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Abstract High-quality 3D content generation requires

high-quality depth maps. In practice, depth maps generated

by stereo-matching, depth sensing cameras, or decoders,

have low resolution and suffer from unreliable estimates

and noise. Therefore, depth enhancement is necessary.

Depth enhancement comprises two stages: depth upsam-

pling and temporal post-processing. In this paper, we

extend our previous work on depth upsampling in two

ways. First we propose PWAS-MCM, a new depth

upsampling method, and we show that it achieves on

average the highest depth accuracy compared to other

efficient state-of-the-art depth upsampling methods. Then,

we benchmark all relevant state-of-the-art filter-based

temporal post-processing methods on depth accuracy by

conducting a parameter space search to find the optimum

set of parameters for various upscale factors and noise

levels. Then we analyze the temporal post-processing

methods qualitatively. Finally, we analyze the computa-

tional complexity of each depth upsampling and temporal

post-processing method by measuring the throughput and

hardware utilization of the GPU implementation that we

built for each method.

Keywords Depth enhancement � Depth upsampling �
Benchmark � Temporal filter � Image plus depth �
Parameter space search � Design space exploration

1 Introduction

1.1 3D-TV

Following the successful introduction of color four decades

ago, and high definition in the last decade, many

researchers are currently exploring opportunities for 3-di-

mensional television (3D-TV) systems [16]. In such sys-

tems, depth maps play an important role for both 3D

content generation and transmission.

In 3D content generation, depth maps can be obtained

from a depth sensing (ToF) camera or an infrared-based

structured-light sensor such as Primesense [29], that is

rectified and upsampled using a color RGB camera as

guiding signal [6, 11, 47]. Furthermore, depth can be

computed from the 3D depth cues that are present in

monoscopic video [49]. The resulting depth map is then

used to generate virtual views from the original color

image with depth image-based rendering [13, 48]. Alter-

natively, when two viewpoints of the same scene are

available depth can be computed with a stereo matcher

[34].

1.2 3D standards

For the transmission of 3D content, Fehn et al. [13] first

proposed the 2D-plus-depth format. In this format mono-

scopic video and per pixel depth information are encoded

as separate streams and jointly transmitted. Since depth

maps are spatially smooth everywhere, except at sparsely
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located depth transitions, they are strongly compressed.

More recently other standards for multiview video coding

plus depth (MVD) have been proposed in which depth

maps are jointly encoded with their corresponding color

images [37]. This provides more flexibility for free view-

point television (FTV) and significantly reduces the trans-

mission bandwidth.

1.3 Requirements for depth maps

For high-quality 3D content generation, a high-quality

depth/disparity map is required.1 We will use the terms

depth and disparity interchangeably. A high-quality depth

map should meet the following subjective requirements:

1. It should be smooth within the interior of objects.

2. Depth transitions should be sharp at object boundaries.

3. Depth transitions should be well aligned with object

boundaries as visible in the color image.

4. It should have the same resolution as the color image it

corresponds to.

5. It should be temporally stable.

Figure 1 shows what happens when requirements 1–3 are

not satisfied. Furthermore, when requirement 4 is not met,

we cannot render a new view. Cheng et al. [7] and Vosters

et al. [44] have shown that spatiotemporal coherence is a

key factor in generating high-quality perceptually satis-

factory virtual images. Therefore, requirement 5 must be

satisfied.

1.4 Depth errors

Unfortunately most depth maps do not meet these

requirements. Depth maps from a ToF camera or a struc-

tured light depth sensor typically have a much lower res-

olution than HD. For instance, the Primesense sensor [29]

outputs 640 9 480 resolution depth maps, whereas a cur-

rent HD TV operates at a resolution of 1920 9 1080. In

addition, depth sensing cameras are typically sensitive to

the reflectivity of objects. Their depth maps contain sig-

nificant amounts of noise in areas corresponding to objects

with low reflectance [2]. Furthermore, stereo matchers and

2D-to-3D converters compute the depth map at a low

resolution to reduce the computational burden and achieve

real-time frame rates. Their depth maps often have con-

siderable areas with unreliable depth estimates, and depth

edges may not be well aligned with the color image.

In 3D transmission and coding a low-quality depth map

that is obtained by a depth sensing camera, 2D-to-3D

conversion, or stereo-matcher, generally requires

Fig. 1 Artifacts in depth image-based rendering. The first and second

row show the left disparity map, which has been degraded, and the

corresponding reconstructed left color image, respectively. The

ground-truth depth and color images of this stereo pair can be

downloaded from the Middlebury stereo vision website [33]. We

obtained the reconstructed views by warping the right color image to

the left color image with the degraded left disparity map. We marked

the occluded areas in pink. These areas are computed from the

ground-truth left and right disparity images. a Ground truth depth map

and interpolated view. b Noisy depth map (PSNR 24.1 dB) and

interpolated view. Texture in sharp details have disappeared.

c Blurred depth map (gaussian filter with standard deviation 10)

and interpolated view. Edges are blurred and distorted. d Misaligned

depth map and interpolated view. The depth map was shifted to the

left and to the top by 20 pixels. This causes ghosting and distorted

objects

1 A depth map contains a measure for the distance of an imaged point

(pixel) to its corresponding point in 3D space along the camera’s

optical axis. Conversely, a disparity map indicates the horizontal shift

between two corresponding pixels in the two views of a parallel stereo

camera. When the intrinsic and extrinsic camera parameters are

known depth can be converted into disparity and vice versa.
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upsampling and temporal post-processing prior to trans-

mission. Temporal post-processing removes temporal

fluctuations and thereby improves the coding efficiency,

and prevents visual fatigue and eyestrain [8]. Compression

introduces blocking artifacts, mosquito noise and edge

blurring. These artifacts need to be removed at the recei-

ver’s decoder by a depth enhancement filter to obtain a

high-quality virtual view with depth image-based

rendering.

Removing compression artifacts from depth maps to

improve the visual quality of rendered virtual views is a

well studied topic. State-of-the-art solutions include [9] and

[19]. These solutions enhance a decoded depth map that

has the same resolution as the transmitted color image.

Klimaszewski et al. [21] have shown that a higher com-

pression rate without the loss of quality in the rendered

virtual view can be attained by downsampling the depth

map prior to encoding. This requires an upsampling filter

after decoding. Upsampling filters for decoding that

simultaneously sharpen depth edges have been proposed in

[10, 18, 27, 35]. However, these filters are solely designed

to remove compression artifacts, but do not take into

account image noise and other inaccuracies that arise from

depth estimators for 2D-to-3D conversion, stereo-matchers

or depth sensing cameras. Since we focus on depth video

post-processing rather than compression artifact reduction

in particular, we will not include them in this paper.

In MVD coding, multiview depth and color images can

be used to enhance the depth maps. For two views Mueller

et al. [25] propose an adaptive joint trilateral weighted

median filter that exploits multiview depth images by

extending the joint bilateral filter with a confidence weight.

This weight is computed from a left–right depth consis-

tency check and cross-correlation in the color images. In

[26] Mueller et al. extend their previous work in [25] with a

hybrid recursive post-processing method and motion esti-

mation to obtain spatiotemporally stable depth images.

However, in this paper we limit our scope to one color

view and its corresponding depth map, since for depth-

sensing cameras, the 2D-plus-depth format and 2D-to-3D

converters multiview information is unavailable. Hence,

we will not include Mueller et al. in our benchmark.

1.5 Depth enhancement

Depth enhancement may be decomposed into two stages: a

depth upsampling stage (DU) and a Temporal Post-Pro-

cessing (TPP) stage. In the first stage the depth map of a

single image is upsampled, denoised and aligned with the

edges in the high-resolution color image. In the second

stage, temporal stability is enforced with a temporal post-

processing filter.

Depth upsampling is a widely studied topic for which

many techniques have been proposed. These can be

roughly classified into optimization, segmentation, and

filter-based techniques. In optimization-based depth

upsampling a cost function is formulated that generally

consists of various energy terms which provide a tradeoff

between depth alignment with the high-resolution color

image, spatiotemporal coherence and fine detail preserva-

tion. These cost functions can be minimized with iterative

optimization techniques such as Markov Random Fields

(MRF) [28, 38], Conjugate Gradient (CG) [11], iterative

cost volume filtering [47], and quadratic optimization [36].

These methods have a high computational complexity and

require a large amount of memory. Hence they are not

suitable for implementation in real-time 3D-TV systems. In

segmentation-based depth upsampling methods (Soh et al.

[38], Tallon et al. [39] and Kim et al. [20]), the color and

bicubicly upsampled depth images are jointly segmented

and regions where depth and color are inconsistent, are

corrected. Generally these approaches require an additional

post-processing step to remove the false depth transitions,

introduced by segmentation. Conversely, filter-based

techniques avoid the high computational cost and memory

requirements of iterative optimization, and allow for

scanline-based implementations. Therefore, these methods

are potential candidates for implementation in embedded

real-time devices with limited resources for 3D-TV.

