due to the fact that
the two views are with different resolutions.
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If at the decoder side the pixel at position (2i − 1,2j − 1) in the zero-filled view is

replaced by the average of V Z
2 (2i − 1,2j − 1) and V V

1,2(2i − 1,2j − 1) then the expected

compression distortion could be evaluated by using (3.12) and (3.13) as:

σ2 = E {( v̂+d2+v̂+d12 − v̂)2}
= E {(d2+d12

)2} (3.9)

Since view 1 and 2 are separately compressed, E{d1d2} = 0. In the general case d1 ≤ d2

even when using the same QP for the LR and FR views, consequently,
σ2
2
4 ≤ σ

2 ≤ σ2
2
2 .

This means that the equivalent distortion of the pixels at (2i-1, 2j-1), where 1 ≤ i ≤H/2
and 1 ≤ j ≤W /2 in the zero-filled view will be reduced.

It is worth noting that the averaging process can only be applied to those pixels

in VZ
2 which have equivalent pixels in VV

1,2, thus holes and occluded areas need to

be excluded from this process. To ensure this, the similarity and smoothness check

mechanism proposed in section 3.2.1 will also be used here. Since the sliding window

used in this process moves in a raster scan fashion, then except for some border pixels,

each LR pixel will appear in four different windows. Therefore, only when the LR pixel

is regarded similar to its counterpart virtual view pixel in four measurements, then it

will be replaced by
V Z
2 (2i−1,2j−1)+V V

1,2(2i−1,2j−1)
2 .

3.3 Thresholds Evaluation

In the proposed SR approach, both the virtual view and interpolated view are utilized to

generate the FR frames, and two post-processing enhancement operations are exploited

to further improve the quality of the generated FR view. In this whole process, three

thresholds are required. An experimental-based approach to determine the values of

these thresholds could be used at the encoder side by using an analysis-by-synthesis

approach. Since these three thresholds are intertwined, the choice of one will have

impacts on the others. Therefore, to obtain the best thresholds the encoder needs to

test different combinations of them using three nestlike loops, and then send values to

the decoder. If the complexity of estimating one threshold is O(n), then the complexity

of this exhaustive approach is O(n3). A simplified approach is proposed, where the

value for each threshold is obtained in a successive approach and the complexity can be

consequently, reduced from O(n3) to O(n). Some experiments were conducted on the

“Doorflower” and “Pantomime” sequences at QP = {22,27,32,37, 42, 47} to compare
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the performance of exhaustive and successive approaches; the corresponding results

are shown in Fig.3.5 3. The results indicate that the proposed simplified approach can

significantly reduce complexity without large quality degradation and also indicate that

although these three thresholds are intertwined, there are some other factors that have

more influence on their values. It is shown in 3.6 that Tsi and Tl could be represented

by

Tsi = α
√
σ21 + σ

2
2 (3.10)

Tl = β
√
σ21 + σ

2
2 (3.11)

where σ1 and σ2 are the standard deviations of the compression distortion affecting

view 1 (FR view) and view 2 (LR view), respectively; α and β are two parameters

which depend on the sequence content.

In order to explain the process of deriving thresholds Tsi and Tl, it should be

clear that the approach used stems from the idea that the LR and FR frames are

affected by compression distortion, and consequently the thresholds should take this

distortion into account. To derive the threshold Tsi which is used to qualitatively

indicate the local texture similarity, let us suppose that a point is projected into a

FR viewpoint and LR viewpoint as V̂ F
1 (µ, ν) and V̂ L

2 (i, j), respectively. As we did in

Section 3.2.2, let us suppose that the previous two values could be regarded similar

V̂ F
1 (µ, ν) = V̂ L

2 (i, j) = v̂, which means the original point is not occluded in any of

the two viewing points. Then after compression V̂ F
1 (µ, ν) and V̂ L

2 (i, j) will become:

V F
1 (µ, ν) = v̂ + d1 and V L

2 (i, j) = v̂ + d2, where d1 and d2 are distortions caused by

video compression on view 1 and 2, respectively. The mean and variance of d1 and d2

are E{d1} = 0, σ21 = E{d21} and E{d2} = 0, σ22 = E{d22}, respectively. At the decoder

side, the zero-filled view is obtained from the LR view by inserting zeros in between its

pixels, thus:

V Z
2 (2i − 1,2j − 1) = V L

2 (i, j) = v̂ + d2 (3.12)

Assuming that the wrapping process works accurately and maps V F
1 (µ, ν) into V V

1,2(2i−
1,2j − 1) without introducing tangible wrapping distortion. In this case:

V V
1,2(2i − 1,2j − 1) = v̂ + d1 (3.13)

3Similar results, not reported here for briefness, have been obtained from other sequences.
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Therefore, at this stage the variance of the difference between V V
1,2 and V Z

2 , which will

be used to measure the local texture similarity, could be evaluated as:

σ2d = E {(V V
1,2(2i − 1,2j − 1) − V Z

2 (2i − 1,2j − 1))2}
= E {(d1 − d2)2} (3.14)

Due to the fact that d1 and d2 are uncorrelated, E {(d1 − d2)2} = E{σ21} +E{σ22}. So

when measuring the local similarity, the threshold Tsi should be selected to mask the

distortion induced dissimilarity, thus

Tsi = α × σd = α
√
σ21 + σ

2
2 (3.15)

where α is a parameter which depends on the sequence content.

The derivation of the luminance compensation threshold, Tl, follows a similar ap-

proach to the one used for Tsi. The luminance compensation process is carried forward

for the virtual-view-based recovered pixels. For this to happen it requires that the

similarity condition between WZ and W V be satisfied. Thus, we could use the same

approach we used to evaluate σ2d in (3.14) to evaluate the variance of ∆Y h as:

σ2h =
σ21 + σ

2
2

2
(3.16)

For the vertical compensation item ∆Y v the variance could be evaluated as

σ2v =
σ21 + σ

2
2

2
(3.17)

Finally, for the center compensation item ∆Y c we have

σ2c =
σ21 + σ

2
2

4
(3.18)

Hence, if we want to use threshold Tl to ensure that mainly luminance differences

get compensated and not the differences due to compression of the two views, then Tl

should be selected to be larger than σh, σv and σc.

Therefore,

Tl = β
√
σ21 + σ

2
2 (3.19)

where β is a factor that depends on the sequence.

In the successive approach, the three thresholds(or equivalently, α, β and Tsm) could

be either determined at the encoder frame-by-frame and sent to the decoder side, or be

just determined for the first frame and then applied to the following frames. These two
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Figure 3.5: The comparison of exhaustive and successive approaches for thresholds
determination on “Doorflower” and “Pantomime” sequences.

approaches have been tested and the results are shown in Fig.3.6. In addition, there

is a third approach which uses user-defined value for both α and β; the corresponding

results are also shown in Fig.3.6. In this approach, it is reasonable to assume α and β are

larger than three based on Chebyshev’s inequality. From the figure, it is obvious that

the successive-search approach which estimates α, β and Tsm based on the first frame

and then use these values for the following frames is almost as good as the frame-by-

frame approach, and consequently, all the following experiments were conducted using

this approach.

3.4 Proposed Method on Multiview Video

The proposed virtual view assisted SR algorithm can also be applied to multiview

multi-resolution systems. Since in these kinds of systems more neighboring FR views

and the corresponding depth maps are available, at a given viewpoint, more virtual

view versions can be utilized. With the aid of these virtual views, the quality of the

final generated FR views can be considerably improved. As depicted in Fig.3.7, V V
q,k

(q = 1, ...,m and k = 1, ..., n) is the virtual view generated from one of the adjacent FR

views at viewpoint q to one of the LR views at viewpoint k . In this case, the zero-filled

pixels in the zero-filled view are replaced by selecting from the available virtual views the

one which best satisfies the similarity condition. Subsequently, the two enhancement

51



20 25 30 35 40 45 50
28

29

30

31

32

33

34

35

36

37

QP

P
S

N
R

(d
B

)

 

 

α and β of 1st frame
α and β estimated frame by frame
α=20, β=20
α=15, β=15
α=10, β=10

(a)

20 25 30 35 40 45 50
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

QP

S
S

IM

 

 

α and β of 1st frame
α and β estimated frame by frame
α=20, β=20
α=15, β=15
α=10, β=10

(b)

20 25 30 35 40 45 50
28

30

32

34

36

38

40

QP

P
S

N
R

(d
B

)

 

 

α and β of 1st frame
α and β estimated frame by frame
α=20, β=20
α=15, β=15
α=10, β=10

(c)

20 25 30 35 40 45 50
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

QP

S
S

IM

 

 

α and β of 1st frame
α and β estimated frame by frame
α=20, β=20
α=15, β=15
α=10, β=10

(d)

Figure 3.6: PSNR and SSIM comparisons of different approaches for the evaluation of α
and β; (a) and (b) are results of “Doorflower”; (c) and (d) are results of “Pantomime”.

methods are performed step-by-step, in this way, the proposed algorithm effectively

super-resolves the LR views.
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Figure 3.7: The proposed algorithm for multiview multi-resolution system.
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Table 3.2: The parameters and characteristics for each used sequence

Name Size FR LR Content’s Motion Frame rate (fps)

Doorflower 1024 × 768 View10 View08 Moderate 16.67

Bookarrival 1024 × 768 View08 View06 Moderate 16.67

Leavelaptop 1024 × 768 View06 View07 Moderate 16.67

Pantomime 1280 × 960 View39 View40 Medium complex 30

Champagne 1280 × 960 View37 View38 Complex 30

Dog 1280 × 960 View38 View39 Medium complex 30

Kendo 1024 × 768 View03 View04 Complex 30

3.5 Experimental Results

In order to objectively and subjectively evaluate the performance of the proposed al-

gorithm, several experiments were conducted with MPEG 3-D video sequences, includ-

ing “Doorflower”, “Bookarrival”, “Leavelaptop”, “Pantomime”, “Champagne”, “Dog”,

and “Kendo”. Since the proposed SR method is targeted for MR paradigm, and due to

the lack of MR MVD sequences. Test sequences have been generated by downsampling

at least one of the FR views to LR for each of the sequences. The downsampling factor

is 2 in both the horizontal and vertical directions. The original FR views are considered

as ground-truth views for objective assessments. The DIBR technique is employed to

render the virtual views, and the H.264/AVC reference software JM17.0 [96] is used to

implement the coding process. The IPPP coding structure is used and one second of

each sequence is tested. The QP values are {22,27,32,37,42, 47} for both the texture

and depth maps and for both FR and LR views. In the following experiment, the 6-tap

Lanczos interpolation filter is used as a benchmark method. The other most used inter-

polation method Bicubic is also tested 4. Finally, Peak Signal-to-Noise-Ratio (PSNR)

and Structural Similarity Index Measurement (SSIM) [97] are employed to assess the

objective performance.

In the experiments, firstly the effectiveness of the proposed approach on stereoscopic

sequences is evaluated, and then its performance is compared with other approaches.

Secondly, the effectiveness of each stage of the proposed method is verified, the results

of each stage are also reported. Lastly, the proposed algorithm is applied to MVD

4These two methods enables other researchers to “indirectly” compare their works with ours by
directly comparing their results with these two common interpolation methods. Moreover, the proposed
approach belongs to the interpolation-based SR category, so it is reasonable to compare it with Bicubic
and Lanczos which are also interpolation methods.
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sequences.

3.5.1 Performance Evaluation on Stereo Video

Unless otherwise noted, the characteristics and two chosen viewpoints for each test

sequence have been listed in Table 3.2. All the PSNR and SSIM results for the lu-

minance component of the three interpolation-based approaches are shown in Table

3.3, where “Lan” = “Lanczos”, “Bic”= “Bicubic”, “Pro”= “Proposed”. Results of the

state-of-the-art single image super-resolution approach via Sparse Coding (SC) [61] are

also reported in the table, where the parameters for the publicly available code5 are

set according to [61]. It is clear that the proposed method outperforms the bench-

mark method and Bicubic method over all QPs both in terms of PSNR and SSIM.

For most of the cases, the proposed method is also better than [61]. Table 3.3 also

presents the PSNR and SSIM gains over the benchmark method which are indicated

by ∆PSNR and ∆SSIM, respectively. This reveals that the PSNR gains increase with

a decrease of QP values, while, the SSIM gains increase with an increase of QP values.

The highest PSNR gain obtained by the proposed method is 3.85dB on the sequence

“Bookarrival” when PQ=22, while, the average PSNR gain over all sequences and QPs

is 2.11dB. Although, in terms of SSIM the gains are not as obvious as the PSNR ones,

the SSIM gains still indicate an improvement in the objective quality compared with

the benchmark method, especially when QP is very large.

To further evaluate the effectiveness of the proposed method, comparisons with the

method proposed in [1] also have been carried out by adopting the same test sequences

with the same resolution and the same way of generating the test MR sequences with

a resolution factor of 2. The results of these comparisons are shown in Table 3.4.

In the following we compare our proposed approach with [8]. The proposed method

was tested under disadvantageous condition with respect to [8], where in the latter

approach the uncompressed sequence “Pantomime” and “Dog” with a resolution factor

of 2 was used, and the reported gains were 2.57dB and 1.06dB over the Lanczos method,

respectively, while, in the proposed method, even with video compression (QP=22) the

gains are 3.62dB and 1.22dB, respectively. The average PSNR gain in [8] at QP =

{22,27,32,37} on these two sequences with respect to the Lanczos method are 1.39dB

and -0.16dB, respectively. While, the average PSNR gains of the proposed method in

5http://www.ifp.illinois.edu/~jyang29/ScSR.htm
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Table 3.3: The Luminance PSNR (dB) and SSIM results of proposed method in compar-
ison with other methods and corresponding gains of the proposed method over Lanczos
method

QP Sequence Doorflower Bookarrival Leavelaptop Pantomime Champagne Dog Kendo

22

PSNR

Lan 33.12 32.98 33.31 35.50 33.95 34.96 37.56

Cub 33.20 33.05 33.40 35.54 34.00 35.04 37.60

SC[61] 32.83 32.57 32.94 36.31 34.79 35.43 38.05

Pro 36.95 36.83 36.05 38.87 36.25 36.05 39.36

∆PSNR 3.83 3.85 2.74 3.37 2.30 1.09 1.80

SSIM

Lan 0.970 0.969 0.970 0.994 0.992 0.983 0.986

Cub 0.971 0.970 0.970 0.994 0.992 0.983 0.987

SC[61] 0.945 0.938 0.936 0.985 0.984 0.967 0.970

Pro 0.987 0.987 0.984 0.997 0.995 0.989 0.990

∆SSIM 0.017 0.018 0.014 0.003 0.003 0.006 0.004

27

PSNR

Lan 32.89 32.68 33.03 35.21 33.62 34.27 36.85

Cub 32.95 32.73 33.09 35.25 33.67 34.33 36.89

SC[61] 32.76 32.44 32.82 36.10 34.47 34.83 37.49

Pro 36.51 36.23 35.70 38.66 35.53 35.10 38.74

∆PSNR 3.62 3.55 2.67 3.45 1.91 0.83 1.89

SSIM

Lan 0.966 0.963 0.964 0.993 0.990 0.976 0.981

Cub 0.967 0.963 0.964 0.993 0.990 0.976 0.981

SC[61] 0.940 0.930 0.928 0.982 0.980 0.955 0.962

Pro 0.983 0.981 0.979 0.996 0.993 0.982 0.986

∆SSIM 0.017 0.018 0.015 0.003 0.003 0.006 0.005

32

PSNR

Lan 32.33 32.04 32.45 34.48 32.84 32.93 35.48

Cub 32.37 32.08 32.49 34.51 32.89 32.99 35.51

SC[61] 32.47 32.08 32.55 35.48 33.71 33.61 36.26

Pro 35.41 35.12 34.81 37.59 35.00 33.49 37.45

∆PSNR 3.08 3.08 2.36 3.11 2.16 0.56 1.97

SSIM

Lan 0.957 0.951 0.953 0.991 0.985 0.961 0.972

Cub 0.957 0.951 0.953 0.991 0.985 0.961 0.972

SC[61] 0.931 0.916 0.917 0.977 0.972 0.937 0.950

Pro 0.974 0.972 0.970 0.995 0.991 0.967 0.980

∆SSIM 0.017 0.021 0.017 0.004 0.006 0.006 0.008

37

PSNR

Lan 31.26 30.89 31.26 33.07 31.56 31.04 33.48

Cub 31.30 30.92 31.30 33.12 31.62 31.10 33.51

SC[61] 31.67 31.29 31.66 34.18 32.41 31.89 34.37

Pro 33.91 33.49 33.40 35.97 33.33 31.36 35.25

∆PSNR 2.65 2.60 2.14 2.90 1.77 0.32 1.77

SSIM

Lan 0.941 0.930 0.931 0.986 0.977 0.931 0.956

Cub 0.941 0.930 0.931 0.986 0.977 0.931 0.956

SC[61] 0.915 0.897 0.896 0.967 0.957 0.905 0.932

Pro 0.963 0.958 0.956 0.992 0.983 0.937 0.969

∆SSIM 0.022 0.028 0.025 0.006 0.006 0.006 0.013

42

PSNR

Lan 29.46 28.99 29.49 30.74 29.50 28.42 30.87

Cub 29.49 29.01 29.51 30.78 29.56 28.45 30.89

SC[61] 30.35 29.92 30.41 31.95 30.55 29.48 31.86

Pro 31.36 31.08 31.31 33.34 31.05 28.62 32.51

∆PSNR 1.90 2.09 1.82 2.60 1.55 0.20 1.64

SSIM

Lan 0.904 0.882 0.888 0.975 0.960 0.859 0.927

Cub 0.904 0.882 0.888 0.975 0.960 0.859 0.927

SC[61] 0.882 0.854 0.859 0.955 0.942 0.834 0.901

Pro 0.935 0.923 0.924 0.985 0.971 0.866 0.949

∆SSIM 0.031 0.041 0.036 0.010 0.011 0.007 0.022

47

PSNR

Lan 27.29 26.83 27.17 27.50 26.90 25.80 27.86

Cub 27.30 26.84 27.18 27.53 26.96 25.82 27.88

SC[61] 28.50 28.02 28.40 28.83 28.07 27.00 28.94

Pro 28.55 28.36 28.57 29.57 28.25 25.91 29.55

∆PSNR 1.26 1.53 1.40 2.07 1.35 0.11 1.69

SSIM

Lan 0.838 0.811 0.817 0.939 0.922 0.732 0.877

Cub 0.838 0.811 0.817 0.939 0.922 0.732 0.878

SC[61] 0.820 0.790 0.796 0.922 0.900 0.712 0.853

Pro 0.878 0.862 0.863 0.958 0.941 0.740 0.912

∆SSIM 0.040 0.051 0.046 0.019 0.019 0.008 0.035
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(a) (b)

(c) (d)

Figure 3.8: (a) the reference FR frame; (b) cropped portion of the FR frame; the
results at QP=32 for: (c) benchmark interpolation method; (d) proposed method; full
resolution of the cropped portion is 620 × 884.

comparison with the Lanczos method at the same QP values are 3.21dB and 0.74dB,

respectively.

The subjective comparisons are shown in Fig.3.8. The reference FR frame at QP =

32 is shown in Fig.3.8 (a), whereas, Fig.3.8 (b) shows a cropped portion of it, the same

areas processed by the benchmark and the proposed method are shown in Fig.3.8 (c) and

Fig.3.8 (d), respectively. In contrast to the Lanczos method, our method preserves the

edges and obtains a satisfactory result, due to the elimination of the aliasing artifacts

and blurring caused by only adopting the interpolation process.

3.5.2 Performance of Each Stage of the Proposed Method

In this subsection, several experiments have been conducted to validate the necessity

and effectiveness of each stage in the proposed algorithm. Hence, the PSNR and SSIM

improvements of each stage are listed in Table 3.5 for the zero-filled view filling stage

and the enhancement stage, these two stages will be respectively denoted as “zfvf” and
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Table 3.4: PSNR (dB) and SSIM of SR results obtained by the proposed method and
reference method in[1]

Sequence Book Doorflower Laptop

PSNR
[1] 33.04 33.27 33.93

Pro 34.57 33.76 34.38

∆PSNR 1.53 0.49 0.45

SSIM
[1] 0.941 0.941 0.945

Pro 0.986 0.983 0.986

∆SSIM 0.045 0.042 0.041

Figure 3.9: The PSNR value for each 8×8 block evaluated on the luminance component
of the first frame of “Doorflower” (shown in Fig.3.8 (a)) at QP=22. (a) benchmark
interpolation method; proposed method: (b) after similarity check, (c) after smoothness
check, and (d) after enhancement stage.

“zfve” for short. As can be seen from the table, each stage contributes some gains,

except for some very small losses. For the majority of the tested sequences, the first

stage provides significant gains, nevertheless, the second stage also offers contributions

by doing local improvement, when QP is large. Similarly, the first stage provides more

SSIM gains than the second stage, except for in the sequence “Champagne”.

To further investigate the effectiveness of each stage the sequence “Doorflower”

is taken as an example in Fig.3.9. The PSNR value for each 8 × 8 block has been

shown for the Lanczos method in Fig.3.9 (a) (the original tested frame is shown in

Fig.3.8 (a)). It is worth noticing that it has a PSNR value over 50dB in the top-right

corner of the frame and also high PSNR values in smooth areas. However, areas with

complex texture and edges suffer low PSNR values, some of these areas are indicated

by red squares in the figure. This observation emphases the importance of recovering

high frequency information and the weakness of approaches that solely rely on the LR

pixels to generate the FR frame. By referring to Fig.3.9 (b) which shows the PSNR

distribution after replacing the zero-filled pixels in the zero-filled view, it can be seen

that the parts, especially in the highlighted red squared areas, the edges and areas with
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Table 3.5: The Luminance PSNR gain (dB) and SSIM gain for each stage of the
proposed approach;“zfvf” and “zfve” stand for zero-filled view filling stage and the
enhancement stage, respectively

QP 22 27 32 37 42 47

D
o
or
fl
ow

er ∆PSNR
zfvf 3.28 3.08 2.58 2.16 1.52 0.95

zfve 0.55 0.55 0.50 0.49 0.38 0.31

∆SSIM
zfvf 0.016 0.017 0.018 0.023 0.034 0.044

zfve 0.001 0.000 0.000 -0.001 -0.004 -0.005

B
o
ok
ar
ri
va
l

∆PSNR
zfvf 3.04 2.81 2.44 2.06 1.68 1.27

zfve 0.81 0.74 0.64 0.55 0.40 0.27

∆SSIM
zfvf 0.017 0.018 0.022 0.030 0.047 0.060

zfve 0.001 0.000 -0.001 -0.002 -0.006 -0.009

L
ea
ve
la
p
to
p

∆PSNR
zfvf 1.83 1.74 1.55 1.41 1.28 1.10

zfve 0.90 0.94 0.81 0.74 0.54 0.30

∆SSIM
zfvf 0.013 0.014 0.017 0.025 0.040 0.053

zfve 0.002 0.001 0.001 0.000 -0.004 -0.007

P
an

to
m
im

e

∆PSNR
zfvf 3.40 3.46 3.09 2.87 2.61 2.08

zfve 1.13 1.24 1.17 1.15 1.02 0.68

∆SSIM
zfvf 0.002 0.002 0.003 0.006 0.010 0.019

zfve 0.000 0.000 0.000 0.000 0.000 -0.001

C
h
am

p
ag
n
e

∆PSNR
zfvf 1.16 0.97 1.04 0.84 0.68 0.78

zfve 1.14 0.95 1.12 0.94 0.88 0.58

∆SSIM
zfvf 0.000 0.000 0.003 0.004 0.005 0.023

zfve 0.004 0.003 0.003 0.003 0.006 -0.003

D
og

∆PSNR
zfvf 0.82 0.64 0.41 0.23 0.10 0.03

zfve 0.28 0.20 0.15 0.09 0.10 0.08

∆SSIM
zfvf 0.006 0.006 0.006 0.006 0.007 0.014

zfve 0.000 0.000 0.000 0.000 -0.001 -0.005

K
en

d
o ∆PSNR
zfvf 0.81 0.69 0.69 0.87 1.03 1.16

zfve 1.00 1.20 1.28 0.89 0.61 0.53

∆SSIM
zfvf 0.002 0.003 0.007 0.012 0.022 0.033

zfve 0.002 0.002 0.002 0.001 0.000 0.002
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complex texture have been improved significantly. However, at the same time the area

highlighted by the black ellipse, which is a flat background area in the scene, endures

quality degradation due to this process. This indicates that if most of the pixels are

copied from the virtual view, the information around edges and strong details can be

recovered well, but the flat area might be degraded with respect to the interpolated

frame. Hence, there is an overall trade-off between these two choices. The FR frame

after the smoothness check is shown in Fig.3.9 (c), from this figure we could appreciate

how the quality of flat areas is improved (the highlighted ellipse in Fig.3.9 (c)). Actually,

the area highlighted by the ellipse in the scene is closer to the light source, so it has

a higher possibility of being affected by the imbalanced light distribution. Therefore,

improvement is achieved after the luminance compensation process, as shown in Fig.3.9

(d), and the already improved areas in the previous stage are still preserved well.

3.5.3 Performance Evaluation on Multiview Video

When testing on multiview video, for “Doorflower”, the LR version of View10 is super-

resolved with the aid of View12 and View08. For “Pantomime”, the LR version of

View40 is super-resolved with the aid of View39 and View41. For “Champagne”, the

LR version of View38 is super-resolved with the aid of View37 and View39. For “Dog”,

the LR version of View39 is super-resolved with the aid of View38 and View40. For

“Kendo”, the LR version of View04 is super-resolved with the aid of View03 and

View05. Table 3.6 reveals all the results of these simulations and it shows that the

proposed SR method can also work well in multiview video system. In this case, the

highest PSNR gain can be up to 4.6dB for “Pantomime” sequence. Compared with

the two-view video case, the PSNR gains of multiview video become higher especially

when the QP is small (QP=22), and the average gain over the tested sequences for all

QPs is 2.16dB which is 0.20dB higher than the obtained results for stereoscopic video.

These gains are obtained due to the availability of multiple virtual view candidates,

which ensures that the more suitable virtual view pixels are copied into the zero-filled

view.

3.6 Conclusions

In this chapter, a novel interpolation-based virtual view assisted super-resolution method

for mixed-resolution multiview video has been proposed. The low resolution views in
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Table 3.6: The Luminance PSNR (dB) and SSIM values and gains over the benchmark
method for multiview video

Doorflower

QP 22 27 32 37 42 47

PSNR
Lan 33.40 33.15 32.55 31.46 29.62 27.43
Pro 37.48 36.89 35.62 33.80 31.49 28.70

∆PSNR 4.08 3.74 3.07 2.34 1.87 1.27

SSIM
Lan 0.972 0.967 0.957 0.941 0.904 0.840
Pro 0.988 0.982 0.973 0.960 0.932 0.876

∆SSIM 0.015 0.015 0.016 0.019 0.028 0.036

Pantomime

QP 22 27 32 37 42 47

PSNR
Lan 35.56 35.27 34.53 33.13 30.80 27.54
Pro 40.16 39.71 38.11 35.41 31.91 28.00

∆PSNR 4.60 4.44 3.58 2.28 1.11 0.46

SSIM
Lan 0.994 0.993 0.991 0.986 0.975 0.939
Pro 0.997 0.996 0.994 0.989 0.978 0.942

∆SSIM 0.003 0.003 0.003 0.003 0.003 0.003

Champagne

QP 22 27 32 37 42 47

PSNR
Lan 34.01 33.67 32.90 31.62 29.55 26.95
Pro 37.75 36.88 35.48 33.17 30.42 27.31

∆PSNR 3.74 3.21 2.58 1.55 0.87 0.36

SSIM
Lan 0.992 0.990 0.985 0.977 0.961 0.923
Pro 0.996 0.994 0.989 0.981 0.965 0.926

∆SSIM 0.004 0.004 0.004 0.004 0.004 0.003

Dog

QP 22 27 32 37 42 47

PSNR
Lan 34.99 34.29 32.95 31.07 28.45 25.82
Pro 36.81 35.77 33.97 31.71 28.76 26.00

∆PSNR 1.82 1.48 1.02 0.64 0.31 0.18

SSIM
Lan 0.983 0.977 0.962 0.933 0.862 0.733
Pro 0.991 0.984 0.970 0.940 0.869 0.743

∆SSIM 0.008 0.007 0.007 0.007 0.007 0.010

Kendo

QP 22 27 32 37 42 47

PSNR
Lan 37.56 36.85 35.48 33.49 30.87 27.86
Pro 41.05 39.90 38.01 35.58 32.58 29.35

∆PSNR 3.49 3.05 2.53 2.09 1.71 1.49

SSIM
Lan 0.986 0.981 0.972 0.956 0.927 0.877
Pro 0.990 0.986 0.980 0.968 0.946 0.907

∆SSIM 0.004 0.005 0.008 0.012 0.020 0.030

the MR multiview video are super-resolved to full resolution size using a two-step pro-

cess. In the first stage, the similarity between the LR pixels and their counterparts in

the virtual view is measured. Then if necessary, a smoothness check will be carried out

to determine whether to use virtual view pixels or interpolated pixels to fill the zero-
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filled pixels. Subsequently, the quality of the virtual-view-based pixels is enhanced by

compensating the intrinsic luminance difference between the two views. Furthermore,

the inter-view correlation is exploited to enhance the LR pixels in the super-resolved

frame by reducing their compression distortion. Therefore, different from the previous

interpolation-based SR algorithms, the advantages of virtual views have been exploited

by the proposed method at different stages. Moreover, it has been shown that the

proposed algorithm achieves superior performance with respect to both benchmark

and state-of-the-art approaches. Future work will be devoted to combining temporal

correlations with inter-view correlation to improve the exploitation of the virtual views.

It is worth reporting that the work reported in this section has led to the following

publication: Zhi Jin, Tammam Tillo, Jimin Xiao, Chao Yao and Yao Zhao, Virtual View

Assisted Video Super-Resolution and Enhancement, Circuits and Systems for Video

Technology, IEEE Transactions on (Volume:PP , Issue: 99 ), doi:10.1109/TCSVT.2015.2412791.
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Chapter 4

Depth-Map-Assisted Texture
Super-Resolution for Multiview
Video Plus Depth

4.1 Introduction

The MVD format [98], as one popular representation format for 3D multiview data,

consists of textures and the associated per-pixel depth data. Although this format

allows any intermediate view within a certain range to be generated, referring to 2D

video systems, the required transmitted data of 3D multiview video is still very large.

Compared with texture, depth maps require less transmission bitrate [99], however,

the quality of the decoded depth maps highly affects the quality of the DIBR generated

synthesized views. Hence, much research has only focused on reducing the amount of

transmitted texture data. In [100], Garcia et al. proposed a mixed-resolution-based

coding approach where all of the frames were divided into groups of N FR frames

and M LR frames. In each group, the smallest encoding resolution for the M LR

frames was obtained by iteratively comparing the N -th reconstructed FR frame with

its original version. Since the best downsampling ratio was obtained based on only

one FR frame and then applied to the remaining LR frames, the obtained results may

not be optimal. Moreover, if the resolution estimation analysis was done on a large

scale, the computational complexity would hugely increase. While, Zhang et al. in

[9] proposed a content adaptive downsampling on both views of a stereoscopic video.

However, the downsampling mechanism needs information regarding the interpolation

mechanism used.

One common problem of downsampling-based coding approaches is that they gen-
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erally improve the rate-distortion performance at low bitrate. However, it may result

in subjective quality degradation. In order to overcome this quality degradation, such

as, block artifacts, blurred details and ringing artifacts around the edges [90], some

sophisticated edge-guided upsampling and super-resolution methods have been pro-

posed. In [101], a sharp HR gradient field was obtained from the LR image by an

adaptive self-interpolation algorithm, and then this HR gradient was used as an addi-

tional edge-preserving constraint to refine the FR image. In [8] and [102], virtual views

have been utilized to recover FR frames in a MR-MVD framework, so in [8] the high

frequency content has been extracted from the virtual view and then added to the LR

frame to reconstruct the FR frame. However, in this work, the high frequency content

is extracted from the whole frame, thus the local characteristics of the scene are not

taken into account. While, in [102], the local similarity between the LR frames and

their corresponding virtual view has been used to steer the FR recovery mechanism.

Consequently, for similar areas, virtual view pixels are used to generate the FR frame,

whereas, for non-similar areas a conventional interpolation method is used. The main

weakness of this approach is that it does not provide a mechanism to jointly fuse these

two kinds of pixel. Different from the previously described paradigms, in [103] and

[9], an optimized down/upsampling framework is proposed. In this approach, in order

to minimize interpolation errors, the image downsampling pattern is evaluated as a

function of the interpolation method. Unfortunately, this paradigm is not suitable for

video applications, because the downsampling pattern is frame dependent which means

that temporal redundancy cannot be efficiently removed by the video encoder. Thus,

for video applications there is a need to use temporally static downsampling patterns.