Temporal Post-Processing on the other hand has

received significantly less attention in literature. Like depth

upsampling, temporal post-processing methods can be

classified in optimization and filter-based depth upsam-

pling methods. Again we limit our scope only to filter-

based methods. In spite of its importance for high-quality

3D video, there has never been a fair attempt to quantita-

tively assess the performance of temporal post-processing

methods on large datasets. Therefore, in this paper we

extend our previous work on depth upsampling in [45] to

temporal post-processing, by thoroughly benchmarking and

surveying the state-of-the-art filter-based temporal post-

processing methods on depth accuracy (Eq. 20) and com-

plexity for upscale factors U 2 f8; 4; 2g, and two simulated

Gaussian noise settings, i.e., (n 2 f0:05; 0:1g), in the noise

model of Edeler et al. [12].

The remainder of the paper is organized as follows. In

Sect. 2, we introduce a new efficient depth upsampling

method, and we evaluate its performance on depth accu-

racy with the other efficient depth upsampling methods that

we have evaluated in our previous work [45]. Section 3

describes the state-of-the-art methods for temporal post-

processing. Then Sect. 4 describes the test set, the evalu-

ation metrics and the benchmark setup. Next Sect. 5 pre-

sents the results of the benchmark for all state-of-the-art
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temporal post-processing algorithms. Finally, Sect. 7 con-

cludes the paper.

2 Depth upsampling

In our previous work [45], we gave an overview and

evaluation of all relevant state-of-the-art efficient depth

upsampling methods. In this section, we extend this work

by proposing PWAS-MCM, which is a combination of two

existing techniques: the Multiscale Color Measure (MCM)

(Min et al. [24]) and PWAS (Garcia et al. [15]).

PWAS-MCM upsamples depth images with a factor that

is a power of 2. First the low-resolution depth map d is

sparsely upsampled with factor U. Then the sparse depth

map is filled in L steps according to the algorithm described

in Algorithm 1. Note that PWAS-MCM is recursive, i.e., at

step l we include the depth values that have already been

computed in steps l� lþ 1. The color guidance image Il at

step l is computed by convolving the input color image I

with Gaussian low-pass filter kernel Grl
LPF

which scale is

given by

rlLPF ¼ r1LPF � l if l ¼ 1; . . .; L� 1

0 if l ¼ 0

�
; ð1Þ

where r1LPF is a parameter that can be specified by the user.2

The function for step 2 in Algorithm 1 is given by

f p; Il;B;D;Rl
� �

¼
P

q2Nðp;RlÞ BqGrsðp� qÞGrr Ip � Iq
� �

Cl
qDqP

q2Nðp;RlÞ BqGrsðp� qÞGrr Ip � Iq
� �

Cl
q

;

ð2Þ

where

Cl
p ¼ Grc rlDp

� �
;

rlDp ¼ Dpþuly
� Dp�uly

;Dpþulx
� Dp�ulx

h i ð3Þ

denotes the credibility weight, ulx ¼ ½2lþ1; 0�T ,
uy ¼ ½0; 2lþ1�T ,

Nðp;RÞ ¼ fq j jjp� qjj1 �R ^ q 2 Z2g;

GrðxÞ ¼ exp � jjxjj22
2r2

 !
;

ð4Þ

d denotes the low-resolution input depth image, D is a

high-resolution depth image that gets filled in L steps, Rdu

is the kernel radius for depth upsampling, Ip is a vector

containing the R, G and B color channel of pixel p in the

input guidance image, B is a binary indicator image, and

GrrðxÞ and GrsðxÞ denote the negative exponential range

and domain filter kernel,3 respectively.

Algorithm 1 Multiscale color measure framework for
PWAS-MCM. d is the low resolution input depth image, D
is a high resolution depth image that gets filled in L steps,
Vp and Bp are binary indicator images at pixel location p,
Il denotes the color guidance image at step l, Rl is the ker-
nel radius at step l, Rdu is the kernel radius at step l = 0,
U is the upscale factor which must be a power of 2, mod is
the modulo operator that when applied to vectors operates
on each element independently, and Il = I ∗ Gσl

LPF
denotes

convolution of each independent R, G and B channel in the
color guidance image with a Gaussian kernel of scale σl

LPF
(Eq. 1).
1: procedure MCM(I, d)
2: Ṽp ← 1, ∀p ∈ {k |kmod U = 0}
3: Ṽp ← 0, ∀p ∈ {k |kmod U �= 0}
4: L ← log2(U)
5: l ← L − 1
6: Dp·U = dp
7: while ( l ≥ 0 ) do
8: Il ← I ∗ Gσl

LPF

9: V ← Ṽ
10: Rl ← 2l+1Rdu

11: for ( p ∈ {
k |kmod 2l = 0

}
) do

12: Dp ← f p, Il, B, D, Rl
)

� See Eq. 2
13: Ṽp ← 1
14: end for
15: l ← l−1;
16: end while
17: DPWAS-MCM ← D
18: end procedure

In contrast to JBU, PWAS and PWAS-MCM compute a

credibility map that contains a credibility weight Cp for

each pixel p in the depth image. This credibility map has

low values on and around depth transitions and noise.

Consequently, misaligned and noisy pixels around a depth

transition are discarded. Hence, the output depth map

features sharp edges and texture copying artifacts are

suppressed. In addition, MCM prevents the aliasing arti-

fact,4 by prefiltering the color guidance image prior to each

upsampling step.

2 Note that we clip the radius of the Gaussian low-pass filter at 3rlLPF.

3 Note that in this paper we implement the negative exponential

function as: GrðxÞ ¼ exp �min
jjxjj22
2r2 ; �
� �� �

, where � is the maximum

value of the argument in the negative exponential. In our implemen-

tation we set � ¼ 708. We clip
jjxjj22
2r2 to prevent undefined output pixels,

which occur when all weights in the kernel become zero due to

underflow. Underflow does not occur in the regular joint bilateral

filter since its center weight is always equal to 1; however, for depth

upsampling and temporal post-processing this is generally not the

case. Consider for example, the range kernel of Eq. 9. When q ¼ p,
then Ip;n does not necessarily have to be equal to Iq;n�1 and therefore

all kernel weights could still underflow.
4 Aliasing artifacts in depth upsampling occur during the range

weight computation when the color guidance image is sparsely

sampled without being properly prefiltered first [32].
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Table 1 ranks for each tested upscale factorU 2 f8; 4; 2g
and two simulated noise levels n 2 f0:05; 0:1g, the top 3

methods described in Vosters et al. [45] including PWAS-

MCMon depth accuracy5 In contrast to our previous work in

[45] where we simulate depth noise as spatially invariant

white Gaussian noise, in this workwe simulate noisewith the

time-of-flight (ToF) based noise model of Edeler et al. [12].

Edeler et al. assume that depth noise is spatially variant and is

inversely proportionally to the intensity of the incident light

on the sensor. Thismodel ismore accurate because it is based

on the underlying physical noise model of a ToF depth

sensor.We introduce Edeler et al.’s noise model in Sect. 4.1.

For each benchmark method we perform a parameter

space search to find the optimum set of parameters that

maximize the average depth accuracy over 12 test images for

each upscale factor and noise level individually. The

parameter space for PWAS-MCM is computed as the set of

all possible parameter combinations of rr, rs, rc, B and r1LPF
within the ranges specified in Table III of Vosters et al. [45].

The results show that for all upscale factors and noise

levels, PWAS-MCM has rank 1, except for (U ¼ 2,

n 2 f0:05; 0:1g) where it has rank 2. Furthermore, Table 1

shows that for n ¼ 0 the difference between PWAS-MCM

and the rank 2 method PWAS is 0.76 dB for U ¼ 2. This

difference gradually gets smaller when U increases. In

contrast, for n 2 f0:05; 0:1g the difference between all top

three methods is small.

Due to the credibility weight, and recursive application

of PWAS-MCM, misaligned and noisy pixels around depth

transitions are ignored. Therefore, the output depth image

is smooth, contains very few texture copy artifacts and has

sharp edges. In addition, the prefilter in the MCM frame-

work reduces aliasing artifacts in the upsampled depth

image. This is shown in Fig. 2 in which we qualitatively

compare PWAS-MCM, JBU-MCM, PWAS and WMF for

U ¼ 4, and n 2 f0; 0:05; 0:1g for the aloe image. The

upsampled depth images for each method in Fig. 2 were

computed with the set of parameters that gave the maxi-

mum average depth accuracy over all test images for each

selected configuration of U and n:

3 Temporal post-processing

Several methods exist for temporal post-processing. Choi

et al. [8] propose a 3D-JBU filter (Sect. 3.1) which extends

the kernel of a spatial (upsampling) filter to the temporal

domain. In contrast with regular JBU (Kopf et al. [22]), the

filter kernel of 3D-JBU comprises not only the current

frame, but also the two previous frames.