In this chapter a systematical framework to downsample and upsample MVD data

is proposed. In the proposed downsampling approach, the rows of two adjacent texture

views are downsampled following an interlacing and complementary pattern, before

compression. The aim of this downsampling approach is to facilitate the upsampling

at the decoder side, where the LR views will be upsampled by fusing the virtual view

pixels with directional interpolated pixels with the aid of pattern direction of the dis-

carded pixels. This approach has two benefits. Firstly, the high frequency information

contained in counterpart LR view can be properly utilized to upsample the other LR

view through the generated virtual views. Secondly, since the virtual view quality de-

pends on many factors, e.g. DIBR technique and depth map quality, it generally has
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low quality on depth discontinuous areas, where on the other hand, directional interpo-

lation approaches can work well. Hence, by taking advantages of these two strategies,

the discarded pixels can be recovered efficiently. Experimental results have shown that

the proposed algorithm achieves superior performance with respect to the filter-based

interpolation algorithms and other state-of-the-art algorithms. The proposed upsam-

pling approach is named Directional Data Fusion Upsampling (DDFU) throughout this

chapter.

The rest of this chapter is organized as follows. Section 4.2 describes the details

of the proposed down/upsampling algorithm. Experimental results are presented in

Section 4.3 and the conclusion is in Section 4.4.

4.2 Proposed Down/Upsampling Paradigm

A proper downsampling approach for multiview video needs to take into account the

fact that different views cover almost the same scene, with a considerable amount

of inter-view redundancy. Thus, in this work, by taking this feature into account,

an interlacing-and-complementary-row-downsampling method is proposed, as shown in

Fig.4.1. The benefits of this downsampling approach will be explained in the following

section.

Left view Right viewDownsampled

left view

Downsampled

right view

Odd row pixels Even row pixels

Figure 4.1: The proposed interlacing-and-complementary-row-downsampling process
for a stereo video.

4.2.1 Interlacing and Complementary Row Downsampling

Due to inter-view redundancy, interlacing-and-complementary downsampling approaches

could maintain more information than the non-interlacing-and-complementary ones.

Hence, in the following sections and aided with a graphical example, three downsam-

pling approaches will be compared with the assumption that two cameras in a parallel

configuration setting are used to record an uneven bars structure (similar to the artis-

tic gymnastics apparatus), as shown in Fig.4.2 (d). Fig.4.2 (a), (b) and (c) show the

front, side, and top view of the stereoscopic orthographic projection of the scene. The
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       (c)

                                                                                        

             

    (b)

                      

    (d)  

Camer      ra 1 

Camera 22

Figure 4.2: (a), (b) and (c) show the front, side, and top view of the stereoscopic
orthographic projection of uneven bars structure viewed by two cameras in a parallel
configuration setting, as shown in (d).

viewed scene of the first and second cameras is shown in Fig.4.3 (a). The output of

the vertical interlacing-and-complementary downsampling approach (i.e., column-wise

downsampling) is shown in Fig.4.3 (b), where the grey areas indicate the “discarded

areas” during downsampling process. It is possible to see that the left black bar of the

uneven bars structure is missing in both views. Hence, neither intra-view or inter-view

interpolation can help to recover this part. This happens because the column-wise

downsampling approach causes some “blind areas”, where objects can not be seen in

any of the two views. Referring to Fig.4.4, the top view of the prospective projection

of a scene with two pinhole cameras, the area enclosed by red lines could be viewed by

both cameras. Whereas, the yellow and blue bands indicate discarded areas in view 1

and view 2, respectively, due to the column-wise downsampling. Some areas (indicated

by black) inevitably end up being discarded in both views, thus any object falling in

any of these areas cannot be recovered by inter-view interpolation and consequently,

these areas are called “blind areas”.

Compared with column-wise downsampling, the output of row-wise downsampling

is shown in Fig.4.3 (c). It indicates that the interlacing-and-complementary-row-

downsampling will always guarantee that an object could be seen in the rows of one
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View 1 View 2 

View 1 View 2 

(b)
 

 

  

 

 

 

 

 

View 1 View 2 

(c)

Figure 4.3: (a) the left side and right side of each frame shown the captured scene
by the corresponding cameras, respectively; (b) the output of the vertical downsam-
pling approach (i.e., column-wise downsampling); (c) the output of the interlacing and
complementary row-wise downsampling.

Figure 4.4: The top view of the prospective projection of a scene using a pinhole camera
model for the column-wise downsampling approach.
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of the two views, except for some small objects with a one-pixel-width projection size

in the camera plane, these might not be captured in either of the two views. Nev-

ertheless, the probability of this happening is low and could similarly happen for the

column-wise downsampling approach. Moreover, row-wise downsampling could better

exploit the warping feature of the DIBR technique and consequently, could enhance

the upsampling performance.

The chessboard downsampling approach can be regarded as the combination of

row- and column-wise downsampling. It is able to achieve the highest upsampling

performance, since each to-be-filled pixel has four adjacent pixels in both horizontal

and vertical directions which provide more information during interpolation. However,

the chessboard pattern usually requires a comparatively higher bitrate due to low spatial

and temporal correlations. Furthermore, for each row of the chessboard downsampled

views, it is possible to notice that the top view of prospective projection of a scene

is similar to the one shown in Fig.4.4. Therefore, it could be conjectured that the

chessboard downsampling approach also suffers from “blind areas”, thus its performance

is better than the column-wise approach while being worse than the row-wise approach.

4.2.2 Virtual View-assisted Directional Data Fusion Upsampling

In order to reduce the required resources and the amount of transmitted data, down-

sampling of the texture sequences is performed before the compression stage. In this

chapter, motivated by the findings in Section 4.2.1, the downsampled texture frames

are generated by discarding the even rows in the left view and the odd rows in the right

view of the stereo video, respectively. That is to say, after downsampling, the left view

only has odd rows and the right view only has even rows. Let the left and right FR

frames be defined as Vl
f and Vr

f , respectively, with size W ×H, and the downsampled

left and right LR frames as Vl
l and Vr

l , respectively, with size W ×H/2. Fig.4.5 shows

the main stages of the proposed FR recovery mechanism. The downsampled views are

expanded to their original size with the positions of the discarded pixels left empty (this

stage is indicated by ① in Fig.4.5). The expanded left view is represented by Vl
e where

V l
e (2n,m) = 0,1 ≤ n ≤H/2,1 ≤m ≤W , whereas, the expanded right view is represented

by Vr
e where V r

e (2n − 1,m) = 0,1 ≤ n ≤ H/2,1 ≤ m ≤ W . Then in the second stage

indicated by ② in Fig.4.5, based on the direction estimation results, a directional inter-

polation method is used to generate the corresponding interpolated frames, and these
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are denoted by Vl
i and Vr

i for the left and right view, respectively. Meanwhile, in the

third stage indicated by ③ in Fig.4.5, the DIBR technique is applied on the expanded

frames using the corresponding depth maps in order to generate the virtual views at the

counterpart viewpoints, i.e. the left side virtual view Vl
v is generated by the right side

expanded view. As a consequence, all the even rows in the left virtual view are warped

from the even rows in the right view, and these warped rows are, to some extent, equiv-

alent to the rows discarded during the downsampling process. Similarly, for the right

virtual view, all the odd rows are warped from the odd rows in the left view. Therefore,

based on the above design which aims to make the recovery of discarded pixels work in

synergy with the downsampling stage, the virtual view becomes a potential source of

information to efficiently recover the discarded pixels. So, two parallel stages are used

to recover the discarded information due to the downsampling process, and the outputs

of these two stages are fused to generated the final FR frames. The fusion process is

driven by the pattern direction of the texture around each of the discarded pixels, so

as to exploit the potential of stages ② and ③.

Directional interpolated left view, Vi
l

Left virtual view, Vv
l Right virtual view, Vv

rLeft final recovered view Right final recovered view

Left downsampled view, Vl
l Right downsampled view, Vl

r

2

1

4

4

1

3

4

Odd row pixels Even row pixels Recovered HR pixels Directional interpolated pixels

Virtual view pixels generated from LR pixels

1

2

Stage 1 generating two expanded frames for each LR view

Stage 3 generating the virtual view at counterpart view points3

Stage 4 the fusion of interpolated frame and virtual view 

Directional interpolated right view, Vi
r

4

Stage 2 generating interpolated frames from the expanded frame

4

Expanded left view, Ve
l Expanded right view, Ve

r

2

3

Figure 4.5: The proposed discarded pixels recovery process.
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PCA-based pattern direction estimation

As mentioned in the previous section the fusion process is driven by the local pattern

direction of the texture around each discarded pixel. Since knowing the dominant direc-

tion for each discarded pixel allows better exploitation of the virtual and interpolated

frames in recovering the discarded pixels. For example, texture patterns with horizontal

edges usually cannot be accurately estimated from their vertical neighbors, and due to

the missing horizontal neighbors, they cannot be directly interpolated, either. Hence,

in this case exploiting the pixels of the virtual view could greatly help recover these

types of patterns.

To get the pattern direction, in this work, a Principal Components Analysis (PCA)

[104] based method will be used. This approach evaluates the gradients of the surround-

ing pixels for each discarded pixel, and then the dominant direction of the texture is

determined by PCA [105], where PCA can be obtained by evaluating the Singular Value

Decomposition (SVD) [106] of the data.

In general, the gradient at V (x, y) can be obtained by∇V (x, y) = [∂V (x, y)/∂x,∂V (x, y)/∂y]T ,
and this could be approximated for discrete applications as:

∇V (x, y) ≈ ( 1
2(V (x +∆, y) − V (x −∆, y))
1
2(V (x, y +∆) − V (x, y −∆)) ) (4.1)

∆ = 1 offers the best approximation, however, taking into account that half of the rows

are discarded in the LR frames, then ∆ needs to be 2 while evaluating the gradients of

the surrounding pixels of a discarded pixel. This ensures that V (x+∆, y), V (x−∆, y),
V (x, y +∆), and V (x, y −∆) are available1.

It is worth noticing that the horizontal neighbors of the discarded pixels are unavail-

able, therefore, the dominant direction for each discarded pixel will be inferred from

the four corner pixels of a 3×3 overlapping window centered at the discarded pixel. For

example the discarded pixel p5, in Fig.4.6, has two discarded neighbors, namely p4 and

p6, so in order to maintain an equivalent number of neighbors and symmetric structure

around p5, the two pixels p2 and p8 will not be taken into account while evaluating

the dominant pattern direction. In other words only the gradients of the corner pixels

p1, p3, p7 and p9 will be evaluated2. The gradients of the surrounding pixels of the

1The pixels on the boarder of the frame will be filled by filter-based interpolation without estimating
their pattern directions.

2Although using p2 and p8 may seem beneficial, the lack of p4 and p6 will negatively affect direction
estimation due to the non-symmetric set of pixels. Nevertheless, p2 and p8 will be used in pattern
estimation of the following discarded pixel, p6.
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discarded pixel at position (x,y) will be then arranged into a 4 × 2 matrix G [106] , as

follows

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇V (x − 1, y − 1)T
∇V (x − 1, y + 1)T
∇V (x + 1, y − 1)T
∇V (x + 1, y + 1)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.2)

The SVD of the matrix G will be computed as G =USVT, where S is a 4×2 diagonal

matrix and the ratio of the diagonal elements in S (i.e., S11/S22) represents the energy
of the dominant gradient. Both U and V are orthogonal matrices with size 4 × 4 and

2×2, respectively, and the first column of V (i.e., [ν11 ν21]T ) represents the orientation
of the dominant gradient, whose angle is θ = arctan (ν21/ν11). For the remarkably

dominant gradient (i.e. S11/S22 ≥ Th where Th is a threshold to define the remarkably

dominant gradient), this angle will be used to determine the pattern directions of the

discarded pixel, which are horizontal, 45○ diagonal, vertical and 135○ diagonal directions

as shown in Fig.4.6. For the pixels from texture uniform areas whose energy in all four

directions is almost equal, there is no remarkably dominant directional pattern (i.e.

S11/S22 < Th), will be classified into the “undefined” direction category. This process

will be carried forward for each discarded pixel in the left and right LR views at both

the encoder and decoder sides.
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Figure 4.6: The overlapping window centered at the discarded pixel p5. The dominant
pattern direction will be categorized into five groups. In this figure only the remarkably
dominant patterns are shown which are horizontal, 45○ diagonal, vertical and 135○

diagonal directions.
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Directional data fusion

Since all of the discarded pixels, referring to the texture pattern of their surround-

ing pixels, are classified into five categories: horizontal, 45○ diagonal, vertical, 135○

diagonal and undefined direction, the directional interpolated frames Vl
i and Vr

i are

generated based on this classification. That is to say, for the discarded pixel with ver-

tical direction, it is interpolated by averaging its nearest upper and lower pixels; for

the pixel with 45○ or 135○ diagonal, it is filled by averaging the corresponding nearest

diagonal pixels; for the pixel with horizontal direction, it is the average of four nearest

corner pixels. However, the undefined directional pixels could be easily recovered by

vertical interpolation, since the vertical neighbors are the closest to the discarded pix-

els. Whereas, some high frequency components (e.g. edges) get recovered by exploiting

inter-view redundancy from the counterpart view. Therefore, in the fourth stage of

the proposed upsampling algorithm, the discarded pixels are recovered by fusing the

interpolated pixels with the virtual view pixels in order to exploit the advantages of

both types of approach and to compensate the compression distortion.

To reduce the compression effect, at the fusion stage, each discarded pixel is filled

by a weighted average of the counterpart pixels in Vv and Vi as shown:

V̂ l(2n,m) = ηlV l
i (2n,m) + (1 − ηl)V l

v (2n,m) (4.3)

The value of the weighting coefficient, ηl, is in the range [0,1]. This value, in theory,

should be evaluated for each missing pixel and it determines the relative contribution

of the directional interpolated pixel with respect to the virtual view pixel. The fusing

coefficients could be obtained by minimizing the L2 distance between the recovered

pixels and their counterpart original pixels, as follows.

W

∑
m=1

H/2
∑
n=1
(V̂ l(2n,m) − V l

f(2n,m))2 (4.4)

Holes and occluded areas in the virtual views are excluded during the fusion process and

in these areas, the discarded pixels are directly recovered by directional interpolation.

Since the original FR frame is only available at the encoder side, this means that all the

fusing coefficients need to be transmitted for each frame to the decoder side, obviously,

this makes the pixel-by-pixel estimation of the weighting coefficient impractical.

In this chapter, a pattern direction based weighting coefficient estimation is pro-

posed which can hugely reduce the transmitted side information. In this approach,
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at both the encoder and decoder side the fusion stage classifies all of the discarded

pixels, based on the texture pattern of their surrounding pixels into five categories, and

these five categories will be respectively represented by five binary masks Mh, M45,

Mv, M135 and Mud. That is to say, the binary value “1” in Mh indicates that the

discarded pixel in that position has a horizontal texture pattern, in this case the same

position in Mv, M45, M135 and Mud will have “0” binary value. For each directional

mask, one weighting coefficient will be estimated by using (4.4). Therefore, equation

(4.3) could be rewritten in matrix format, while taking into account the five pattern

categories, as follows:

V̂l = ηlhM
l
h. ∗V

l
i + (1 − ηlh)Ml

h. ∗V
l
v

+ηl45M
l
45. ∗V

l
i + (1 − ηl45)Ml

45. ∗V
l
v

+ηlvM
l
v. ∗V

l
i + (1 − ηlv)Ml

v. ∗V
l
v

+ηl135M
l
135. ∗V

l
i + (1 − ηl135)Ml

135. ∗V
l
v

+ηludM
l
ud. ∗V

l
i + (1 − ηlud)Ml

ud. ∗V
l
v

(4.5)

where V̂l denotes the recovered image. The operation .∗ represents the element-by-

element multiplication of two matrixes. A graphic representation of the proposed data

fusion process is shown in Fig.4.7.

Given that the encoder and decoder work on the same set of data to estimate

the pattern direction, there is no need to transmit the masks Mh, M45, Mv, M135

and Mud from the encoder to the decoder side and only the directional weighting

coefficients for the left view (i.e. ηlh, η
l
45, η

l
v, η

l
135 and ηlud), and for the right view, need

to be estimated at the encoder side and transmitted to the decoder side. Obviously, the

overhead rate of transmitting the weighting coefficients is negligible in comparison to

the texture and depth map bit rate. Moreover, it is worth indicating that the pattern

direction estimation stage is much less complex than the video encoding stage. In the

experimental results section the term DDFU will be used to refer to this full version

scheme.