Both Vosters et al. [44] and Richardt et al. [31] propa-

gate the output depth of the previous frame to the current

Table 1 Benchmark for depth upsampling obtained by a full parameter space search

(U = 2, n ¼ 0 ) (U = 2, n ¼ 0:05 ) (U = 2, n ¼ 0:1 )

Rank Method DA Rank Method DA Rank Method DA

1 PWAS-MCM 37.77 1 NAFDU 34.12 1 PWAS 33.37

2 PWAS 37.01 2 PWAS-MCM 34.10 2 PWAS-MCM 33.37

3 WMF 36.35 3 PWAS 34.10 3 NAFDU 33.30

(U = 4, n ¼ 0 ) (U = 4, n ¼ 0:05 ) (U = 4, n ¼ 0:1)

Rank Method DA Rank Method DA Rank Method DA

1 PWAS-MCM 34.42 1 PWAS-MCM 32.35 1 PWAS-MCM 31.71

2 PWAS 34.16 2 PWAS 32.19 2 JBU-MCM 31.58

3 WMF 33.85 3 JBU-MCM 32.18 3 PWAS 31.57

(U = 8, n ¼ 0) (U = 8, n ¼ 0:05) (U = 8, n = 0.1)

Rank Method DA Rank Method DA Rank Method DA

1 PWAS-MCM 32.18 1 PWAS-MCM 30.64 1 PWAS-MCM 30.01

2 PWAS 31.93 2 JBU-MCM 30.52 2 JBU-MCM 30.00

3 JBU-MCM 31.69 3 WMF 30.33 3 NAFDU 29.81

Top 3 ranking of all efficient depth upsampling methods described in Vosters et al. [45], and PWAS-MCM. We rank all methods on depth

accuracy (DA) for upscale factors U 2 f8; 4; 2g and noise levels n 2 f0; 0:05; 0:1g. Depth accuracy is computed over all image regions as the

PSNR between an upsampled and ground-truth depth image in dB. The images for n ¼ 0 were taken from our experiment in [45] in which we

filled in the black pixels in the depth image

5 In our previous work, we compute the depth accuracy for an

upsampled depth image as the PSNR between said image and its

corresponding ground-truth depth image.
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frame with a joint bilateral propagation filter (JBPF), and

average the two with a falloff factor. The quality of the

output depth map depends largely on the temporal propa-

gation filter. In Sect. 3.2, we describe three methods for

temporal propagation.

Alternatively, Fu et al. [14] propose a 3-tap recursive

temporal filter to filter stationary image areas only. First

they compute the structural similarity (SSIM) between

pixel p in the color images of the current frame n and pixel

p in frame n� 1 and n� 2: Then the output depth at pixel

p in the previous frame is multiplied by a weight, which is

computed from the per pixel SSIM, and averaged with the

depth at pixel p in the current frame. However, since this

filter only has a 1 by 1 spatial aperture, it is not robust to

noise. Moreover, the filter does not work when camera and/

or object motion are present. Therefore, we will not include

it in our temporal post-processing benchmark.

Furthermore, Kim et al. [20] estimate the motion of each

pixel in the color image with a block matcher. Then if a

pixel is stationary in both the previous and the current

frame the depth of the previous frame is copied to that

pixel, otherwise the upsampled depth of the current frame

is kept. This filter enforces temporal consistency only in

stationary image regions, but fails during object and cam-

era motion. Hence, we will not include it in our temporal

postprocessing benchmark.

Min et al. extend their weighted mode filter to the

temporal domain, by temporally filtering the histogram

([24], Eq. 56) for each pixel with a temporally recursive

motion-compensated 3-tap filter. However, this approach is

far from practical, since it either requires memory for

storing at least two 255-bin histograms for each pixel in an

image, or recomputing the histograms on the fly. The for-

mer situation requires too much memory, while the latter is

computationally just too complex.

In Sects. 3.1, 3.2, 3.3 and 3.4 we describe all methods

that we include in our temporal post-processing benchmark

of Sect. 5. Additionally, Table 2 gives an overview of

these methods, their parameters and a reference to the

equations that define them.

(a) Input (ξ=0). (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

WMF [23]. PWAS [15]. PWAS-MCM.

Input (ξ=0.05). JBU-MCM [25]. PWAS [15]. PWAS-MCM.

Input (ξ=0.1). JBU-MCM [25]. PWAS [15]. PWAS-MCM.

Fig. 2 Qualitative comparison of the top 3 depth upsampling

methods in the ranking of Table 1 for U ¼ 4 and n 2 f0; 0:05; 0:1g
on the aloe image. This image shows that in PWAS and JBU-MCM

guidance image textures get copied near depth edges, unlike PWAS-

MCM. While WMF produces the sharpest edges, quantization

artifacts appear. Overall, it can be seen that PWAS-MCM offers a

good tradeoff between sharp depth transitions, strong noise suppres-

sion and no texture copy artifacts. For a good comparison, these

(vector) images should be viewed in the electronic version of the

paper, in which they can be enlarged to their original resolution by

zooming in

6 See Eq. 7 in Vosters et al. [45] for the equivalent in our notation.
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3.1 3D joint bilateral upsampling (3DJBU)

The 3D-JBU filter of Choi et al. [8] is given by

3DJBUp;n ¼
1

j3DJBUp

XNT

k¼0

X
q#2Mðp#Þ

Grsðp# � q#Þ�

GrrðIp;n � Iq0;n�kÞdq#;n�k;

j3DJBUp ¼
XNT

k¼0

X
q#2Mðp#Þ

Grsðp# � q#Þ�

GrrðIp;n � Iq0;n�kÞ;

ð5Þ

where n is the frame number and NT is the temporal win-

dow size,

Mðp#Þ ¼ fj j jjbp#e � jjj1 �Rtp ^ j 2 Z2g;
p# ¼ p =U;

q0 ¼ q# � U
ð6Þ

where U is the upsample factor, b�e is the round operator

applied to each vector element, and Rtp is the temporal

filter kernel radius. Note that p# may be non-integer, while

q# is integer by definition. Figure 3a shows how Eqs. 5 and

6 are defined on the low and high-resolution grids. Finally,

the output depth image at frame n is

DOUT
p;n ¼ D3DJBU

p;n : ð7Þ

3.2 Joint bilateral depth propagation

Joint bilateral depth propagation methods apply a recursive

temporal post-processing method to obtain a temporally

stable depth map. They compute the output depth image at

frame n as

DOUT
p;n ¼ DPWAS�MCM

p;n � ð1� /Þ þ DTP
p;n � /; ð8Þ

Table 2 The various temporal

post-processing methods that

we have included in our

benchmark together with their

corresponding equation

numbers (column 2) and

parameters (column 3)

Method name Equation nos. Parameters No. parameter configs.

3DJBU 5–7 rs, rr, NT 6000

JP 8, 9 rs, rr, / 1000

JPMC-BROX 8, 10 rs, rr, f, / 13,000

JPMC-3DRS 8, 10 rs, rr, f, / 13,000

JPMC?-BROX 8, 13 rs, rr, rd, rf , / 100,000

JPMC?-3DRS 8, 13 rs, rr, rd, rf , / 100,000

MCPF-3DRS 16–18 rs, rr, rd, / 10,000

RICHARDT 14, 15 rs, rr, rd, rf , / 100,000

NULL 2 n.a. 1

A method that has the suffix BROX or 3DRS uses Brox et al.’s [3] or de Haan et al.’s [17] motion estimator.

Column 4 shows for each method the total number of parameter configurations to test. This number can be

computed by multiplying the number of values per parameter of all parameters for a designated method.

The parameter range for each parameter is listed in Table 5

(a) (b)

Fig. 3 a Operation of Eqs. 5

and 7 on the low and high-

resolution grids for NT ¼ 1.

b Depiction of how Eqs. 9–16

are defined on the grids of the

current and previous frame
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where DPWAS�MCM
p;n is the upsampled depth image com-

puted by PWAS-MCM7 (Eq. 2), DTP
p;n is the temporally

propagated version of DOUT
p;n�1, / 2 ½0; 1� is a constant, and

TP is one of the temporal propagation methods in {JP,

JPMC, JPMC?} which we will describe next.

3.2.1 Joint propagation (JP)

For key-frame propagation Varekamp et al. [42] compute a

temporal prediction of the next depth image from the

previous one with a joint bilateral propagation filter (JP)

given by

DJP
p;n ¼

1

jJPp

X
q2Nðp;RtpÞ

Grsðp� qÞGrrðIp;n � Iq;n�1ÞDOUT
q;n�1;

jJPp ¼
X

q2Nðp;RtpÞ
Grsðp� qÞGrrðIp;n � Iq;n�1Þ;

ð9Þ

where DOUT
q;n�1 is the output depth image at the previous

frame, and NðpÞ is as defined in Eq. 4, except that Rdu

should be replaced by the temporal filter kernel radius Rtp.

3.2.2 Joint propagation motion compensation (JPMC)

Cao et al. [4] proposed to extend Eq. 9 with motion com-

pensation according to

DJPMC
p;n ¼ 1

jJPMC
p

X
q2Nðp;RtpÞ

Grsðp�qÞG�
rrðIp;n� Iq;n�1ÞDOUT

q;n�1;

jJPMC
p ¼

X
q2Nðp;RtpÞ

Grsðp�qÞG�
rrðIp;n� Iq;n�1Þ;

G�
rr
ðxÞ ¼ exp �jjxjj22=ð2r2Þ

� �
if jjxjj22\f2

0 otherwise;

(

ð10Þ

where

p ¼ bpþMp;ne ð11Þ

is the motion-compensated version of pixel p, and Mp;n is

the motion vector estimated at pixel p in image In with

image In�1 as reference. When jjIp;n � Iq;n�1jj22 � f2;
8q 2 NðpÞ, all kernel weights are zero, hence the output

pixel is undefined. Cao et al. do not provide a solution for

this particular case. Therefore, in this case we set

DJPMC
p;n ¼ DOUT

q̂;n�1; ð12Þ

where

q̂ 2 k j jjIp;n � Ik;n�1jj22 � jjIp;n � Il;n�1jj22
� �

^
n

k; l 2 Nð�p;RtpÞ g:

3.2.3 Joint propagation motion compensation plus

(JPMC?)

Richardt et al. [31] go one step further, and compensate

each kernel pixel for motion. Their temporal propagation

filter is given by

DJPMCþ
p;n ¼ 1

jJPMCþ
p

X
q2Nðp;RtpÞ

Grsðp�qÞGrr Ip;n� Iq;n�1

� �
�

GrdðDp;n�Dq;n�1ÞGrf ðMq;nÞDOUT
q;n�1;

jJPMCþ
p ¼

X
q2Nðp;RtpÞ

Grsðp�qÞGrr Ip;n� Iq;n�1

� �
�

GrdðDp;n�Dq;n�1ÞGrf ðMq;nÞ;
ð13Þ

where p and q are the motion-compensated version of pixel

p and q, respectively (Eq. 11), in the previous frame.

Richardt et al. added the additional term

GrdðDp;n � Dq;n�1Þ, to prevent blurring across depth edges.

3.3 Richardt (RICHARDT)

Richardt et al. [31] propose a depth enhancement

scheme that upsamples a low-resolution depth image, fol-

lowed by a spatiotemporal filtering scheme according to

DOUT
p;n ¼ DSF

p;n � ð1� /Þ þ DJPMCþ
p;n � /; ð14Þ

where

DSF
p;n ¼

1

jSFp

X
q2Nðp;RtpÞ

Grsðp� qÞGrr c ðIp;n � Iq;nÞ
� �

�

GrdðDMRFI
p;n � DMRFI

q;n ÞDMRFI
q;n ;

jJPMCþ
p ¼

X
q2Nðp;RtpÞ

Grsðp� qÞGrr c ðIp;n � Iq;nÞ
� �

�

GrdðDMRFI
p;n � DMRFI

q;n Þ;
c ¼ max 0;min 2� jjMq;njj2=rf ; 1

� �� �
;

ð15Þ

is a filter that is applied to the upsampled depth image,

DJPMCþ
p;n is the temporal prediction given by Eq. 13, DMRFI

p;n

is a depth image that is upsampled by the multi-resolution

fill-in (MRFI) approach that was proposed by Richardt

et al. [31],8 and rf is the same Gaussian scale parameter as

in Eq. 13.

7 We selected PWAS-MCM as depth upsampling method, because it

achieves the best performance over all upsampling factors and noise

levels in our parameter space analysis of Sect. 2.

8 See Table 3 in Vosters et al. [45] for a description of the MRFI

algorithm in our notation.
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In contrast with the depth enhancement scheme in Eq. 8,

Richardt’s scheme employs an additional spatial filter on

the upsampled depth image prior to adding it to the tem-

poral prediction of the previous frame. Moreover, instead

of PWAS-MCM, Richardt et al. propose MRFI to upsam-

ple the low-resolution depth image.9

In time-of-flight cameras fast motion leads to increased

noise levels. Therefore, the range kernel in the spatial filter

of Eq. 15 is augmented with c. The result is that in image

areas with fast motion, i.e., c ! 0, the range kernel of the

spatial filter will effectively be disabled, hence depth will

be smoothed across color edges which leads to additional

noise suppression [31].

3.4 Motion-compensated post-filtering (MCPF)

Whereas Cao et al. and Richardt et al. apply motion-

compensated filters for depth propagation, Lie et al. [23]

take a different approach in their key-frame propagation

framework. Instead of applying motion-compensated

propagation filters, they first apply block motion compen-

sation to compensate the upsampled previous depth image

with the motion vectors that are estimated on the current

guidance image taking the previous guidance image as a

reference

DMC
p;n ¼ DDU

p;n�1; ð16Þ

where p, is the motion-compensated pixel p in the previous

frame n� 1 (Eq. 11). The motion vectors are computed

with a blockmatcher.10 Then the propagated depth image is

post-filtered according to

DMCPF
p;n ¼ 1

jMCPF
p

X
q2Nðp;RtpÞ

Grsðp� qÞGrrðIp � IqÞ

GrdðDMC
p;n � DMC

q;n ÞDMC
q;n ;

jMCPF
p ¼

X
q2Nðp;RtpÞ

Grsðp� qÞGrrðIp � IqÞ

GrdðDMC
p;n � DMC

q;n Þ:

ð17Þ

This post-filter is a trilateral filter which contains in addi-

tion to the Gaussian range and domain kernel, a third

Gaussian depth kernel. This kernel computes a weight

based on the difference in depth between a kernel pixel q

and its center p. Finally, the output depth image can be

obtained by substituting DMCPF
p;n for DTP

p;n in Eq. 8.

3.5 Baseline (NULL)

We include a baseline method in our benchmark that

employs depth upsampling only, without temporal propa-

gation. As depth upsampling method we select PWAS-

MCM (Sect. 2). Then the output depth image at frame n

becomes

DOUT
p;n ¼ DPWAS�MCM

p;n : ð18Þ

4 Benchmark setup

In Sect. 5, we benchmark all temporal post-processing

methods shown in Table 2 for various upscale factors and

noise levels. In this section, we describe the benchmark

setup including the collection and preparation of the test

sequences (Sect. 4.1), the evaluation metric (Sect. 4.3), the

parameter ranges (Sect. 4.4) and the simulation platform

(Sect. 4.5).

4.1 Test sequences

We have collected a set of 5 test sequences Tank, Watch,

Tsukuba, Park and Interview. The original Tank and Tsu-

kuba sequences are publicly available at [30] and [41],

respectively. Watch has been produced and is owned by

Dimenco. It can be downloaded from our website [43] and

may be used, published and distributed solely for academic

research purposes. Park and Interview have been exten-

sively used in [4], and the original sequences can be

downloaded as Sequence No. 3 and Sequence No. 4 from

[5], respectively.11 All videos except Interview are com-

puter generated, hence ground-truth depth is available.

Interview was shot with a ZcamTM by 3DV Systems, and

post-processed and enhanced with a manual offline pro-

cedure to ensure that the depth discontinuities align with

the object borders in the color image.

Since we do a parameter space search on video, the

runtime of the experiment will become infeasibly high if

we do not take any precautionary measures. To this end, we

process and evaluate a fragment of 25 consecutive images

with significant motion that we extract from each original

test sequence. Each fragment roughly corresponds to 1 s of

video. Since all images in a shot are statistically similar,

and the average shot length in film and TV typically varies

from 2 to 8 s, the fragments should be long enough to

9 MRFI is analyzed and benchmarked in more detail in section 2.6 of

Vosters et al. [45].
10 In our implementation we use 3DRS.

11 From this website only the original color images can be

downloaded. To acquire the original ground-truth depth maps please

contact the author of [4].
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extrapolate the average depth accuracy of a whole shot. In

addition, we resampled the source depth and color images

of each test sequence12 and cropped them to the target

resolution of 400 by 300. Table 4 provides the frame

numbers of the extracted video fragments, the resolution of

the source images, the resampling factor, the crop amounts,

and a short description of the scene in each test sequence.

Additionally, Fig. 4 shows a snapshot of each sequence and

its corresponding depth image. The color and depth images

of the extracted fragments of sequence Tank, Watch and

Tsukuba, and the depth images of Park and Interview can

be downloaded from our website [43]. Since we do not own

the rights to Park and Interview, we cannot distribute their

color sequences. For a download link of these sequences,

we therefore refer to [5].

We collected a diverse set of image sequences that

contains textured and piecewise smooth image areas.

Additionally, the test sequences contain independent object

motion as well as camera motion. Therefore, we believe

that our test set is representative for general video material.

4.2 Noise model

No ground-truth depth references exist for depth maps

generated by ToF cameras, stereo-matchers, range finders

or 2-D to 3-D converters. Therefore, we have to simulate

low-quality depth images by degrading the ground-truth

source depth images in Table 4.