In addition, DDFU can be simplified to only transmit the weighting coefficients of

the first frame to the decoder side and to use them later on for the fusion of all other

frames. This simplification is possible because the content of each frame does not change

significantly, especially for sequences with slow motion. Based on this observation, the

simplified approach can further reduce the amount of transmitted side information with

little quality degradation. In the experimental section the term DDFU (first frame η)

will be used to refer to this simplified scheme.
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Figure 4.7: The process of data fusion by directional weighting coefficients and corre-
sponding directional binary masks

4.3 Experimental results

To objectively evaluate the performance of the proposed method, several experiments

were conducted with the following 3D video sequences “Doorflower ’, “Kendo”, “Dog”,

“Balloons”, “Newspaper” and “Undo-Dancer”. Some parameters and content charac-

teristics of the testing sequences are listed in Table 4.1 for reference. The depth maps of

“Doorflower” were estimated by depth estimation reference software (DERS) 5.0 [107].

The depth maps of all of the sequences from Nagoya University were computed by the

Table 4.1: The parameters and characteristics of each used sequence

Size Camera Left Right Content’s Motion

Doorflower 1024 × 768 Fixed View10 View08 Moderate

Kendo 1024 × 768 Moving View03 View05 Complex

Dog 1280 × 960 Fixed View38 View39 Medium

Balloons 1024 × 768 Moving View03 View05 Complex

Newspaper 1024 × 768 Fixed View04 View06 Simple

Undo-Dancer 1920 × 1088 Moving View02 View05 Complex
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depth estimation software provided by Nagoya University Tanimoto Laboratory [108]

and the depth maps of “Undo-Dancer” were generated by computer graphics. For each

sequence both the left and right views had been interlacing-and-complementary-row

downsampled with a factor 2 before encoding. JMVC 8.5 [109] was used for compres-

sion, and eight different QPs, namely 28,31,34,37,40, 43, 46,49, were used to code the

texture and depth map sequences. The temporal GOP size and the total number of

encoded frames was 8 and 80, respectively, while the delta QP and the differential QP

between the base layer and sublayer in hierarchical-B picture structure was set to zero

in all layers. The virtual views at the decoder side were rendered using a 1D DIBR

technique from one reference view to another view without any post-processing (i.e.,

no hole filling).

The first set of simulations aim to evaluate the effectiveness of the proposed ap-

proach by comparing the rate-distortion performance with FR video coding and the

6-tap Lanczos filter approach as well as state-of-the-art approach [9]. In the first part

of comparison, the 6-tap Lanczos filter has been used at both encoder and decoder sides

and the results are reported in Fig.4.8 for all of the tested sequences. In the following

experiments, this matched-filter-based approach will be treated as a benchmark in this

chapter.

From the results in Fig.4.8 the effectiveness of the proposed systematic down/upsampling

approach over the matched filter approach and FR coding at low bit rate could be appre-

ciated for all testing sequences. The coding performance improvement of the proposed

method and benchmark method over FR coding performance is due to the adoption

of the down/upsampling processes. The proposed method, in comparison with the

benchmark method, can gain up to 1.14dB and 1.03dB on the sequences “Kendo” and

“Doorflower”, respectively. This is due to the high quality depth map which makes the

contribution of the generated virtual view pixels significant. The sequence “Kendo”

and “Doorflower” have more gain than the sequence “Dog”. By fusing directional in-

terpolated pixels with virtual view pixels, edges can be well preserved. The matched

filter approach has good coding performance on the smooth areas, therefore, for the

sequences (e.g. “Dog” and “Undo-Dancer”) containing more smooth areas, the bench-

mark method is comparable to the proposed method. Moreover, the average PSNR

gains across different bitrates for all the sequences range from 0.17dB to 0.68dB.

To further evaluate the effectiveness of the proposed method, comparisons with the

74



200 300 400 500 600 700 800
30

31

32

33

34

35

36

bitrate(kb/s)

P
S

N
R

 

 

Full Resolution
Proposed
Lanczos3

(a)

200 300 400 500 600 700 800 900 1000 1100
27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

bitrate(kb/s)

P
S

N
R

 

 

Full Resolution
Proposed
Lanczos3

(b)

200 300 400 500 600 700 800 900
34

35

36

37

38

39

40

41

42

bitrate(kb/s)

P
S

N
R

 

 

Full Resolution
Proposed
Lanczos3

(c)

100 200 300 400 500 600 700
27

28

29

30

31

32

33

34

35

36

37

bitrate(kb/s)

P
S

N
R

 

 

Full Resolution
Proposed
Lanczos3

(d)

100 200 300 400 500 600 700
31

32

33

34

35

36

37

38

39

bitrate(kb/s)

P
S

N
R

 

 

Full Resolution
Proposed
Lanczos3

(e)

100 200 300 400 500 600 700 800
27

28

29

30

31

32

33

34

35

36

bitrate(kb/s)

P
S

N
R

 

 

Full Resolution
Proposed
Lanczos3

(f)

Figure 4.8: The rate-distortion curves for the testing sequences (a) Doorflower; (b)
Dancer; (c) Kendo ; (d) Newspaper; (e) Balloons; (f) Dog.

method [9]3 have also been carried out by using the same test sequences (“Doorflower”

and “Laptop”) with the same resolution (512 × 384) and the same coding standard,

i.e. H.264/AVC with the same coding parameters. The results of these comparisons

are shown in Fig.4.9, where LF1 represents the direct downsampling (i.e. even rows

in both left and right views are discarded without low pass filtering), CAIS repre-

3All the results of [9] have been obtained from the authors and their paper.
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Figure 4.9: The rate-distortion curves for the testing sequences (a) Doorflower; (b)
Laptop, for the proposed approach and [9].

sents the proposed method in [9], IF1 and IF2 are two interpolation filters with coef-

ficients {1,−5,20,20,−5, 1}/32 and {−3,28,8,−1}/32, respectively, as proposed in [9].

The depth sequences used in the proposed DDFU are generated by the method given

in [110] and their bitrates have been included in the results. Indicated by these results,

the gain of the proposed method is larger than that of [9].

The visual results of zoomed-in parts of the sequences “Doorflower” and “Undo-

dancer” are shown in Fig.4.10. It is possible to note that the edges recovered by

DDFU are sharper than those that are recovered by the benchmark method. Although

the proposed DDFU recovered frame also has some blurred areas, nevertheless, it still
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Comparison between proposed DDFU method and benchmark method.
(a)-(c) are the results of Original, Benchmark and DDFU on zoomed-in part of the
sequence Doorflower; (d)-(f) are the results of Original, Benchmark and DDFU on
zoomed-in part of the sequence Undo-Dancer.

achieves a better visual quality than matched-filter-interpolated frame. Fig.4.10 (d)

shows a portion of the original left view of “Undo-Dancer”, and its recovered versions

using the matched-filter-based approach and the proposed approach is shown in Fig.4.10

(e) and Fig.4.10 (f), respectively. Since the one-pixel-wide edge is difficult to recover

properly using only the surrounding pixels, the advantage of the DDFU method is more

obvious in the highlighted areas by red ellipse in Fig.4.10 (e) and Fig.4.10 (f). From this

comparison, it can be seen that the proposed approach can recover the one-pixel-wide

edge without blurring.

Since, the category of the to-be-filled pixels is determined by the estimated texture

pattern, accurate pattern direction estimation plays an important role in the fusion

process. Therefore, to verify its effectiveness, Fig.4.11 (b) shows the pattern estima-

tion result on the uncompressed frame, whereas, Fig.4.11 (c) and Fig.4.11 (d) show the

estimation results on the compressed frame with QP = 34 and QP = 40, respectively.

For reference, Fig.4.11 (a) shows the original uncompressed texture frame from the

“Doorflower” sequence with three highlighted parts containing clear patterns. Differ-

ent colors are used to distinguish the five directions, so the colors dark red, red, orange,
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Figure 4.11: (a) original texture; the pattern direction estimation results on: (b) origi-
nal uncompressed texture; (c) compressed texture with QP=34; (d) compressed texture
with QP=40; the color: dark red, red, orange, yellow and white represent vertical, 135○

diagonal, horizontal, 45○ diagonal and undefined direction pixels, respectively. (For
clearness, the directional estimation results on the discarded pixels are scaled up to the
same size as the original texture; their real height is shown on the y axis of each figure).

yellow and white are used to represent vertical, 135 diagonal, horizontal, 45 diagonal

edges and the undefined direction areas, respectively. In this chapter, pixels are re-

garded as undefined pattern pixels when S11/S22 ≤ Th where Th = 4. The accuracy of

the adopted pattern detection algorithm could be appreciated from Fig.4.11 (b) and

Fig.4.11 (c). By comparing these two figures, the direction estimation results of the

three highlighted parts are almost the same, which could also demonstrate that the

accuracy of the pattern estimation is barely affected by the compression distortion.

To show the level of contribution of the virtual views in the fusion stage and how

the texture pattern direction influences the fusing process, the fusion coefficients ηh, ηv,

η45, η135 and ηud are reported in Table 4.2 for the six testing sequences and for different

QPs. The smaller the value of η is, the more important the virtual view pixels are for

the recovery of the discarded pixels. Obviously, in the fusion stage, the contribution of

78



Table 4.2: The values of ηh, ηv, η45, η135 and ηud for each sequence and for different
QPs

Doorflower
QP 28 31 34 37 40 43 46 49

Leftview

ηh 0.18 0.20 0.20 0.22 0.26 0.37 0.47 0.60
ηv 1.00 0.99 0.98 0.96 0.92 0.90 0.89 0.89
η45 0.75 0.76 0.76 0.75 0.79 0.78 0.78 0.78
η135 0.79 0.80 0.80 0.80 0.80 0.84 0.89 0.92
ηud 0.55 0.55 0.57 0.60 0.62 0.68 0.70 0.75

Rightview

ηh 0.28 0.28 0.26 0.27 0.34 0.38 0.47 0.49
ηv 0.99 0.98 0.97 0.94 0.89 0.87 0.82 0.75
η45 0.72 0.76 0.77 0.77 0.78 0.76 0.72 0.72
η135 0.78 0.80 0.79 0.80 0.79 0.77 0.75 0.66
ηud 0.59 0.59 0.59 0.62 0.63 0.62 0.58 0.50

Undo-Dancer
QP 28 31 34 37 40 43 46 49

Leftview

ηh 0.06 0.08 0.12 0.16 0.24 0.39 0.61 0.79
ηv 0.90 0.95 1.00 1.00 1.00 0.99 1.00 0.98
η45 0.41 0.52 0.64 0.75 0.82 0.87 0.87 0.87
η135 0.39 0.48 0.62 0.73 0.80 0.84 0.85 0.84
ηud 0.12 0.14 0.19 0.30 0.43 0.60 0.77 0.85

Rightview

ηh 0.04 0.06 0.10 0.16 0.22 0.32 0.39 0.36
ηv 0.90 0.93 0.95 0.96 0.96 0.93 0.90 0.88
η45 0.41 0.51 0.61 0.70 0.77 0.82 0.79 0.73
η135 0.42 0.50 0.62 0.72 0.78 0.80 0.77 0.71
ηud 0.12 0.13 0.19 0.27 0.38 0.η45 0.48 0.47

Kendo
QP 28 31 34 37 40 43 46 49

Leftview

ηh 0.79 0.76 0.76 0.76 0.74 0.73 0.72 0.73
ηv 0.90 0.90 0.90 0.87 0.85 0.82 0.83 0.85
η45 0.95 0.93 0.92 0.90 0.88 0.86 0.83 0.81
η135 0.90 0.89 0.86 0.82 0.80 0.77 0.75 0.73
ηud 0.84 0.81 0.77 0.77 0.77 0.79 0.79 0.80

Rightview

ηh 0.91 0.90 0.89 0.86 0.81 0.73 0.64 0.54
ηv 1.00 1.00 0.99 0.91 0.88 0.79 0.72 0.63
η45 1.00 0.99 0.96 0.91 0.89 0.82 0.71 0.61
η135 1.00 1.00 1.00 0.98 0.94 0.90 0.85 0.77
ηud 0.99 0.99 0.95 0.89 0.81 0.70 0.60 0.51

Newspaper
QP 28 31 34 37 40 43 46 49

Leftview

ηh 0.89 0.90 0.87 0.88 0.83 0.82 0.81 0.79
ηv 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99
η45 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97
η135 1.00 1.00 1.00 1.00 1.00 0.95 0.92 0.90
ηud 1.00 0.99 0.98 0.98 0.98 0.94 0.94 0.94

Rightview

ηh 0.90 0.90 0.90 0.90 0.90 0.87 0.81 0.75
ηv 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93
η45 1.00 1.00 1.00 1.00 0.99 0.97 0.90 0.88
η135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
ηud 1.00 1.00 0.99 0.99 0.99 0.93 0.90 0.84

Balloons
QP 28 31 34 37 40 43 46 49

Leftview

ηh 0.85 0.81 0.80 0.80 0.77 0.75 0.77 0.83
ηv 0.94 0.90 0.90 0.89 0.89 0.88 0.89 0.89
η45 0.97 0.92 0.90 0.90 0.89 0.88 0.86 0.86
η135 0.96 0.92 0.90 0.90 0.89 0.83 0.80 0.80
ηud 0.90 0.90 0.87 0.86 0.86 0.85 0.87 0.89

Rightview

ηh 0.96 0.94 0.93 0.90 0.87 0.79 0.68 0.46
ηv 1.00 1.00 1.00 1.00 1.00 0.99 0.93 0.84
η45 1.00 1.00 1.00 1.00 0.98 0.92 0.88 0.78
η135 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93
ηud 1.00 1.00 1.00 1.00 0.97 0.91 0.82 0.67

Dog
QP 28 31 34 37 40 43 46 49

Leftview

ηh 0.90 0.90 0.90 0.89 0.88 0.84 0.80 0.69
ηv 1.00 1.00 0.99 0.97 0.91 0.90 0.88 0.84
η45 1.00 1.00 0.98 0.93 0.90 0.89 0.81 0.74
η135 1.00 0.99 0.98 0.93 0.90 0.89 0.82 0.80
ηud 1.00 1.00 0.98 0.95 0.90 0.90 0.90 0.82

Rightview

ηh 1.00 1.00 1.00 1.00 0.97 0.94 0.91 0.85
ηv 1.00 1.00 1.00 1.00 1.00 0.98 0.90 0.77
η45 1.00 1.00 1.00 0.99 0.97 0.91 0.88 0.82
η135 1.00 1.00 1.00 1.00 1.00 0.97 0.90 0.76
ηud 1.00 1.00 1.00 1.00 0.99 0.93 0.90 0.81
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virtual view depends on several factors, such as, the adopted DIBR technique and depth

map quality. It is worth noticing that even with advanced rendering techniques, the

generated virtual view may still face a problem in generating high quality and aligned

texture around depth discontinuous areas, where the adopted directional interpolation

can work well. From this table it can be seen that virtual view pixels are more impor-

tant to recover the pixels with horizontal pattern than other directions. On the other

hand, the directional interpolated frame is more important in recovering the pixels with

vertical pattern, for example ηh for the left view of the “Undo-Dancer” sequence at

QP = 28 is 0.06 versus ηv = 0.9. The η45, η135 and ηud values for the two diagonal

patterns and undefined pattern lay in between the horizontal and vertical cases, as for

instance the “Undo-Dancer” sequence at QP = 28 these are η45 = 0.41, η135 = 0.39 and

ηud = 0.12. Moreover, it should be noted that for the sequence “Undo-Dancer” which

is a computer graphic sequence, and consequently has an accurate depth map, the vir-

tual view pixels provide the greatest contribution to the final recovered FR frames in

all five directions, with respect to other sequences. As expected, this contribution is

remarkably higher for the horizontal pattern.

The upsampling performances of the proposed approach and the 6-tap Lanczos fil-

ter are shown in Table 4.3 and direct downsampling (i.e. even rows in both left and

right views are discarded without low pass filtering) is adopted. Table 4.3 depicts that

for all the testing sequences with different QP values, the PSNR and SSIM [97] results

of the proposed upsampling approach are higher than that of the Lanczos filter. The

average PSNR gain for all sequences ranges between 0.33dB to 0.55dB. By comparing

the upsampling performance at the decoder side, the importance of pattern direction

information and data fusion can be appreciated. Moreover, by using direct downsam-

pling rather than the proposed interlacing-and-complementary-row-downsampling, the

biggest drop in PSNR gain is up to 0.3dB.