We degrade depth by downscaling the original ground-

truth depth images with factors U 2 f8; 4; 2g using a Lanc-

zos2 resampling filter. Thenwe simulate depth noisewith the

time-of-flight (ToF) based noise model of Edeler et al. [12],

whomodel noise as spatially variant Gaussian noise ofwhich

the standard deviation for pixel p is given by

rnðpÞ ¼
ffiffiffiffiffiffiffiffiffi
n

I
gray
p

s
: ð19Þ

This model is more accurate than an independent identi-

cally distributed Gaussian noise model, since it is based on

the underlying physical noise model of a ToF depth sensor.

Note that the noise is added to the 8-bit representation of

depth (not disparity), and that data outside the range

[0, 255] are clipped.

(a) tank.                   (b) watch.                  (c) tsukuba.                  (d) park.                 (e) interview.

Fig. 4 Snapshots of the cropped and resampled color and depth

sequences used in the benchmark of Sect. 5. The resampled color and

depth images of sequence a, b and c, and the depth images of d and

e can be downloaded from our website [43]. Since we do not own the

rights to d and e, we cannot distribute their color sequences. For a

download link of these sequences, we therefore refer to [5]. In order

not to violate any personality rights, we have added censor bars to

park and interview. Please note that these censor bars were not present

in the benchmark

Table 3 To avoid overestimating the border effect, for each upsample factor U, we crop the left, right, top and bottom image border for each test

sequence with the amount indicated in the table, prior to computing the depth accuracy

U Crop amount

(#pix.)

% Border pix.

after crop

% Border pix. 1080 p

reference after crop

% Pix. in depth accuracy

computation after crop

8 46 15.5 15.7 53.3

4 22 7.9 8.0 76.0

2 11 3.7 4.0 87.6

12 We have designed a Nyquist resampling filter with Matlab’s

filterbuilder. Furthermore, we have selected a stopband attenuation of

60 dB and a transition band of 20 % of the cutoff frequency. In

addition, to remove ringing, we apply a Hamming window, and we

clip the output of each polyphase filter to the dynamic range within

the filter kernel.
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4.3 Depth accuracy

Unlike Min et al., who use the number of bad pixels, we

quantify depth accuracy by computing the average PSNR

in dB between an upsampled depth image and its corre-

sponding ground-truth depth image over all images in a

sequence as follows:

DA ¼ 10

ðNstop � Nstart þ 1Þ
XNstop

n¼Nstart

log10
D2

maxP
p2DOUT

n
ðDGT

p;n � DOUT
p;n Þ2

 !
;

ð20Þ

whereDGT
p;n is the ground-truth depth image,Dmax ¼ 255 is the

maximum depth value, Nstart ¼ 0 and Nstop ¼ 24 are the start

and stop frame number, respectively. We select PSNR as

metric because large depth errors contribute more to the total

error than small depth errors. In contrast, in the bad-pixel

metric each depth error, regardless of its size, contributes

equally to the total error. Therefore, in our optimization we

prevent large depth errors that can cause annoying artifacts.

Unfortunately no quantitative metrics are available to

assess the quality of a depth video and couple it to the per-

ceptual quality of the rendered views. In Vosters et al. [45]

we used in addition to depth accuracy, also the interpolation

quality (IQ) metric. However, since most of our test

sequences contain just a single view, we cannot compute IQ.

Furthermore, the computation of IQ depends heavily on the

textures in the input depth image. Moreover, in the compu-

tation of IQ we have to either exclude the occluded areas

from the evaluation or apply hole filling. In the former case,

we exclude large portions of the image near edges, while in

the latter case IQ is biased by the hole filling algorithm.

Therefore, in this paper we limit our scope to depth accuracy.

The influence of the border effect for an upsampling

filter depends on the upsampling factor U, kernel radius

Rmax ¼ 7, and image resolution.13 As the image size gets

smaller the percentage of pixels affected by the border

effect gets larger. Since we are working with test sequences

that have resolution of 400� 300, the percentage of pixels

affected by border effect particularly for U ¼ 8 is much

larger than that of a 1080 p reference image. Consequently,

in order not to overestimate the border effect we crop the

left, right, top and bottom borders of the upsampled

(DOUT) and ground-truth (DGT) depth images for each

upscale factor with the amount indicated in Table 3 prior to

computing depth accuracy. In this way, the percentage of

pixels affected by the border effect in our test sequences

will never exceed that of the 1080 p reference image. As a

consequence, Table 3 column 5 shows that for a high

upsample factor we unavoidably use a smaller percentage

of the total number of pixels in the test sequence for

evaluation than for a low upsample factor.

4.4 Parameter space analysis

We perform a parameter space search to find the optimum

parameters for each upscale factor and noise level indi-

vidually. For each method in Table 2 we find the optimum

parameters h� as

h� ¼ argmax
h2H

DAðhÞ; ð21Þ

where h is a parameter vector taken from the parameter

space H of the designated method,

DAðhÞ ¼ 1

jSj
X
s2S

DAðs; hÞ; ð22Þ

where DAðs; hÞ is the depth accuracy of sequence s

obtained with parameter vector h, and S is the set of test

sequences listed in Table 4. We construct each method’s

parameter vector h as the concatenation of all parameters

that belong to said method,14 hence each element of h

Table 4 Test sequence information

Sequence Frame no. Resolution IR
DR

CL CR CT CB Description

Tank 20–44 400 9 300 1
1

0 0 0 0 CGI, fast camera motion, highly textured areas, fine details

Watch 45–70 1920 9 1080 100
319

92 110 1 38 CGI, independent camera and object motion, soft edges, glare

Tsukuba 335–359 640 9 480 50
71

7 44 1 38 CGI, fast camera motion, sharp depth and color edges

Park 95–120 960 9 450 100
159

83 121 1 39 CGI, fast camera motion, fast object motion

Interview 396–420 720 9 576 25
41

1 39 7 45 Real scene, no camera motion, independent object motion

All test sequences are resampled with interpolation factor Ir and decimation factor Dr and cropped by CL;CR;CT ;CB, i.e., the number of pixels

by which the left right, top and bottom image border are cropped, respectively

Note that CR and CB are large enough to remove the border effect of the polyphase filters that occurs on the right and bottom image borders,

respectively

13 For upsample factor U and maximum kernel radius Rmax the width

of the image border which pixels are affected by the border effect is

U � Rmax

14 For example, from Table 2 we see that the h ¼ ðrs; rr; rd;rf ;/Þ
for JPMC?-3DRS.
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represents a parameter, and each parameter can only take

values from the ranges specified in Table 5. Furthermore,

we compute the parameter space H for each method as the

set of all permutations of the parameter values in vector h:

To restrict the runtime of the full parameter space

search, we restrict the number of values per parameter to

10. In order to get a fair sampling of the parameter space

for Gaussian kernels, we logarithmically sample rr, rs, rd,
and rf according to:

rði; a; r0; kÞ ¼ rði� 1; a; r0Þ � ð1þ aÞ � kð1=iÞ if i 2 f1; . . .; 9g
r0; if i ¼ 0

�
;

ð23Þ

where a is a scale factor, r0 is the start value of the scale

parameter and k is the dimensionality of the input vector.15

The depth accuracy as a function of r varies smoothly.

Consequently, for linear sampling the relative difference

between two consecutive rs for small values of r is too

large, while for larger values of r the difference is too

small. In the former case the parameter space sampling is

too coarse and an optimum may be missed, while in the

latter case the sampling is too fine leading to a waste of

computational resources. In contrast, by logarithmically

sampling the parameter space, the Gaussian will cover 1þ
a times more input samples for each new r: Hence no

computational resources are wasted, while still all varia-

tions in depth accuracy are captured.

Prior to temporal post-processing, the low-resolution

depth images are upsampled with PWAS-MCM (Eq. 8)

and MRFI (Eq. 14). For both upsampling methods we

select for each upsample factor and noise level, the opti-

mum parameter configurations found in the depth upsam-

pling benchmark of Vosters et al. [45].

For JPMC, Cao et al. use a motion estimation algorithm

based on block-matching [1]. For JPMC?, Richardt et al.

use the fast optical flow algorithm of Brox et al. [3].

However, the complexity of this optical flow algorithm is

high.16 A cheaper real-time option is the 3DRS motion

estimator17 proposed by de Haan et al. [17].

In the temporal post-processing benchmark, we will

include JPMC and JPMC? with both motion estimators.

3DRS produces a low-resolution motion vector field. For

JPMC and JPMC? we apply block erosion (de Haan et al.

[17]) to upsample the motion vector field to the resolution

of the guidance image. However, for MCPF, which per-

forms block motion compensation, we upsample the low-

resolution motion vector field with nearest neighbor.

We set the parameters of Brox et al.’s optical flow

method to the default parameters in the GPU implemen-

tation of OpenCV. Furthermore, in 3DRS we set the

penalties for the temporal and update candidates to 0:625B2

and 2B2, respectively, where B ¼ 8 is the block size. This

is the default setting in 3DRS. Additionally, for MCPF we

have also experimented with block sizes B ¼ 4 and

B ¼ 16; however, from the results of our parameter space

analysis, we found that B ¼ 4 attains the highest depth

accuracy for all upsample factors and noise levels. There-

fore, in Sect. 5 we will only show the results for MCPF

with B ¼ 4.

Finally, in our implementations, we truncate all pixel j

that fall outside the image border, to the nearest integer

pixel in the image, prior to using it for fetching depth (Dj),

color (Ij) etc.

Table 5 The range of each

Gaussian scale parameter in

column 2 is computed from

Eq. 23 using the values of a, r0
and k in columns 3, 4 and 5,

respectively

Parameter Range a r0 k

rr f4:5; 6:1; 8:2; 11:1; 14:9; 20:2; 27:2; 36:7; 49:6; 67:0g 0.35 1.5 3

rs f1:0; 1:3; 1:7; 2:3; 3:0; 4:0; 5:3; 7:0; 9:2; 12:2g 0.32 0.5 2

rd f1:5; 2:3; 3:4; 5:1; 7:6; 11:4; 17:1; 25:6; 38:4; 57:7g 0.5 1.5 1

rf f1:2; 1:7; 2:5; 3:7; 5:3; 7:7; 11:2; 16:2; 23:4; 34:0g 0.45 0.6 2

f f0:3; 0:5; 0:8; 1:0; 1:3; 1:5; 1:8; 2:0; 2:3; 2:5; 2:8; 3:0; 105g n.a. n.a. n.a.

NT f2; 3g n.a. n.a. n.a.

/ f0:01; 0:050:1; 0:2; 0:3; 0:5; 0:6; 0:7; 0:8; 0:9g n.a. n.a. n.a.

We compute the kernel radius for each method as Rdu ¼ Rtp ¼ minðd3rde;RmaxÞ, where Rmax ¼ 7 is the

maximum kernel radius

15 For example, k ¼ 3 for rr; since Grr accepts a 3-channel input

vector.

16 With OpenCV2.4.2’s GPU implementation of Brox et al.’s optical

flow algorithm, we obtain an average throughput of 0.9 mega pixels

per second (MPPS) on an NVIDIA GTX570 GPU. This throughput is

significantly lower than most of the efficient depth upsampling

methods in Table 6 of Vosters et al. [45]. Hence Brox et al.’s optical

flow method results in a significant overhead.
17 We made an optimized GPU implementation of 3DRS with block

erosion that attains a throughput of 810 megapixels per second

(MPPS) on an NVIDIA GTX570 GPU. This is significantly higher

than the throughput of Brox et al’s optical flow method.
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4.5 Simulation platform

We require a large amount of computational resources for

the parameter space analysis, because the number of

parameter configurations per method is very large (Table 2,

column 4). In addition, we have to evaluate this number of

parameter configurations for 25 frames, 3 upsample factors,

2 noise levels and 5 test sequences for each of the 9

methods in Table 2. Therefore, we run our experiment on a

GPU cluster that consists of 2 PCs, each of which contains

4 NVIDIA GTX 570 GPUs and an Intel i7-960 CPU.

Furthermore, we made an implementation of all benchmark

methods, and the depth accuracy computation (Eq. 20) in

CUDA C?? code.

We divide the computational load in batches. Each batch

computes for a designated method, test sequence, upsample

factor U and noise level n, the average depth accuracy of

each parameter configuration for each frame and saves it to

a text file. During the experiment we continuously run 4 of

these batches in parallel on each PC. Furthermore, since the

motion vectors and upsampled depth images are the same

for all parameter configurations of the temporal filter, we

precompute the motion vectors and upsampled depth

images for each test sequence, upsample factor and noise

level. In this way, we avoid wasting precious computa-

tional resources, and we further reduce the runtime of the

experiment.

By taking advantage of the GPU cluster, we reduced the

runtime of the experiment to 5 days as opposed to 40 days

on a single GPU.

5 Results and discussion

5.1 Quantitative results

The results of the parameter space search described in

Sect. 4 are summarized in Fig. 5 and Table 6. Columns 1–

5 in Fig. 5 show the optimum depth accuracy DAðs; h�Þ
(Eq. 22) of all benchmark methods in a bar plot for each

individual test sequence, upsample factor U and noise level

n. Column 6 shows the optimum average depth accuracy

DAðh�Þ (Eq. 22) over all image sequences. The bars in

columns 1–5 have been ranked in ascending order on

DAðh�Þ. Furthermore, Table 6 complements column 6 of

Fig. 5 by showing DAðs; h�Þ in 2 decimals, and by ranking

all benchmark methods in descending order. In addition, it

shows the optimum value of / (Eq. 8), which denotes the

contribution of the temporal filter.

From Table 6 we see that when n ¼ 0:05 the difference

between the baseline method NULL, that has no temporal

post-processing, and the best performing temporal post-

processing method is 1.07, 1.37 and 1.15 dB for

upsampling factors 2, 4 and 8, respectively. In contrast, for

n ¼ 0:1 these differences are 1.54, 1.16 and 0.94 dB.

Furthermore, we see that all temporal post-processing

methods except 3DJBU consistently attain a higher ranking

than the baseline method. Therefore, we can conclude that

temporal filtering in addition to depth upsampling on

average substantially improves the depth accuracy by more

than 1 dB. Consequently, temporal filtering is important.

Overall JPMC? ranks highest among all temporal post-

processing methods. It is the best performing method for all

depth upsampling factors and noise levels except for U ¼ 4

and n ¼ 0:1 where it is ranked second just after

RICHARDT. This is because JPMC and MCPF only

compensate the kernel position for the motion of the center

pixel, while JPMC? compensates every kernel pixel for

motion individually. Table 6 also shows that MCPF con-

sistently ranks higher than JPMC. Nevertheless, the dif-

ference between the motion-compensated methods is small,

and in most cases less than 0.4 dB. The difference between

the motion-compensated temporal post-processing methods

gets smaller when the upsample factor increases.

On the other hand, the motion-compensated temporal

post-processing methods (JPMC, JPMC?, RICHARDT,

MCPF) consistently have a higher ranking than the non-

motion-compensated methods (JP, 3DJBU) for all upsam-

pling factors and noise levels. The difference in depth

accuracy between the two is significant.

We see that the 3DJBU method performs poorly. It

barely attains a higher depth accuracy than the baseline

method NULL. For U 2 f4; 8g and n ¼ 0:05 the depth

accuracy of 3DJBU is even lower than that of NULL.

3DJBU performs poorly because of alias and texture copy

artifacts that arise from a lack of prefiltering.

Table 6 shows that the differences in depth accuracy

between methods that employ Brox et al’s optical flow

method and 3DRS are negligible. Consequently, instead of

Brox et al’s optical flow method, we can select the cheaper

real-time 3DRS motion estimator with just a marginal loss

in depth accuracy.

The good performance of RICHARDT for (U ¼ 2,

n 2 f0:05; 0:1g) and (U ¼ 4, n ¼ 0:1) is due to the appli-

cation of the additional spatial filter in Eq. 15. In this case,

the additional noise suppression outweighs the poor per-

formance of MRFI, RICHARDT’s depth upsampling

method. Interestingly, this does not hold for U ¼ 8 and

(U ¼ 4, n ¼ 0:05Þ, where RICHARDT even ranks below

the non-motion-compensated method JP.

Table 6 shows that the temporal filtering strength / on

average increases when U increases. A higher / leads to

more temporal averaging and thus more noise suppression.

However, we see that / is generally smaller for JP than for

the other motion-compensated temporal post-processing

methods. This is expected since JP’s temporal prediction is
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Fig. 5 Result of the parameter space search described in Sect. 4.

Each row shows a bar plot of the optimum depth accuracy (DAðs; h�Þ,
Eq. 22) of all methods for each image sequence individually for U 2
f2; 4; 8g and n 2 f0:05; 0:1g. The last column shows a bar plot of the

optimum average depth accuracy over all image sequences (DAðh�Þ,
Eq. 22). The bars in columns 1–5 have been ranked in ascending

order on DAðh�Þ. For each row the tick scale and tick mark frequency

on the y-axis is the same; however, each axis has a different offset.

Furthermore, we have rounded the depth accuracy to one decimal

place, and plotted it right above each bar. To complement this figure,

we show in Table 6 a ranking of all methods in descending order on

DAðh�Þ in 2 decimals. In addition, this Table also shows the optimum

value of / (Eq. 8), which denotes the importance of the temporal

filter
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less accurate in image portions that contain motion. Con-

sequently a high / will introduce more depth errors. While

a large / increases stability, it also causes problems at

scene changes. In that case a scene change detector is

required that resets / to zero only at scene changes.

Moving objects in adjacent frames have the same tex-

tures; however, their depth may decrease\increase if the

objects are moving towards\away from the camera. None

of the temporal post-processing methods take this depth

change into account, and as a consequence, they cannot

properly track the depth change of corresponding depth

areas that have been established by motion estimation. This

causes depth errors and hence reduces the depth accuracy.