In the basic implementation of the DDFU algorithm, the encoder needs to transmit

the five weighting coefficients, η, for each frame and each view, and obviously it needs

to evaluate them by minimizing (4.4). However, given that in most cases there are no

major changes in the scene content, it is reasonable to assume that those coefficients

do not change very much from frame to frame, hence it is not necessary to evaluate

them for each frame. This assumption could be verified by Fig.4.12 which shows the

trend of the weighting coefficients versus frame number. Thus, one way to reduce the
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Table 4.3: The upsampling performance on PSNR (dB) and SSIM comparison by
discarding even rows directly downsampling

QP 28 31 34 37 40 43 46 49

Bitrate(kb/s) 1562 1070 722 505 346 245 167 111

D
o
o
rfl
ow

er

PSNR
Lanc 35.76 35.25 34.53 33.59 32.35 31.01 29.31 27.77

Pro 36.87 36.18 35.25 34.13 32.71 31.24 29.46 27.87

∆PSNR 1.11 0.93 0.72 0.54 0.36 0.23 0.15 0.10

SSIM
Lanc 0.979 0.974 0.968 0.958 0.942 0.920 0.883 0.838

Pro 0.981 0.976 0.969 0.960 0.944 0.923 0.888 0.845

∆SSIM 0.002 0.002 0.001 0.002 0.002 0.003 0.004 0.007

Bitrate(kb/s) 4123 2526 1482 918 563 367 240 164

U
n
d
o
-D

a
n
ce
r PSNR

Lanc 32.11 31.67 31.07 30.40 29.55 28.60 27.46 26.43

Pro 32.92 32.29 31.51 30.69 29.73 28.72 27.54 26.50

∆PSNR 0.81 0.63 0.44 0.29 0.18 0.11 0.08 0.06

SSIM
Lanc 0.978 0.969 0.955 0.939 0.921 0.898 0.862 0.824

Pro 0.980 0.971 0.957 0.941 0.923 0.901 0.866 0.830

∆SSIM 0.002 0.001 0.001 0.002 0.002 0.003 0.005 0.006

Bitrate(kb/s) 752 550 396 293 216 166 123 94

K
en

d
o

PSNR
Lanc 39.93 38.88 37.56 36.13 34.49 32.76 30.88 29.03

Pro 41.07 39.75 38.18 36.57 34.81 33.02 31.10 29.24

∆PSNR 1.15 0.87 0.62 0.44 0.32 0.25 0.22 0.21

SSIM
Lanc 0.988 0.985 0.980 0.973 0.962 0.947 0.925 0.897

Pro 0.989 0.986 0.982 0.976 0.966 0.953 0.933 0.907

∆SSIM 0.001 0.001 0.002 0.003 0.004 0.006 0.008 0.010

Bitrate(kb/s) 864 608 418 297 207 152 109 83

N
ew

sp
a
p
er

PSNR
Lanc 35.90 35.05 33.92 32.70 31.23 29.71 27.97 26.32

Pro 37.20 36.06 34.66 33.22 31.57 29.94 28.12 26.42

∆PSNR 1.29 1.01 0.74 0.52 0.33 0.23 0.15 0.10

SSIM
Lanc 0.982 0.976 0.967 0.955 0.937 0.912 0.873 0.826

Pro 0.983 0.978 0.969 0.957 0.939 0.916 0.880 0.836

∆SSIM 0.001 0.002 0.002 0.002 0.003 0.004 0.007 0.011

Bitrate(kb/s) 830 602 421 298 208 151 108 83

B
a
ll
o
o
n
s

PSNR
Lanc 39.08 37.94 36.47 34.86 33.04 31.28 29.45 27.74

Pro 40.15 38.72 36.99 35.22 33.27 31.45 29.57 27.84

∆PSNR 1.07 0.78 0.53 0.36 0.23 0.17 0.11 0.11

SSIM
Lanc 0.986 0.981 0.973 0.960 0.939 0.911 0.874 0.832

Pro 0.987 0.983 0.975 0.963 0.943 0.917 0.883 0.847

∆SSIM 0.001 0.002 0.002 0.003 0.004 0.006 0.009 0.015

Bitrate(kb/s) 1428 1010 697 496 344 244 165 115

D
o
g

PSNR
Lanc 37.78 36.64 35.21 33.63 31.80 29.98 28.07 26.39

Pro 38.66 37.28 35.64 33.92 31.98 30.11 28.16 26.47

∆PSNR 0.88 0.64 0.43 0.29 0.18 0.13 0.09 0.08

SSIM
Lanc 0.989 0.983 0.974 0.961 0.938 0.903 0.846 0.781

Pro 0.990 0.984 0.976 0.964 0.942 0.909 0.853 0.788

∆SSIM 0.001 0.001 0.002 0.003 0.004 0.006 0.007 0.007
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Figure 4.12: (a) and (b) panes show the four coefficients for the sequence “Doorflow-
ers” and “Dog”, respectively. The top Left and Right figures of each pane are: the
weighting coefficients of Left and Right view, respectively, when QP=28; The bottom
Left and Right figures of each pane are: the weighting coefficients of Left and Right
view, respectively, when QP=46.

complexity of the proposed approach could be achieved by using directional weighting

coefficients of the first frame for the whole sequence (called DDFU (first frame η)). In

this approach, the weighting coefficients are only estimated for the first frame and then

used for the whole sequence. To verify the effectiveness of this simplified approach, its
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performance has been compared with the DDFU approach and DDFU (user defined η),

the latter adopts user defined coefficients at the decoder side for the whole sequence.

The pre-set values for the DDFU (user defined η) used are ηv = 1, ηh = 0, η45 = 0.5,

η135 = 0.5 and ηud = 1 for the left and right view which means that all vertical edges

and undefined pattern areas are recovered by the directional interpolation algorithm.

All recovered horizontal edges are obtained from the virtual view pixels, and the two

diagonal direction pixels are obtained by equally fusing the directional interpolated

pixels with the virtual view pixels. The results of this comparison are listed in Table

4.4.

Table 4.4: The PSNR (dB) comparison between: deriving η values for each frame,
using the η values of first frame and user defined η values for the whole sequence

Sequences Methods
QP

28 31 34 37 40 43 46 49

Doorflower

DDFU 37.80 36.92 35.79 34.49 32.90 31.29 29.48 27.86

DDFU(first frame η) 37.79 36.91 35.78 34.48 32.89 31.29 29.47 27.85

DDFU(user defined η) 37.38 36.57 35.52 34.29 32.74 31.17 29.37 27.76

Undo-Dancer

DDFU 35.07 33.75 32.38 31.16 29.90 28.75 27.51 26.46

DDFU(first frame η) 35.04 33.74 32.37 31.15 29.89 28.75 27.51 26.46

DDFU(user defined η) 33.20 32.49 31.63 30.74 29.71 28.65 27.44 26.39

Kendo

DDFU 41.13 39.80 38.21 36.60 34.83 33.05 31.13 29.27

DDFU(first frame η) 41.10 39.79 38.21 36.59 34.83 33.04 31.12 29.26

DDFU(user defined η) 39.43 38.51 37.31 35.98 34.43 32.74 30.89 29.07

Newspaper

DDFU 37.24 36.09 34.69 33.25 31.57 29.95 28.13 26.42

DDFU(first frame η) 37.23 36.09 34.69 33.25 31.57 29.95 28.13 26.42

DDFU(user defined η) 34.65 34.01 33.15 32.11 30.83 29.44 27.78 26.18

Balloon

DDFU 40.16 38.72 36.98 35.21 33.25 31.42 29.54 27.80

DDFU(first frame η) 40.16 38.72 36.98 35.21 33.25 31.42 29.54 27.79

DDFU(user defined η) 38.61 37.59 36.23 34.71 32.93 31.21 29.40 27.68

Dog

DDFU 38.67 37.31 35.66 33.95 32.00 30.13 28.16 26.47

DDFU(first frame η) 38.67 37.31 35.66 33.95 32.00 30.12 28.16 26.47

DDFU(user defined η) 37.09 36.09 34.80 33.37 31.64 29.90 28.02 26.40

From Table 4.4 it can be noticed that DDFU and DDFU (first frame η) have almost

similar performance for all sequences, which demonstrates the validity and effectiveness

of the simplified approach. By comparing the results of DDFU and DDFU (user defined

η) the importance of adapting the coefficients to the scene content can be appreciated.

The results in Table 4.4 show that the performance of DDFU (first frame η) are better
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than that of DDFU (user defined η). This is due to the fact that the η values for the

DDFU (first frame η) are based on the content of the testing sequence, if the content of

the sequence does not vary hugely frame-by-frame, neither does the value of η. While,

the values of the predetermined η are user defined values, which means they do not

take the content of the sequence into account. The performance of DDFU (user defined

η) highly depends on how close the predetermined values are to the frame-by-frame

evaluated coefficients.

4.4 Conclusions

In this chapter, an interlacing-and-complementary-row-downsampling method is em-

ployed on the two adjacent views of a multiview video at the encoder side to reduce the

transmitted data and cost bit-rate. This downsampling method allows, the proposed

Directional Data Fusion Unsampling (DDFU) algorithm, to recover the discarded pixels

by exploiting the information of the downsampled views and the corresponding virtual

views. In the proposed upsampling approach, edge directions around the discarded pix-

els are estimated by principal components analysis. This information is subsequently

used to steer the fusion of the virtual view with the directional interpolated pixels.

The aim behind this is to exploit the inter-view redundancy to minimize the overall

system distortion, which is a combination of the compression distortion and the distor-

tion introduced by the downsampling process. Therefore, different from conventional

interpolation algorithms, the advantages of virtual views have been exploited by the

proposed method. Moreover, it has been shown that the proposed algorithm achieves

superior performance in comparison with conventional interpolation algorithm, Lanc-

zos and the state-of-the-art algorithm, CAIS. The future work will be to exploit the

temporal correlation, in video sequences, to control the fusion process.
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Chapter 5

Depth Map Super-Resolution by
Exploiting Planar Surfaces

In this chapter, an unsupervised Planar Surface Detection (PSD) algorithm employing

the depth map is presented. The proposed Depth map based Planar Surface De-

tection (DPSD) method detects planar surfaces by adopting a dynamic seed growing

approach. The valid seed patches are used sequentially according to their level of “pla-

narity”, which means the more flat the seed is, the earlier the seed will be used in the

growing stage. An equation estimating each planar surface is used to steer its grow-

ing mechanism. This equation gets refined at each growing stage, by using the newly

englobed neighboring pixels, so as to enhance the accuracy of the estimated plane

equation. Each growing surface grows to a maximum extent until the next surface get

detected. Furthermore, two post-processing methods are proposed to correct the prob-

lem of overgrowing surfaces and to merge over-segmented surfaces, thus making the

proposed approach resilient to depth noise. According to the global analytical equa-

tions of the detected surfaces in the scene, a proper depth map SR approach is proposed

with three different categories: planar surfaces, non-planar surfaces and edges.

The rest of this chapter is organized as follows. In Section 5.1 the details of the

closely related works are presented; Section 5.2 and 5.3 describe the proposed planar

surface detection method and the proposed depth map SR approach, respectively. The

experimental results are presented in Section 5.4. Section 5.5 concludes the chapter

and also contains ideas for future work.
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5.1 Related Work

5.1.1 Planar Surface Detection

Many different PSD methods have been proposed, and they can be classified into three

main categories according to their working principles [111] [112]:

Iterative plane fitting methods

Iterative plane fitting or iterative initial estimates refining is a common approach used

for planar surface detection and the typical representative is the RANdom SAmples

Consensus (RANSAC) algorithm [113]. RANSAC is an iteratively randomized model

fitting process and the initial fitting model is obtained based on several randomly

selected points. For each remaining point from the whole data set, its distance to the

model is evaluated and if the distance is smaller than the predefined error tolerance, the

point will be regarded as an inlier in this model. Subsequently, another fitting model is

set up and the remaining points are checked again. The number of inliers of one model

indicates how well the model fits for the remaining points. The whole process starting

from seed selection, model generation and the finalization stage including finding the

maximum number of inliers is repeated until the best model is found and then all the

inliers for the best fitting model are removed from data set. Next the model finding

and fitting process begins. When the fitting error of remaining points from the whole

data set is smaller than a predefined error tolerance, these points become inliers to this

model until maximum number of points have been involved. The number of inliers of

one model indicates how the model fits well for the remaining points.

RANSAC is efficient in detecting large planes and robust to noisy data, however,

it has a high computational cost. Meanwhile, it tends to over-simplify complex planar

structures. That is to say, the separated segments will be merged using the RANSAC

method if they share a common orientation and distance to the origin. For example,

the steps in a stair-case structure are often detected as one plane aligned with the steps.

Hence, RANSAC is usually combined with other detection or refinement methods to

detect planar surfaces. In [114], RANSAC and the Minimum Description Length (MDL)

principle have been integrated to detect planes in point cloud data. Firstly, all points

were partitioned into small rectangular blocks and RANSAC was carried out in each

block. Then after detecting all possible planes, MDL was utilized to reduce the over-
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fitting caused by RANSAC. Targeted to tackle the over-simplified problem of RANSAC,

in [115], data point normal coherence checking was applied on all of the inlier patches

within one fitted plane and the points with contradictory normal direction with respect

to the fitting plane were removed. Later, the separated inlier patches were clustered

recursively until all planes were extracted.

Hough Transform-based methods

The Hough Transform is well-known for parameterized object detection, typically for

detecting lines and circles in 2D data sets [116]. Aiming to extend its usage to 3D space

and also to reduce its computational cost, numerous variations have been proposed.

The 3D Hough Transform proposed by Hulik et al. [111] describes each plane by

its slope along x and y axes and the distance to the origin of the coordinate system.

Hence, each point in the corresponding 3D Hough space (θ,φ, ρ) represents one plane

in 3D space and each point in 3D space represents one sinusoid curved surface in 3D

Hough space. Therefore, a plane in 3D space could be represented by the intersection

point of all corresponding sinusoid curved surfaces in 3D Hough space. In order to

find this intersection point, each data point in 3D space casts its vote in the Hough

Transform parameter space. The accumulator cells with the largest number of votes,

which represent the Hough Transform parameters for one fitting model are identified

as the parameters for the final optimal model. However, this kind of voting means that

the Hough Transform method suffers from a high computational cost in finding the

parameters of one fitting model when a large data set is input as well as sensitivity to

the accumulator design. Different from the classic Hough Transform, the Randomized

Hough Transform avoids the high computational cost of the voting process, instead,

for every pixel in the image, it calculates the model parameters in a probabilistic way.

Based on the properties of the Kinect depth camera, Dube et al. presented a PSD

method by applying a Randomized Hough Transform on the depth map [117], which

makes the plane detection realized in real time. For a more comprehensive review of

the Hough-based methods on plane detection refer to [118].

Region growing based methods

Compared with the RANSAC and Hough Transform methods, region growing methods

are faster, especially in the presence of many planes. Similarly, region growing based
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PSD methods are also robust to noise and can efficiently detect large planes.

In [119] and [120], a two-point-seed growing algorithm was proposed to detect planar

surfaces. The algorithm starts from a region G which consists of a random point p and

its one nearest-neighbor from the point cloud data. Then the region G extends outwards

by adding its neighboring point pn to G if it satisfies that 1) the distance between pn

and the region G; 2) the plane-fitting error of pn to G; 3) the distance between pn

and the new formed plane of G ∪ pn are less than three corresponding thresholds,

respectively. This region-growing process continues until no more points may be added

to G. By taking the centroid and covariance matrix of the previous growing region into

account, the plane parameters are incrementally updated. Following a similar growing

approach, in [121] instead of incrementally computing the covariance matrix to derive a

plane normal from it, the normals for all points and local surfaces are computed directly

to obtain an estimate of the plane’s normal. Therefore, after every growth only the

centroid of the growing region is updated and stored in normal space, which further

reduces the computation in comparison to [119]. Xiao et al. proposed a cached-octree

region-growing algorithm to segment each point cloud into planar segments [122] [123].

Since the method stops region-growing merely based on distance information, over-

extraction may occur at the intersection of two planes. An accurate and fast region

growing algorithm for detecting regions was presented in [124], where the normal of

each point in the noisy point-cloud data was used to select the seed with highest local

planarity. Then the 26 voxel neighboring points were checked during the growing stage.

5.1.2 Depth Map Super-Resolution

To successfully adopt depth maps in 3D applications, several kinds of depth map SR

techniques have been proposed aimed at increasing the spatial resolution of the depth

maps. They can be summarized into three categories: filter-based methods, MRF-based

methods and planar-surfaces-based methods.

Kopf et al. proposed upsampling the LR depth map by using a Joint Bilateral Up-

sampling (JBU) filter. Aided by the associated HR texture, the edges of the upsampled

depth map can be well preserved [74]. A similar but advanced joint bilateral filtering

technique was proposed in [75], which iteratively refines the input LR depth map by re-

ferring to the registered HR textures. On one hand, the adoption of texture information

can help to obtain sharp depth edges. However, on the other hand, the color or lighting
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variations on the same areas of the texture images can cause false discontinuities in HR

depth maps. Hence, the texture images need to be used in a more sophisticated way.

By applying the MRF to super-resolve the LR depth map, Diebel et al. formulated

the SR process as an energy minimization problem to fuse LR depth images and HR

texture images. Different from Diebel’s work, in [125], a NLM term was used in the

MRF to preserve the edges. However, during the optimization process of the MRF-

based methods, the estimation errors are easily propagated into the obtained HR depth

map. Lo et al. [76] proposed the incorporation of a texture-guided weighting factor

into the MRF model to reduce the texture copying artifacts and the weighting factor

was obtained based on a learning approach. Although the demonstrated results were

good, the learning-based approaches usually have a higher computational complexity,

which might prevent their adoption for real-time applications.

Since after projection, the objects in a 3D scene can be represented by several planar

surfaces with different shapes in a 2D image, each planar surface will have linearly

changing depth values in the corresponding depth map and the boundaries of surfaces

indicate the discontinuities of the depth values. If an equation can be obtained for

each surface, the SR of LR depth map can be obtained by inserting pixels based on this

equation. Therefore, the whole depth map can be classified into three categories: planar

surfaces, non-planar surfaces, and edges. In the work in [126], the SR of depth map

relied on the local planar hypothesis and the candidates of potential HR depth values

were obtained by either linear interpolation along horizontal and vertical directions or

the estimated local planar surface equations. However, since the surface equation was

evaluated locally, it may be biased by the noise contained in the local pixels which

later on will magnify the estimated error in the generated HR depth map. Therefore,

to address the above problem, in this chapter, the global analytical equations of the

detected surfaces are used and for each of these three categories a proper up-sampling

approach is proposed to exploit its intrinsic properties.

5.2 Proposed Planar Surface Detection Method

The proposed indoor PSD method consists of two stages. The first stage of the proposed

indoor planar surface detection method aims to detect valid seed patches over the whole

depth map. This is an important step since the depth data may have holes or anomalous

points. Then, the valid seed patches according to their planarity will be used as the
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starting elements of the growing process. When no more new neighbor points fit into the

current planar surface, the current growing process stops and next seed patch begins to

grow. Finally, two post-processing approaches are proposed to tackle the overgrowing

surface problem and to merge separated surfaces. These two post-processing stages

make the proposed method robust to various testing conditions.

Fig.5.1 shows the framework of the proposed DPSD.

Depth data

Generate valid 

seed patches

Grow based on 

seed patches

Correct

overgrowing surfaces
Merge surfaces

Output

planar surfaces

Post-processing

Figure 5.1: The framework of the proposed depth map based planar surface detection
method.

5.2.1 Generating Valid Seed Patches

Firstly some notations about plane representation are given. In the 3D space, a plane

can be defined as amx+bmy+cmz+dm = 0, where (am, bm, cm) defines the normal vector

n̂m of the plane and dm is the distance from the 3D space origin. According to this

notation, the Hessian form of the plane, Sm, could be written as n̂m ⋅p+ dm = 0, where

p = (x, y, z) indicates an arbitrary point on the plane, and the operation “ ⋅ ” stands

for the dot-product of two vectors. The distance between this surface and a point pi

(or the fitting error) could be evaluated as [127]:

e(pi) = ∣n̂m ⋅ pi + dm∣ (5.1)

Furthermore, the mean square fitting error of a set of points Sk with respect to the

surface Sm is defined as:

δm,k =

¿ÁÁÀ 1∣Sk ∣ ∑∀pi∈Sk

(n̂m ⋅ pi + dm)2 =
¿ÁÁÀ 1∣Sk ∣ ∑∀pi∈Sk

e2(pi) (5.2)

To ensure that the proposed growing process is based on reliable seed patches, a

sliding L×L square window is moved in raster-scan fashion over the whole depth map,

and at each position all covered pixels will be checked. Patches with no anomalous

measurements and no holes will be regarded as valid seed patches. Then, the linear

least squares plane fitting approach is applied to each valid seed patch to find the best

fitting plane that could represent it.

90



Each valid seed patch is denoted by ψm(fm, δm,m), or for brevity ψm, with m being

the seed index. The function fm is the estimated equation representing the plane that

best fits the seed patch, and it is given by n̂m and dm. Whereas, δm,m is the mean

square fitting error of the seed’s points with respect to the estimated plane, and it can

be evaluated using (5.2), to simplify the notation this will be represented by δm.

5.2.2 Growing Process

This subsection explains the iterative growing process of a planar surface starting from

a seed patch. Firstly, some notations that will be used need to be introduced. The

index j will be used as superscript to indicate the iteration index of the iterative growing

process, so for example the planar surface i at stage j of the growing process will be

represented by S
j
i or Sj

i (f ji , δji ). In the latter form the function f
j
i is the estimated

equation of the plane at the end of the j-th stage of the growing process, and it is given

by n̂j
i and dji . The mean square fitting error of the surface’s points with respect to the

estimated fitting surface is δji , and it could be evaluated using (5.2). The ground-truth

surface of the i-th surface will be represent by S̄i.

Different to the RANSAC method whose seeds are selected randomly, in the pro-

posed growing stage, the previously obtained seed patch candidates will be initially

arranged in ascending order of their mean square fitting error in a growing seed list

Ψ1, thus Ψ1 = {∀ψn, ψm ∈ Ψ1 ∶ δn ≤ δm;n <m}. The first seed patch appearing in the

list will be used to initiate the first surface. Once this surface reaches its maximum

extent then its growing process will stop and the growing seed list will be updated to

Ψ2 by eliminating all the seed patches that are enclosed within the first detected planar

surface. This updating process will be carried out at the end of the growing process for

each planar surface, Sj
i , to generate a new seed growing list Ψi+1 = {∀ψm ∈ Ψi ∶ ψm ∉ Si}.

This ensures that only non-incorporated seed patches will be used in the subsequent

growing of other planar surfaces.

At this point the growing process of the plane i will be described. This plane at its

initial stage is merely defined by its seed patch, thus S0
i (f0i , δ0i ) = ψm(fm, δm), with ψm

being the first seed patch in Ψi. At the j-th iteration stage of the growing process the

neighbors N̄ j
i of the surface Sj

i will be firstly identified. Then points belonging to other

planar surfaces will be excluded from N̄
j
i to obtain a new set N j

i = {p ∶ p ∉ Sm,m < i}.
This set of points will be plugged into the current plane equation, i.e. f ji , to evaluate
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their fitness to this plane. So the points with fitting error larger than the threshold,

T j , will be regarded as outliers to this planar surface. Otherwise, they will be enclosed

within the current plane to form S
j+1
i . This could be summarized by:

S
j+1
i /Sj

i = {∀ p ∈N j
i ∶ e(p) ≤ T j} (5.3)

Fig.5.2 shows an example of the first two growing steps (i.e., j = 1 and j = 2) of the plane

i and its N1
i and N2

i neighboring sets. After each growing stage, the plane equation f ji

will be refined to f j+1i by using the linear least square plane fitting approach over the

whole set of pixels of the newly updated surface Sj+1
i .

The growing process for the surface i will be iteratively repeated until one of the fol-

lowing two halt conditions is met: a) the set N j
i is empty, b) no point in the neighboring

set N j
i fits well into the current planar surface. These two conditions indicate that the

i-th surface has grown to its maximum extent. Once the growing process stops then

the surface i will be finalized and it will be represented hereinafter by Si = Si(fkii , δkii ),
where ki represents the index of the last growing stage of this planar surface. fkii is the

final estimated equation of the surface and it is given by n̂ki
i and dkii .

As previously described at the end of the growing process of the i-th planar surface,

a new growing seed list, Ψi+1, will be generated and a new growing process will be

initiated by using the first-ranked seed patch in the list. This growing process will be

repeated until the updated seed list is empty.

D D D

S0
i

Finding 

neighboring 

pixels

Neighboring pixels do not belong to the current surface 

Growing 

process

…….

N1
i N2

i

Plane pixels Neighboring pixels belong to the current surface 

S1
i S2

i

Figure 5.2: An example of the growing process of a planar surface; D is depth map, Sj
i

is the current surface and N j
i is current neighboring pixels.

In addition, it is worth noticing that the threshold value, T j, which is used to

determine the fitness of a pixel for the current growing surface, will be dynamically

updated after each iteration of the growing process by increasing its value. That is to

say, at beginning the requirement for enclosing neighboring pixels is very strict since

these points will become the base of the following growing stages. With the growing of
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the plane, more points need to be checked, so if the threshold is still small, then with

high probability this will lead to over-segment the whole depth map into many small

planar surfaces. In this work, the following equation for T j has been adopted

T j = τ(1 − e−j/λ) (5.4)

where τ is the maximum allowed “roughness” of the planar surface and λ is the changing

speed of the threshold.

5.2.3 Post-processing of Detected Surfaces

Some of the detected surfaces suffer from two major problems. The first one is intersecting-

surfaces-caused overgrowing problem. The second one is overgrowing-caused surface

separation problem. So in the following work two post-processing stages have been

proposed to tackle both problems.

Overgrowing surfaces correction
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Figure 5.3: Two typical cases of overgrowing surfaces: (a) lateral-OGS; (b) axial-OGS;
the lateral points and medial points of the OGS are shown in green and red, respectively.

The proposed planar surface detection method uses a growing-based approach,

which causes intersecting surfaces to experience “overgrowing” problem. This happens

because from geometric point of view, the intersection line belongs to both intersecting

surfaces. Thus the Overgrowing Surface (OGS) problem can occur: (a) along the lateral

side of the intersection line (noted as lateral-OGS in this chapter), and/or (b) along the
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(a) (b)

Figure 5.4: (a) and (b) are the examples of daily life scenes with OGS problem; red
lines show the intersection lines of the two hashed surfaces.

intersection line (noted as axial-OGS in this chapter). Some graphic examples of the

former and latter cases are shown in Fig.5.3 (a) and (b) respectively and two examples

of daily life scenes which causes the OGS problem are shown in Fig.5.4. Practically, the

extent of this problem depends on several factors, such as the geometry of the scene,

the angle between the two intersecting surfaces, the accuracy of the depth data, the

order of seeds used, and finally the threshold value T j. In the following, suppose that

the ground truth surface S̄i and S̄u intersect in a line segment (as shown in Fig.5.5 (a)),

with the red line representing the intersecting line. Furthermore, the symbol So will be

used to represent the subsurface defined by the neighboring points of the intersection

line, which equally fits well into both surfaces. To have a formal representation of So,

assume for simplicity, that the threshold given in (5.4) does not change with j, i.e,

T j ≈ T , and that the depth data is accurate, consequently n̂i ≈ n̂
ki
i , di ≈ d

ki
i , n̂u ≈ n̂ku

u

and du ≈ dkuu . In this case the subsurface So can be described as:

So = {∀ p ∈ So ∶ (∣n̂ki
i ⋅ p + d

ki
i ∣ ≤ T )⋀(∣n̂ku

u ⋅ p + d
ku
u ∣ ≤ T )} (5.5)

Thus So could be enclosed within Si or Su. So, for example if the first surface to grow

was Si then So will be incorporated into it, and vice versa. For a scene with a large

number of intersecting surfaces, it is reasonable to expect that half of the subsurfaces

will be mistakenly assigned to the wrong surfaces. The overgrowing surfaces have

negative impacts on the results obtained by the growing-based planar surface detection,

as can be seen in Fig.5.5 (b), where the overgrowth of Si ends up splitting the wall into

two surfaces. By referring to Fig.5.3 it is possible to prove that the width of the OGS
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Intersection line

Scanning element

(a) (b)

(c) (d)

(f)(e)

Si

Si

Su

Sk

Sk

Si

Sk

Si

Sk

Su

Su

Su

Su

Si

Sk

S̄u

S̄i

Figure 5.5: (a) shows two intersecting surfaces S̄i and S̄u; (b) the overgrowing surface Si
splitting S̄u into two surfaces; the scanning element is shown in violet; (c) the detected
shared surface (So) is shown in green; (d) the outcome of relocating the shared surface
when processing Si and Su; (e) the outcome of relocating the shared surface when
processing Si and Sk; (f) the outcome of fragmented element relocation and finalizing
surface Si.
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is given by

w =
T

sin (arccos(n̂ki
i ⋅ n̂

ku
u )) (5.6)

Consequently, the smaller the angle between the two surfaces is, and the larger the

threshold is, the wider the OGS is. When the two surfaces are perpendicular then

w = T , which is the smallest width of the OGS.

To achieve the goal of the first post-processing stage the detected surfaces will be

processed sequentially. So assuming that the current surface to be processed is Si

(noted as the primary surface), then all its neighbors (noted as secondary surfaces)

which intersect with it need to be determined. If the intersection segment between

Si and its neighbor, say Su, is within the boundary of the image, then it is possible

that Si overgrows into Su, thus this case needs to be investigated. Moreover, if the

intersection segment lies outside of the image boundary then Si cannot overgrow into

Su, consequently this case will be skipped and the next neighbor will be examined. The

intersection line between Si and Su should be evaluated to determine which of these

two cases happened. Thus, the intersection line could be written in a parameterized

form with respect to t using the equations of the two planes1, as [128]:

p = (n̂ki
i × n̂

ku
u ) t + p0 (5.7)

where the operation “×” stands for the cross-product of two vectors. Whereas the point

p0 on the intersection line is obtained by

p0 =
(dkuu n̂ki

i − d
ki
i n̂ku

u ) × (n̂ki
i × n̂

ku
u )∣n̂ki

i × n̂
ku
u ∣2 (5.8)

At this point it is possible to determine the location of the intersection segment, which

will be assumed for the surfaces Si and Su to be within the boundary of the image.

Since the OGS lies on the intersection line, and its shape depends on several factors,

in order to accurately detect it, a line-shape scanning element is proposed to perpen-

dicularly scan the intersecting surfaces along their intersection line, an example of a

scanning element is shown in violet in Fig.5.5 (b). If Si overgrows into Su then, in

general, the elongated OGS will have a width w given by (5.6), furthermore, it will be

surrounded on at least one side by Su. These two properties will be used to check for

shared subsurfaces So when using the proposed line-shape scanning approach. Conse-

quently, the length of this scanning element will be chosen to be ⌈w⌉(1 + ǫ), with ⌈x⌉
1Although the detected planar surfaces are shown in a 2D image, their estimated equations represent

them in 3D space.
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is the nearest integer to x that’s not smaller than x, and ǫ > 0 so as to ensure that the

scanning element is longer than the width of the shared subsurface, thus it could cover

pixels at both So and Su. The scanning starts at one extreme of the intersection line

within the image boundary. When the scanning element first encounters an Si with Su

neighbor then a new So is initiated. This area will continue to grow as pixels belonging

to Si and surrounded by Su are found. The growing of So will halt once the scanning

element no longer covers the two surfaces. The detected So in addition to the scanning

element are shown in green and violet, respectively, in Fig.5.5 (c).

If the subsurface So has been mistakenly enclosed within Si instead of Su then its

medial points (i.e., the points along the intersection line) will theoretically have zero

fitting error with respect to Si and Su. Consequently, these points cannot be used to

judge where So should be allocated. In contrast, the lateral points of So, being the

furthest from the intersecting line, will have a large fitting error with respect to the Si

surface, and small with respect to Su (the lateral points and medial points of So are

shown in green and red, respectively in Fig.5.3). Denoting SL as the lateral points of

So, the following criteria will be used to reallocate it:

So ⊂ { Su ; δu,L < δi,L
Si ; δu,L ≥ δi,L

(5.9)

The surface which minimizes the mean square fitting error of the lateral points of So

will end up enclosing it; in this example the outcome of the shared surface relocation is

shown in Fig.5.5 (d). Then the next neighboring surface of Si, say Sk, will be checked

for a valid intersection, and the process described for Su will be repeated for Sk. An

example of the outcome of this is shown in Fig.5.5 (e). It is worth noting that, at

the end of the relocation process, the surface Si may end up becoming fragmented

and scattered into a main body and isolated areas. Thus, each isolated area will be

compared with all of its neighbors to determine which one is more suitable to enclose

it. The outcome of this is shown in Fig.5.5 (f). The minimization of the mean square

fitting error is the criteria to decide where the isolated area should be enclosed. At the

end of this step all equations representing the affected surfaces will be updated, and

the surface Si will be finalized. Then another surface will be regarded as the primary

surface, and the previously described post-processing procedure will be carried out,

until all surfaces are checked.