Fu et al. [14] and Kim et al. [20] only partially solve this

problem by filtering stationary image areas only. However,

our test sequences have both camera and object motion and

hence both approaches will not work. The inability to track

depth changes in moving objects could explain why the

improvement in depth accuracy of temporal post-process-

ing methods is limited to on average 1dB. We consider the

tracking of depth changes to be outside the scope of this

paper and leave it as future work.

We should note that the depth accuracy metric does not

explicitly take into account perceptual factors such as

flicker which could significantly degrade the image

quality of the rendered multiview video. As a conse-

quence, when we qualitatively compare the output depth

video of the baseline method NULL, which does not apply

a temporal post-processing, with the other benchmark

methods that do apply temporal post-processing, we see

Table 6 Ranking of all methods on the optimum average depth

accuracy over all image sequences (DAðh�Þ, Eq. 22) in descending

order, for upscale factor U 2 f2; 4; 8g and noise levels

n 2 f0:05; 0:1g

Rank Method DAðh�Þ /

(U ¼ 2; n ¼ 0:05)

1 JPMC?-BROX 34.90 0.50

2 JPMC?-3DRS 34.89 0.50

3 RICHARDT 34.77 0.50

4 MCPF 34.59 0.30

5 JPMC-BROX 34.45 0.30

6 JPMC-3DRS 34.40 0.30

7 JP 34.17 0.30

8 3DJBU 33.84 N/A

9 NULL 33.83 N/A

(U = 4, n ¼ 0:05)

1 JPMC?-BROX 33.08 0.60

2 JPMC?-3DRS 33.08 0.60

3 MCPF 32.90 0.50

4 JPMC-BROX 32.76 0.50

5 JPMC-3DRS 32.69 0.50

6 JP 32.36 0.30

7 RICHARDT 32.20 0.60

8 NULL 31.71 N/A

9 3DJBU 31.61 N/A

(U = 8, n ¼ 0:05 )

1 JPMC?-BROX 30.83 0.60

2 JPMC?-3DRS 30.83 0.60

3 MCPF 30.80 0.60

4 JPMC-BROX 30.78 0.50

5 JPMC-3DRS 30.77 0.50

6 JP 30.54 0.50

7 RICHARDT 30.24 0.70

8 NULL 29.68 N/A

9 3DJBU 29.35 N/A

(U = 2, n ¼ 0:1 )

1 JPMC?-BROX 34.17 0.60

2 JPMC?-3DRS 34.17 0.60

3 RICHARDT 34.00 0.60

4 MCPF 33.84 0.50

5 JPMC-BROX 33.69 0.50

6 JPMC-3DRS 33.59 0.50

7 JP 33.28 0.30

8 3DJBU 32.97 N/A

9 NULL 32.63 N/A

(U = 4, n ¼ 0:1 )

1 RICHARDT 31.98 0.60

2 JPMC?-BROX 31.91 0.60

3 JPMC?-3DRS 31.91 0.60

4 MCPF 31.83 0.50

5 JPMC-BROX 31.73 0.50

Table 6 continued

Rank Method DAðh�Þ /

6 JPMC-3DRS 31.68 0.50

7 JP 31.38 0.50

8 3DJBU 30.99 N/A

9 NULL 30.82 N/A

(U = 8, n ¼ 0:1 )

1 JPMC?-3DRS 29.86 0.60

2 JPMC?-BROX 29.86 0.60

3 MCPF 29.82 0.50

4 JPMC-BROX 29.80 0.60

5 JPMC-3DRS 29.79 0.60

6 JP 29.61 0.50

7 RICHARDT 29.57 0.70

8 3DJBU 28.95 N/A

9 NULL 28.92 N/A

The values for DAðh�Þ in this table correspond to column 6 in Fig. 5.

For each method we also show the optimum value of / (Eq. 8), which

denotes the importance of the temporal filter. For methods NULL and

3DJBU / is not applicable (N/A)
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that especially in the presence of noise depth flickering is

far more suppressed by the methods that do apply tem-

poral post-processing. Thus from a perceptual point of

view temporal filtering may be more important than the

depth accuracy metric in Fig. 5 suggests. However, as

mentioned before no quantitative metrics are available

that can measure perceptual quality of depth maps. In

addition, a design space exploration based on a perception

test is infeasible.

Looking at the scale offsets of each individual bar plot

in a row of Fig. 5, we see that the spread in optimum depth

accuracy DAðs; h�Þ is high for each method. This is because

the sample size is small, i.e., we just use 5 test sequences.

Since the sample variance is inversely proportional to the

sample size, we could reduce the spread by including more

test sequences in our benchmark. However, very few

sequences with ground-truth are available and moreover

the runtime of the experiment would become too high.

Nonetheless, we observe the same trends for all upsample

factors and noise levels, namely:

1. Temporal post-processing leads to a substantial

improvement in depth accuracy by roughly 1dB on

average for all upsampling factors.

2. The highest depth accuracy is attained by JPMC?.

3. The motion-compensated temporal filters rank con-

sistently higher than the non-motion-compensated

filters.

4. The performance of the motion estimators Brox and

3DRS for is approximately equal for all temporal post-

processing methods.

Additionally, Fig. 5 shows that the ranking on DAðhÞ (col-
umn 6) largely resembles the ranking in the bar plots for each

individual image (columns 1–5). Whenever the ranking in

the individual bar plots for each image deviates from column

6, the differences in depth accuracy are generally negligible.

Therefore, we believe that increasing the number of test

sequences will not alter the ranking much.

5.2 Qualitative results on real depth data

Figure 6 qualitatively compares JP, JPMC, 3DJBU and

JPMC on real depth images acquired by a time-of-flight

(ToF) depth camera. For this experiment, we use the

depth sequence ms provided by Wang et al. [46] which is

available for download from [40]. This sequence consist

of synchronized 320 by 240 RGB color and depth images

with the same resolution that have been recorded by

ZCam from 3DV Systems. The depth and color images

have been internally aligned by ZCam and the depth has

256 levels. The sequence contains both fast camera and

object motion.

Figure 6 shows that all methods significantly suppress the

noise. However, JP and 3DJBU show severe texture copy

artifacts, in which the texture of the input guidance image

(a) inputguidance.    (b) inputdepth.         (c) JP.               (d) JPMC.            (e) 3DJBU.         (f) JPMC+.

Fig. 6 Qualitative comparison of temporal post-processing methods

on real depth data recorded by a time-of-flight (ToF) camera. Row 1,

2, 3 and 4 show frame no. 116, 143, 163 and 384, respectively, of

depth sequence ms which can be downloaded from [40] (ms). All

sequences have been processed with the same set of parameters:

/ ¼ 0:9, rr ¼ 0:018, rs ¼ 12:1, Rtp ¼ 7, rd ¼ 0:03, rf ¼ 34
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reappears in the output depth image. Furthermore, we see

that the non-motion-compensated temporal post-processing

method JP suffers from severe ghosting in fast moving image

areas. To a lesser extent ghosting is also visible in JPMC and

3DJBU. In contrast, JPMC? does not suffer from ghosting at

all because (1) it compensates each kernel pixel for motion

and (2) it adaptively reduces the amount of temporal filtering

in fast moving image portions. Moreover, the texture copy

artifact does not appear in JPMC?.

6 Complexity

6.1 Throughput

The complexity in big-O notation is the same for each

method, namelyOðð2Rþ 1Þ2Þ, where R is the kernel radius.

Additionally, we measure the complexity by computing the

number ofmegapixels per second18 for the depth upsampling

method PWAS-MCM (Sect. 2), each temporal post-pro-

cessing method, and a pipelined implementation of PWAS-

MCM with any of the temporal post-processing methods.

We implemented PWAS-MCM and all benchmarked

temporal post-processing methods in CUDA C?? code, and

ran it on ourGPUcluster (Sect. 4.5).We aimed for an efficient

and versatile implementation; however, we made no attempt

to squeeze every last drop of performance out of the GPU. In

contrast with the parameter space analysis in which we used

double precisionfloating point arithmetic for accuracy,weuse

single precision arithmetic in our complexity analysis to get a

higher throughput19 at the cost of a lower accuracy.

In addition, we made multithreaded pipelined imple-

mentations of PWAS-MCM, the depth upsampling method,

with any of the other temporal post-processing methods. For

these implementations we ran PWAS-MCM and the tem-

poral post-processingmethod in parallel onGPU1 andGPU2

in our cluster, respectively. Compared to a sequential

implementation, these pipelined implementations require

just twice the amount of resources, but will theoretically

reduce the processing time per frame from Tdu þ T tpp to

maxð Tdu; T tpp Þ, where Tdu and T tpp are the processing times

per frame for PWAS-MCM and one of the temporal post-

processing methods, respectively. The measured times of

Tdu and T tpp include data transfer overhead between CPU

andGPU. Furthermore, themeasured processing times of the

pipelined implementations that we refer to as DU?TPP,

include the data transfer overhead from CPU to GPU and

vice versa, as well as from GPU1 to GPU2. We compute the

throughput by dividing the number of pixels per frame by the

average processing time per frame.