Fig.5.6 shows the flowchart of the proposed approach for OGS detection and relo-
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cation.

All detected surfaces

Find neighbor surfaces for 

each detected surface si

Find intersection lines between

si and its neighbor surface, sk

Scan along the intersection 

line and get the shared parts, so

Keep the shared parts in si

Move the shared parts 

from si to neighbor surface

Update the surface equation

of si and its neighbor surface

No

Yes

si overgrows? 

Check and reallocate the 

isolated points

Get the length of scanning 

elements

End

Is it valid

intersection line?

Yes

No

Move to next 

neighboring surface

No

Yes

All detected surfaces

are checked? 

Move to next detected surface,

si+1

Figure 5.6: The flowchart of the proposed OGS algorithm.

Surfaces merge

In the proposed approach some surfaces end up being wrongly separated into two or

more different parts. This problem can be caused by several issues. The first cause is

the OGS problem, where the intersection area separates one surface into several parts,

as shown in Fig.5.5 (f). The second is due to the barrel distortion phenomenon affecting

the depth data, from the capturing optics of the depth camera.

In order to tackle the over segmentation problem the second post-processing stage

is proposed, which exploits the estimated equations of the planar surfaces to merge

the neighboring surfaces that are on the same plane. Two neighboring surfaces are on

the same plane if they are parallel and at equal distance from the origin, these two

conditions will be used in the proposed post-processing approach. If two surfaces, say

Si and Su, are parallel then arccos(n̂i ⋅ n̂u) = 0 ○. To take into account the estimation

error of the surface equation the previous condition will be relaxed, consequently the

surfaces Su could be regarded as parallel to Si if:

θi,u <∆θi (5.10)
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with θi,u = ∣arccos(n̂i ⋅ n̂u)∣, i.e., the angle between the surface Si and Su, and ∆θi is

the angle between the norm of the surface Si, i.e., n̂i, and its worst estimate:

∆θi = argmax
{n̂j

i
∶j<ki}

(∣arccos(n̂i ⋅ n̂
j
i )∣) (5.11)

with n̂j
i being the estimated norm of the plane at the end of the j-th iteration of the

growing process. As described in Section 5.2.2, at each iteration of the surface growing

process, the plane equation will be refined to better fit all the enclosed points, hence,

it is reasonable to assume that the final estimated plane equation is the most accurate,

thus (5.11) will be rewritten with the assumption that n̂i ≈ n̂
ki
i . The bigger the surface

is, the more accurate the previous assumption is. Consequently, the first step of the

proposed merging stage is to arrange all of the surfaces in a surface list S in descending

order according to their size. The list will be S = {Si; 1 ≤ i ≤ sN}, with N being the

total number of detected surfaces.

Then all of the combinations of the angle θi,u will be evaluated and arranged in the

upper triangular combinational matrix Θ as follows:

Θ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 θ1,2 θ1,3 θ1,4 ⋯

0 0 θ2,3 θ2,4
0 0 0 θ3,4
0 0 0 0
⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎠
(5.12)

At this point each entry in the i-th row, say θi,j, will be compared with ∆θi according

to (5.10) to determine whether the surface Sj is parallel to Si. All of the surfaces that

are parallel will be grouped into the same surface group. It is worth noticing that the

rows and columns of Θ are arranged in descending order with respect to the surface

size, this ensures that smaller surfaces will be checked against bigger ones.

To verify that two surfaces can be merged we need to ensure that they are on the

same plane. To do this assume that Si and Sj form a pair of parallel planes, and that

the size of Si is smaller than Sj . Then, the mean square fitting error of Si with respect

to the equation of the surface Sj is calculated using (5.13) as δj,i. If this value is smaller

than the mean square fitting error of the surface Sj then this pair of surfaces, i.e., Si

and Sj , will be regarded as being on the same plane. Furthermore, if these two surfaces

are also contiguous, then Si will be merged into Sj surface. At the end of the merging

step the equation representing enlarged Sj surface will be updated.
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Figure 5.7: The framework of the proposed depth map super-resolution method.

5.3 The Proposed Depth Map SR Method

In this section the proposed depth map SR will be explained. If the analytical equation

of a surface in the scene is known then it could be used to up-sample this surface, by

plugging the coordinate of each missing pixel (x, y) in the surface equation to find its

corresponding depth value z. So aided with this paradigm, in the proposed approach,

the surfaces in the depth-scene will be categorized into three groups, namely: planar

surfaces, non-planar surfaces, and finally edges. For each of these three categories a

proper SR approach will be devised to better exploit its intrinsic properties.

Since the output of the DPSD method is mainly surfaces and the surrounding edges,

the edges category will simply be the one outputted by the DPSD method, whereas, in

the second stage of the proposed approach the detected surfaces will be categorized into

planar surfaces and non-planar surfaces. The block diagram of the proposed approach is

shown in Fig. 5.7. The idea behind the proposed categorization mechanism is to check

if the estimated planar equation fits the measured depth values of the surface well. So

the pixels of each detected surface Sm will be plugged into the surface equation so as

to evaluate their estimated depth values (i.e., ẑ = −1
cm
(amx+ bmy +dm), where p = (x, y)

is a pixel belonging to the surface Sm. Then the Mean Square Fitting Error (MSFE)

is evaluated for this surface as:

δm =

¿ÁÁÀ 1∣Sm∣ ∑∀p∈Sm

(z − ẑ)2 =
¿ÁÁÀ 1∣Sm∣ ∑∀p∈Sm

(z + 1

cm
(amx + bmy + dm))2 (5.13)

This value will be compared against a threshold related to the maximum roughness
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value used in the planar surface detection unit. If the MSFE is larger than the threshold

then this indicates that this surface is non-planar and/or the estimated surface equation

is not accurate. In this case, this surface will be classified as a non-planar surface.

Otherwise it will be classified as planar. The details of the SR approach for each of the

three categories of pixels will be explained hereinafter.

5.3.1 Super-Resolution Process

For each set of pixels belonging to a planar surface the surface equation will be used

to estimate the values of the pixels to-be-filled. Although a planar surface could

be easily up-sampled by using a first-order linear interpolator, given that the mea-

sured depth data is affected by measurement noise, this will affect the accuracy of the

interpolator-based up-sampled pixels. Thus, it is more accurate to use the estimated

equation of the plane to up-sample it. To prove this property, firstly the analysis

is simplified by modeling the high resolution version of the depth data using a one-

dimensional vector Z̄h = [z̄0, . . . , z̄i, . . . , z̄N−1]T , and let us consider the case where N

is even. The depth data measured by the depth-camera will be represented by the

vector Zl = Z̄l +N where Z̄l = [z̄0, . . . , z̄2i . . . , z̄N−2]T is the low resolution, or in other

words the down-sampled version of Z̄h where the downsampling factor is 2. The vec-

tor N = [n0, . . . , n2i, . . . , nN−2]T is a zero mean iid random process representing the

measurement noise affecting depth data, and its variance is σ2n.

Let Zz represent the zero-filled version of Zl where the measured samples in Zl

have been separated by inserted zeros, i.e., Zz = [z0,0, . . . ,0, z2i,0, . . . , zN−2,0]T . This

version will be used as the basis to generate the final super-resolved version of the vector

Zl by filling the zeros using super-resolved values. If a first order linear estimator is

used to estimate the zero-fill position in Zz starting from its two-side neighbors then it

could be written that:

Ẑh =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ⋯

α1 0 β1 0 0
0 0 1 0 0
0 0 α3 0 β3
⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎠
Zz (5.14)

where Ẑh is the super-resolved version of the vector Zl. The variance of the estimation
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error of, for example, z2i+1 can be evaluated as:

σ2e(2i + 1) = E {(α2i+1z2i + β2i+1z2i+2 − z̄2i+1)2} (5.15)

= E {( (α2i+1z̄2i + β2i+1z̄2i+2) + (α2i+1n2i + β2i+1n2i+2) − z̄2i+1)2}(5.16)
if it is supposed that z̄2i, z̄2i+1 and z̄2i+2 are the depth distances from a planar surface

then in this case z̄2i+1 = z̄2i+z̄2i+2
2 , which means the best estimate of z̄2i+1 can be obtained

when α2i+1 = β2i+1 = 1/2. In this case, if we take into account the assumption that the

noise N is a random iid process with zero mean value then (5.15) can be simplified as:

σ2e(2i + 1) = 1

4
E {(n2i + n2i+2)2} = 1

2
σ2n (5.17)

Obviously the accuracy of the up-sampling process depends on the accuracy of the depth

measurement, and the error shown in (5.17) cannot be minimized by using traditional

interpolators (such as linear, bicubic, etc.). On the other hand, by using the planar

surface estimated equation for up-sampling the interpolation error is reduced. This

is because the depth measurement noise is canceled out during the estimation of the

planar surface equation.

After super-resolving all planar surfaces the non-planar surfaces will be up-sampled

by exploiting the local structure by using a traditional interpolator. In this chapter, the

Bicubic [129] interpolator is used for this task. Nevertheless, it is worth noticing that

more advanced interpolators, such as a directional-based interpolator could be used to

estimate the values of the pixels to-be-filled.

Once all planar and non-planar surfaces are up-sampled then edges and the remain-

ing non-filled pixels are up-sampled. For each non-filled pixel its N8 neighbors [130]

and the surfaces that they belong to will be firstly identified. Then the missing pixel

will be estimated by taking into account the surface category of each of its neighbours.

To simplify the description of the proposed approach an example will be used here-

inafter. Suppose that (x, y) are the coordinates of one of the non-filled pixels, and

suppose that one of its neighbors, pi, belongs to a planar surface Sk, then the surface

equation of this surface will be used to estimate the depth value at (x, y), as follows

ẑi = −1ck (akx + bky + dk). If pi belongs to a non-planar surface Sn then the same tra-

ditional approach which was used to up-sample Sn will be used to extrapolate it and

evaluate the depth value at (x, y). After obtaining, for each neighbor of the pixel (x, y)
an estimated version of the to-be-filled pixel, these estimated versions will be fused by

using a weighted average approach.
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(a) (b)

Figure 5.8: The capturing texture and depth camera platform: (a) front view; (b) side
view

5.4 Experimental Results

Since the performance of the proposed depth map upsampling approach is affected by

the accuracy of planar surface detection, in this section both of these two methods are

evaluated.

To evaluate the performance of the proposed DPSD approach, different indoor

scenes were tested2. For each scenario, the texture and its corresponding depth map

are captured by using a PENTAX K-R camera [131] and the SwissRanger SR4000

camera [45]; the composite camera structure is shown in Fig.5.8. Although the texture

and depth data are slightly misaligned due to the intrinsic structure of the capturing

platform, the texture data is only used to visually assess the planar surface detection

results. In the following experiment, the RANSAC planar surface detection approach

is used as a benchmark. It is worth noticing that the results of RANSAC are affected

by the initially and randomly selected points, thus for the following comparisons, the

comparatively best RANSAC result for each scene has been reported. The tested tex-

ture images and their associated depth maps are shown in the top left and right images,

respectively, of each pane in Fig.5.9. From this figure it can be seed that the four scenes

have various levels of texture and depth complexity. For example, the first scene, i.e.,

2All the testing images with their setting information are available at
http://www.mmtlab.com/DDPSD.ashx.
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Chairs & Table 1, has a table and wall with uniform textures. More complex than

the scene Chairs & Table 1, in Chairs & Table 2 and Seat & Table, there are some

books on the table, and various kinds of chair. The aim of this type of arrangement

is to assess the ability of the proposed DPSD method to distinguish different planar

surfaces forming complicated objects. It is worth noticing that in Chairs & Table 2, a

chessboard is hanging on the wall, thus if texture-based PSD is used then it will have a

problem in detecting the wall’s surface. On the contrary, this problem can be avoided

by using depth-based PSD. Finally, the scene Cabinet is used to test a more challeng-

ing scenario, due to the presence of many small objects, transparent glass and complex

combinations of vertical and horizontal surfaces. The scenes Stairs 1 and Stairs 2 are

the front and side view of a stair-step structure.

For the four scenes, square seeds of 4 × 4 pixels were used, as for the threshold

parameters the maximum allowed roughness, i.e., τ , was set to 3 and the threshold

change speed, λ was set to 1. As for the benchmark method, the maximum number of

iterations per surface was set to 5000 which is sufficient for the detection process [111]

and the threshold was set at 7.26.

The bottom left and right image of each pane in Fig.5.9 shows the obtained results

of the benchmark method and the proposed DPSD method, respectively, for each of the

four tested scenes. The detected planar surfaces are represented with different colors.

It is easy to notice that the proposed method can detect the majority of planar surfaces,

and more accurately than the benchmark approach. The proposed method can even

distinguish each planar surface of objects which consist of multiple planar surfaces, for

example the chairs in Chairs & Table 1, the blue book in Chairs & Table 2 and the

office seat in Seat & Table. Furthermore, most of the planar surfaces in the complex

structure in Cabinet are successfully detected by the proposed DPSD, without being

over-simplified. It is worth noticing that even some small objects on the cabinet table

have been detected, which demonstrates the effectiveness of the proposed approach.

The threshold updating mechanism allows the estimated equations of the detected

surfaces to be refined. This in turn allows the proposed method to correctly detect

curved surfaces with limited curvature, for example, the top-board side surface of the

table in Chairs & Table 1 and Seat & Table. However, for the chairs’ base in Scene

Chairs & Table 1 and Chairs & Table 2 with large curvature, they will be detected as

combined multiple surfaces rather than one curved surface.
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(a) Chairs & Table 1 (b) Chairs & Table 2

(c) Seat & Table (d) Cabinet

(e) Stairs 1 (f) Stairs 2

Figure 5.9: Detection comparison of the proposed DPSD method and benchmark
method for several scenes. Each of the four panes is as follows: Top Left: the original
texture of the scene. Top Right: the corresponding depth map. Bottom Left: detection
results of benchmark method. Bottom Right: detection results of proposed method.
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(a) (b) (c)

Figure 5.10: The outcome of the proposed approach: (a) without any of the two post-
processing stages; (b) with only the OGS post-processing stage; (c) with the two post-
processing stages.

The effectiveness of the proposed post-processing stages has been verified by com-

paring the results of the proposed approach with and without these stages. The results

of this comparison are shown in Fig.5.10, where Fig.5.10 (a) shows the outcome of the

proposed approach without the post-processing stages. It is evident from this result

that the vertical side of the steps overgrows into the wall, thus ending up separating

it into many segments. Meanwhile, Fig.5.10 (b) shows the output of the proposed

approach with only the first post-processing stage which mitigates the OGS problem

by reallocating the overgrowing surfaces. The output of the first post-processing stage

gets refined by the second stage, which merges the parallel subsurfaces, the outcome

of this is shown in Fig.5.10 (c). From this result it is evident how the over segmented

wall in Fig.5.10 (a) has been correctly detected by the two post-processing stages.

The effect of seed size on the proposed approach could be appreciated from Fig.5.11.

The results of each tested scene are shown in one pane in Fig.5.11, each pane has 2× 3

images, the columns from left to right show the results for 3 × 3, 4 × 4, and 5 × 5

seed patch. Whereas, the upper and lower row of each pane shows the output of the

proposed approach with and without post-processing stages. From the reported results

it can be seen that using different sizes of seed patch will lead to slightly different

detection results, however, the differences become more pronounced without using the

post-processing stages. Consequently, the proposed post-processing methods increase

the overall robustness of the proposed algorithm with respect to the chosen parameters.

It is worth noticing that the proposed surface merging method only merges the surfaces

that are aligned and contiguous, therefore, in the first three testing scenes, the wall

surfaces isolated by the table leg and the table top-surface will not be merged with the

larger part of the wall.
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(a) Chairs & Table 1 (b) Chairs & Table 2

(c) Seat & Table (d) Stairs 2

Figure 5.11: The results of each tested scene are shown in one pane; the columns from
left to right in each pane show the results for 3 × 3, 4 × 4, and 5 × 5 seed patch; the
upper and lower row of each pane show the output of the proposed approach with and
without post-processing stages, respectively.