In Fig. 7 we present the complexity of each benchmark

method in a bar plot for various kernel radii. This figure shows

that the throughputs of JP, JPMC-3DRS, and MCPF are sig-

nificantly higher than the throughput of PWAS-MCM for all

kernel radii. When the kernel radii of PWAS-MCM and the

temporal post-processing methods are larger or equal to 2, i.e.,

Rdu � 2 andRtp � 2, respectively, we see that the throughput of

JPMC?-3DRS, drops a little below the throughput of PWAS-

MCM. In addition, Fig. 5 shows that JP has the highest

throughput among all temporal post-processing methods.

Furthermore, the throughputs of JPMC-3DRS and MCPF are

approximately equal. In contrast, the throughput JPMC?-

3DRS is significantly lower due to the additional Gaussian

kernelGrdð�Þ (Eq. 15), and the irregularmemoryaccess pattern

that is caused by compensating each kernel pixel for motion.

While the overhead of the 3DRS motion estimator on the

throughputs of JPMC-3DRS, JPMC?-3DRS and MCPF is

negligible, the throughputs of JPMC-BROX, JPMC?-

BROX and RICHARDT are severely constrained by Brox

et al.’s optical flow estimator.20As a result the throughputs of

the Brox’s based temporal post-processing methods are at

least 35 to 9 times lower than their 3DRS-based counterparts.

Figure 7 also shows that for kernel radii larger than 2,

3DJBU has a significantly lower throughput than JP,

JPMC-3DRS and MCPF. Moreover, for kernel radii larger

than 3, even the throughput of JPMC?-3DRS is substan-

tially higher than 3DJBU. This is because the temporal

filter aperture of 3DJBU comprises an additional frame.

Finally, note that the throughput of the depth upsam-

pling method of RICHARDT is higher than the throughput

for PWAS-MCM in the other benchmark methods. This is

because RICHARDT uses the cheap multi-resolution fill-in

(MRFI) approach described in [45] rather than PWAS-

MCM. However, the total throughput of RICHARDT is

low since it applies Brox’s optical flow estimator.

6.2 Performance limits

To improve the throughput of the depth enhancement

methods, we must analyze whether their GPU implementa-

tions are bound by computation, memory bandwidth or

latency. A method is bound by computation when the uti-

lization of the computing hardware inside a streaming mul-

tiprocessor21 is close to 100 %. A method is bound by

18 To give an indication, a 720 and 1080 p image contain 0.9 and 2.1

megapixels, respectively.
19 The peak double precision floating point performance in GFLOPS

is half that of the peak single precision floating point performance on

the target NVIDIA GTX570 GPU.

20 The throughput of our implementation of 3DRS with block erosion

is 810MPPS, while the throughput of OpenCV’s 2.4.2’s implemen-

tation of Brox et al.’s optical flow estimation algorithm with the

default parameters attains not even 1MPPS.
21 The computing hardware in a streaming multiprocessor consists of

an arithmetic logic units, floating point units, load/store units, special

function units and double precision units.
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memory bandwidth when the bandwidth, i.e., utilization, of

the DRAM or shared or texture or L1 or L2 or cache mem-

ories is close to the maximum physical limits of the GPU

device. Finally, a method is latency bound when the latency

of reads and writes to the DRAMmemory cannot be hidden

by the execution of instructions from other warps that have
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Fig. 7 Complexity in megapixels per second (MPPS) as a function of

the kernel radius. The red bar denotes the throughput of the depth

upsampling (DU) method (Sect. 2) which for the temporal post-

processing methods JP, JPMC, JPMC and JPMC?, MCPF and NULL

is PWAS-MCM, except for RICHARDT that use the multi-resolution

fill-in (MRFI) approach [31]. The green bar denotes the throughput of

the temporal post-processing method (TPP), i.e., 3DJBU, JP, JPMC-

3DRS, JPMC-BROX, JPMC?-3DRS, JPMC?-BROX, MCPF and

RICHARDT. Finally, the blue bar represents the throughput of the

pipelined implementation (DU?TPP) of the depth upsampling

method and temporal post-processing method. Since in 3DJBU

upsampling and temporal post-processing is done at the same time,

we replace the bars for depth upsampling and the pipelined

implementation (DU?TPP) with a red and blue cross, respectively.

Similarly for NULL, the temporal post-processing method does not

exist, therefore we replace the bars for TPP and DU?TPP with a

green and blue cross, respectively
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not yet stalled. As a consequence, the overlap between

memory reads andwrites and the execution of instructions by

the cores in a streaming multiprocessor is low.

Table 7 shows the compute and memory utilization of

the GPU implementations of the depth enhancement

algorithms analyzed in this paper. All algorithms, except

3DJBU, are memory bound. Consequently, the only way to

get a better performance is to either optimize the perfor-

mance of the GPU implementation by optimizing the

memory access pattern, or if this is not possible switch to a

GPU device with a higher memory bandwidth. On the other

hand, the 3DJBU kernel is balanced, meaning that the

compute and memory utilization are approximately equal.

6.3 Performance on state-of-the-art GPU

architectures

For kernel radii smaller than 4, we already achieve real-

time performance for 720p video on an NVIDIA GTX570

GPU for JP, JPMC-3DRS and MCPF. The GTX570 has a

peak bandwidth of just 152 giga byte per second (GB/s)

and contains 480 cores. Since the depth enhancement

algorithms are all memory bound, it is reasonable to

assume that state-of-the-art GPU architectures such as the

NVIDIA GTX 780 Ti, which features a peak bandwidth of

336.4 GB/s and 2880 cores, can easily attain at least a

twofold increase in throughput by running the same code.

7 Conclusion

In this paper we proposed a novel filter-based depth

upsampling method PWAS-MCM, which is a combination

of PWAS [15], and the MCM framework of Min et al. [24].

We showed that PWAS-MCM attains the highest average

depth accuracy over all test images in comparison with the

other efficient depth upsampling methods in the benchmark

of Vosters et al. [45].

Subsequently, we analyzed the performance of efficient

filter-based temporal post-processing methods on video by

conducting a parameter space search to find the optimum set

of parameters h� and the optimum average depth accuracy

DAðh�Þ over all test sequences for upscale factors U 2
f2; 4; 8g and noise levels n 2 f0:05; 0:1g independently.

The results show that the temporal post-processing

methods consistently attain a higher ranking than the

baseline method without temporal post-processing and that

the overall improvement in depth accuracy is on average

roughly 1dB. Thus temporal post-processing is an impor-

tant component of depth enhancement. However, the depth

accuracy metric that we used does not explicitly take into

account perceptual factors such as flicker. Thus from a

perceptual point of view temporal filtering may be more

important than the depth accuracy metric suggests.

Temporal post-processing methods cannot track depth

changes of objects moving towards or away from the

camera. Compensating kernel pixels for depth changes may

potentially improve the depth accuracy even more. How-

ever, we consider the tracking of depth changes to be

outside the scope of this paper and leave it as future work.

Furthermore, the results in Fig. 5 show that overall the

motion-compensated temporal post-processing methods

consistently attain a higher ranking than the non-motion-

compensated methods. In addition, we found that the

choice between the motion estimators 3DRS and Brox is

not of critical importance.

We have also analyzed in Sect. 6, the complexity of

PWAS-MCM and all other temporal post-processing

methods that we included in our benchmark. In short, JP,

JPMC-3DRS, and MCPF have significantly higher

throughput for all kernel radii than PWAS-MCM. In

addition, the throughputs of JPMC-BROX, JPMC?-BROX

and RICHARDT are severely constrained by Brox et al.’s

optical flow estimator, which impedes real-time perfor-

mance. Furthermore, the throughput of 3DJBU is signifi-

cantly lower than JP, JPMC-3DRS and MCPF. Finally, we

showed that temporal post-processing methods can be

pipelined with PWAS-MCM without decreasing the

throughput of the total depth enhancement system.

In conclusion, JPMC-3DRS gives the best tradeoff

between depth accuracy (Fig. 5; Table 6) and cost (Fig. 7).

However, if resources are very scarce then the best option

Table 7 Compute and memory

utilization of the GPU

implementations of the depth

enhancement algorithms in this

paper

Method Compute utilization (%) Memory utilization (%) Limitation

3DJBU 82 75 Balanced

JP 45 95 Memory bound

JPMC 50 95 Memory bound

JPMC? 45 95 Memory bound

MCPF 45 95 Memory bound

RICHARDT 50 85 Memory bound

PWAS-MCM 42 85 Memory bound

We measured these figures on an NVIDIA GTX570 GPU
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is JP, which features the lowest complexity with just a

limited decrease in depth accuracy.

For future work, we consider modifying the depth

accuracy metric to penalize the temporal depth disconti-

nuities that are not present in the ground-truth. Addition-

ally, we plan to adapt / (Eq. 8) locally for each pixel,

based on the depth difference between the propagated and

upsampled depth.
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