To objectively assess the accuracy of the proposed DPSD method two methodologies

were used, the first one measures the Receiver Operating Characteristic (ROC) of

several detected surfaces. The second one checks the angle between some pairs of

surfaces based on their estimated equations, and compares these angles with their

ground-truth values. Due to the difficulty in generating the ground truth of planar

surfaces in captured depth images, one Computer Graphic (CG) depth image was

generated along with the ground truth of some surfaces. This image was used to

objectively assess the proposed approach.

Fig.5.12 shows a 3D saw-tooth structure, with each “tooth” having different height,

thus the angle of each tooth is shown on its top in Fig.5.12 (b). The detected planar sur-

face by the proposed algorithm with and without the post-processing stages are shown,

respectively, in Fig.5.13 (a) and Fig.5.13 (b). Furthermore, the actual angle of each

tooth, the corresponding measured values by the proposed approach with and without

the post-processing stages, and the measurement errors are reported in Table. 5.1. The

following equation was used to measure the angle of a tooth arccos(n̂ki
i ⋅ n̂

ku
u ) where n̂ki

i

and n̂ku
u are the estimated norms of the two surfaces which define that tooth. From

these results the accuracy of the proposed approach can be appreciated, and the impor-
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Figure 5.12: (a) The 3D saw-tooth structure, each “tooth” has different height; (b) the
profile of the saw-tooth structure with the angle of each tooth is shown on its top.

Table 5.1: The measured angle of each tooth in the 3D saw-tooth structure by the
proposed approach with and without the post-processing (PP) stages; the ground-truth
(GT) angles, and the measurement errors

GT angle
With PP Without PP

measured angle ∆ measured angle ∆

10 9.92 -0.08 11.29 1.29

20 20.03 0.03 20.03 0.03

30 29.87 -0.13 29.87 -0.13

40 39.84 -0.16 39.84 -0.16

50 48.29 -1.71 48.29 -1.71

60 61.07 1.07 60.08 0.08

70 70.50 0.5 86.23 6.23

80 76.73 -3.27 88.23 8.23

90 90.00 0 99.63 9.63
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Figure 5.13: The detected planner surfaces by the proposed algorithm: (a) with the
post-processing stages; (b) without the post-processing stages. The actual intersection
lines between each two surfaces are shown as dashed lines.

108



tance of the post-processing stages show that in all but one case, the proposed approach

is worse than its version without the post-processing stages. Furthermore, it can be

seen that the smaller the angle is the more accurate the measurement is. This is due to

the fact that smaller angles in the tested image correspond to bigger planar surfaces,

which means that the estimated surfaces’ equations are more accurate.

The ROC of the proposed algorithm with and without the post-processing stages for

the 5,9,13,17-th surface are reported in Table 5.2. In this table “TP” (True Positive)

counts the points that have been successfully detected as inliers of the surface and “TN”

(True Negative) counts the non-belonging points that have been successfully detected

as outliers of the surfaces. Whereas, “FN” (False Negative) and “FP” (False Positive)

count the points which were wrongly classified as not belonging and belonging to the

surface, respectively. This table also shows the detection sensitivity which is the ratio

of the correctly detected inliers to the total number of inliers pixels, furthermore, the

specificity, which is the ratio of the correctly detected outliers to the total number of

outliers pixels.

A demo video that shows the growing process and the detected planar surfaces

could be found at http://v.youku.com/v_show/id_XOTMyODI5MjI4.html.

Table 5.2: The ROC of the proposed algorithm with and without the post-processing
(PP) stages for some planar surfaces of a 3D saw-tooth structure; “TP”, “TN”, “FN”,
and “FP” stand for True Positive, True Negative, False Negative and False Positive,
respectively

Plane index Plane 5 Plane 9 Plane 13 Plane 17

TP
With PP 1234 1258 1568 1224

Without PP 1232 1584 1056 1056

FN
With PP 18 0 8 16

Without PP 176 0 352 352

TN
With PP 24072 24060 26720 24096

Without PP 23760 23408 23584 23760

FP
With PP 20 26 184 8

Without PP 176 352 352 176

Sensitivity With PP 98.6% 100.0% 99.50% 98.70%

TP/(TP + FN) Without PP 87.5% 100.0% 81.7% 75.0%

Specificity With PP 99.9% 99.9% 99.3% 100.0%

TN/(TN + FP) Without PP 99.3% 98.5% 98.5% 99.3%
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Figure 5.14: The row-by-row MSE for the up-sampled saw-tooth image with respect to
the HR ground truth versus the row index.

The MSE was evaluated row-by-row for the up-sampled saw-tooth image with re-

spect to the HR ground truth as reported in Fig.5.14 versus the row index. Two different

approaches for up-sampling are shown, namely: the proposed approach, and the tra-

ditional cubic approach. The traditional cubic approach was chosen as the benchmark

to make future comparisons with the proposed method straightforward. From the re-

ported results the effectiveness of the proposed approach in recovering planar surfaces

and edges can be seen. However, for small surfaces, such as those at the right side of

Fig.5.12 (a) the DPSD has some problems in estimating their equations, consequently,

their HR version will have a high MSE. It is worth reporting that the PSNR of the

proposed SR approach is 47.35 dB versus 39.91 dB for the traditional cubic approach,

a matched down/up-sampling cubic approach is also tested and its PSNR is 46.54 dB,

which also confirms the superior performance of the proposed approach.

Furthermore, to visually appreciate the performance of the proposed approach,

different indoor scenes were captured by using the SwissRanger SR4000 depth camera

and then tested. In the following due to the limited space the results for only one scene

are reported. Fig.5.15 (a) shows the 176 × 144 original depth image, the output of the

surface categorization on this image is shown in Fig.5.15 (b), in this figure different

colors are used to represent different detected surfaces, and a horizontal hatch pattern

is used to show the surfaces which were categorized as planar surfaces. From this image

it can be seen that the proposed surface categorization approach works well, in fact
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(a)

(b)

(b)

(c)

(c)

Figure 5.15: Image (a) shows the original LR 176 × 144 depth image; the output of
the surface categorization is shown in (b), where horizontal hatch pattern shows planar
surfaces; the edges and the isolated non-filled pixels are shown in (c).

non-planar surfaces such as some parts of the chair, and the room floor which although

flat however are not smooth, were well identified. In Fig.5.15 (c) the edges and the

isolated non-filled pixels are shown.

The image shown in Fig.5.15 (a) has been super-resolved using the proposed ap-

proach and a cubic interpolation approach, the results are shown respectively in Fig.5.16

(a) and Fig.5.15 (b). The area delimitated by a red box in Fig.5.16 (a) and Fig.5.15 (b)

is blown-up in Fig.5.16 (c) and Fig.5.15 (d), respectively. From these cropped images

the superiority of the proposed approach in recovering edges details can be observed.

5.5 Conclusions

In this chapter, a dynamic seed growing mechanism to detect planar and semi-planar

surfaces using depth map images and a planar-surface-based depth map super-resolution

approach are proposed. The performance of the proposed method was assessed by vi-

sual and objective comparisons with benchmark methods on some typical indoor scenes.

To tackle the overgrowing surface problem and to merge separated surfaces two post

processing methods were proposed which exploit the estimated equations of the de-

tected surfaces. Referring to these equations, all the surfaces will be categorized into

three groups: planar, non-planar surfaces and edges. Then, for each of these three

categories, a proper up-sampling approach is applied to estimate the to-be-filled pixels.

For the planar surfaces, they are upsampled by using the analytical equations, while,

for the non-planar surfaces, the bicubic interpolator is used. Finally, a combination of

the planar-surface and bicubic approaches is used to upsample the edges. Moreover,

the reported results indicate that firstly, the DPSD method can detect planar and
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(a) (b)(c)

(c) (d)

Figure 5.16: The super-resolved image using: (a) proposed approach; (b) traditional
interpolation approach; The delimitated area by a red box in (a) and (b) is blown-up
in (c) and (d), respectively.
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semi-planar surfaces with high sensitivity and the post-processing methods increase

its robustness with respect to the chosen parameters; secondly, the proposed super-

resolution approach achieves superior performance in comparison with a traditional

interpolation one.

It is worth reporting that the work reported in this chapter has led to the following

publication: Zhi Jin, Tammam Tillo, Fei Cheng, Depth-map Driven Planar Surfaces

Detection, IEEE Visual Communications and Image Processing (VCIP) Conference,

2014.

Zhi Jin, Tammam Tillo, Fei Cheng, Planar Surfaces Detection on Depth Map Using

Patch Based Approach, IEEE 3rd Global Conference on Consumer Electronics (GCCE),

2014.

Zhi Jin, Tammam Tillo, Fei Cheng, (Demo) Accurate Planar Surfaces Detection Using

Depth Map, European Conference on Computer Vision (ECCV), 2014.

Tammam Tillo, Zhi Jin and Fei Cheng, Super-resolution of depth map exploiting planar

surfaces, Pacific-Rim Conference on Multimedia (PCM), 2015.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Image/video SR provides an efficient solution for the quality enhancement and has

been widely used in video surveillance, medical image process, daily life entertainment

and so on. In this thesis, a comprehensive review of classic and state-of-the-art SR

techniques has been provided in Chapter 2. From the review, it can be observed that

many super resolution algorithms are proposed based on image or 2D video systems,

however, few of them are based on 3D video. With one more cue in depth, the SR

methods designed for 3D video can reach better results than directly applying 2D SR

algorithms on 3D video. Therefore, in order to fill the gap with respect to current SR

algorithms, we proposed to introduce depth information into the texture SR process

by referring the characteristics of 3D video. In general, the SR algorithms for texture

images can be mainly classified into 3 categories: reconstruction-based, learning-based

and interpolation-based algorithms. The performance of reconstruction and learning-

based algorithms highly rely on the choice of corresponding parameters and training

samples, respectively. Hence, compared with previous two methods, the interpolation-

based SR algorithms are easy implemented and efficient which is suitable to real time

system. Starting from this point, in this thesis, two interpolation-based SR algorithms

are proposed with the assist of corresponding depth images in Chapters 3 and Chapters

4.

In Chapter 3, a novel virtual view assisted super-resolution method for MR mul-

tiview video has been presented where the low resolution views in the MR multiview

video are super-resolved to full resolution size in two stages. In the first stage, the sim-

ilarity between the LR pixels and their counterparts in the virtual view are measured.
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A smoothness check is carried out to determine whether using virtual view pixels or

interpolated pixels to fill the zero-filled pixels. Subsequently, the quality of the virtual-

view-based pixels is enhanced by compensating the intrinsic luminance difference be-

tween the views. Furthermore, the inter-view correlation is exploited to enhance the LR

pixels in the super-resolved frame by reducing their compression distortion. Therefore,

different from the state-of-the-art interpolation-based SR algorithms, the advantages

of virtual views are exploited by the proposed method at different stages. The exper-

imental results demonstrate the effectiveness of the proposed approach with a PSNR

gain of up to 3.85dB.

Except MR multiview video, the MVD video is also a popular representation of 3D

data. Unlike MR multiview video, each view of the MVD video has the same resolution

and is associated with corresponding depth map. Therefore, in this thesis, a novel

virtual view assisted SR method for MVD video has been presented as the extension

of the work in Chapter 3. This SR method aims to super-resolved the LR views that

are generated by employing interlacing-and-complementary-row-downsampling method

on the two adjacent texture views at the encoder side to reduce the transmitted data.

In the proposed approach, edge directions around the discarded pixels are estimated

by principal components analysis. This information is subsequently used to steer the

fusion of the virtual view with the directional interpolated pixels so as to exploit the

inter-view redundancy and to minimize the overall system distortion. The performance

improvement of this work can be confirmed by exhaustive computer simulations.

The depth maps in MVD video are generated by software so that they have the same

resolution as the textures. However, for the hardware, i.e.ToF depth camera, generated

depth maps, they have lower resolution compared with general texture resolution which

means they are hardly used in the MVD video. Hence, in order to solve this problem, in

this thesis, a depth map SR algorithm has been proposed where all the planar surfaces in

the depth map are detected with corresponding surface equations firstly. Then, for the

planar surfaces, they are super-resolved by using the analytical equations. For the rest

parts of depth map, i.e. the non-planar surfaces and edges, the bicubic interpolator and

a more sophisticated approach are used, respectively. The performance of the proposed

method was assessed by visual and objective comparisons with benchmark methods

on some typical indoor scenes and the reported results indicate that the proposed SR

approach achieves superior performance in comparison with traditional interpolation
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methods.

To conclude, the proposed depth SR algorithm boosts the adoption of the proposed

two texture SR algorithms and the proposed texture SR algorithms increase the usage

of depth information.

6.2 Future Work

The future researches will be focused on the following aspects:

• Exploitation of temporal correlation

Both of these two proposed texture SR methods mainly adopt inter-view informa-

tion to super-resolve the LR texture video. In other words, they are frame-based

texture SR. In fact, the previous and later frames with respect to the current

frame contain highly redundant information which can be used in SR algorithms.

Especially for the second proposed texture SR algorithm, if the previous and

current frame also adopt the interlacing-and-complementary-row-downsampling

method, which means in one view, the odd frame discards odd rows and even

frame discards even rows, the generated virtual view from the counterpart view

can also be involved in the fusion step. Therefore, one future work will be de-

voted to combining temporal correlation with inter-view correlation to improve

the exploitation of the virtual views and to enhance the performance of texture

video SR.

• Adoption of human-involved subjective assessment

Since at the decoder side, the received video is finally viewed by human, subjective

evaluation is more“proper” to quantify visual quality than objective evaluation.

So far, although some of the assessments for proposed SR methods are carried out

subjectively, no human-involved subjective assessment is used. This is caused by

the inconvenience, high requirement of time and money, and the testing equipment

and environment. However, added by the future possible collaborations with

corresponding research groups, this aim may be achieved. Referring to the results

of human-involved subjective assessment, the proposed SR algorithms could be

further improved.

• Further applications of proposed planar surface detection method
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The proposed planar surface detection method in Chapter 5, besides being used

in depth SR technique, also can be used in depth map enhancement, for example,

large size hole filling problems in Kinect. With the analytic surface equations, the

big holes in planar surfaces can be filled. In addition, this method can be modified

in order to work on the 3D point cloud data for point cloud segmentation.
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Appendix A

List of publications

1. Zhi Jin, Tammam Tillo, Chao Yao, Jimin Xiao, and Yao Zhao, Virtual View As-

sisted Video Super-Resolution and Enhancement, IEEE Transactions on Circuits

and Systems for Video Technology, Volume:PP , Issue: 99, doi:10.1109/TCSVT.2015.2412791

2. Tammam Tillo, Zhi Jin and Fei Cheng, Super-resolution of depth map exploiting

planar surfaces, Pacific-Rim Conference on Multimedia, PCM 2015

3. Zhi Jin, Tammam Tillo, and Lei Luo, Quality Enhancement of Quality-asymmetric

Multiview Plus Fepth Video By Using Virtual View, IEEE International Confer-

ence on Multimedia and Expo, ICME 2015

4. Zhi Jin, Tammam Tillo, and Fei Cheng, Depth-map Driven Planar Surfaces De-

tection, IEEE Visual Communications and Image Processing, VCIP 2014

5. Zhi Jin, Tammam Tillo, and Fei Cheng, Planar Surfaces Detection on Depth

Map Using Patch Based Approach, IEEE 3rd Global Conference on Consumer

Electronics, GCCE 2014

6. Zhi Jin, Tammam Tillo, and Fei Cheng, Accurate Planar Surfaces Detection Using

Depth Map, European Conference on Computer Vision, ECCV 2014

7. Zhi Jin,Tammam Tillo, EngGee Lim, Zhao Wang and Jimin Xiao, Novel Wire-

less Capsule Endoscopy Diagnosis System with Adaptive Image Capturing Rate,

In Proceedings of the International Conferenceon Computer Vision Theoryand

Applications, VISAPP 2013

8. Zhi Jin, Jimin Xiao, Tammam Tillo and Fei Cheng, 3D Video Depth map Quan-

tization based on Lloyds Algorithm, 11th IEEE Signal Processing Society IVMSP
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Workshop, 2013

9. Fei Cheng, Jimin Xiao, Zhi Jin and Tammam Tillo, Video Error Concealment of

P-frame Using Packets of the Following Frames, The 8th International Conference

on Signal Image Technology and Internet Based Systems, 2013
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