1,103 research outputs found

    Data augmentation for NeRF: a geometric consistent solution based on view morphing

    Full text link
    NeRF aims to learn a continuous neural scene representation by using a finite set of input images taken from different viewpoints. The fewer the number of viewpoints, the higher the likelihood of overfitting on them. This paper mitigates such limitation by presenting a novel data augmentation approach to generate geometrically consistent image transitions between viewpoints using view morphing. View morphing is a highly versatile technique that does not requires any prior knowledge about the 3D scene because it is based on general principles of projective geometry. A key novelty of our method is to use the very same depths predicted by NeRF to generate the image transitions that are then added to NeRF training. We experimentally show that this procedure enables NeRF to improve the quality of its synthesised novel views in the case of datasets with few training viewpoints. We improve PSNR up to 1.8dB and 10.5dB when eight and four views are used for training, respectively. To the best of our knowledge, this is the first data augmentation strategy for NeRF that explicitly synthesises additional new input images to improve the model generalisation

    No-reference depth map quality evaluation model based on depth map edge confidence measurement in immersive video applications

    Get PDF
    When it comes to evaluating perceptual quality of digital media for overall quality of experience assessment in immersive video applications, typically two main approaches stand out: Subjective and objective quality evaluation. On one hand, subjective quality evaluation offers the best representation of perceived video quality assessed by the real viewers. On the other hand, it consumes a significant amount of time and effort, due to the involvement of real users with lengthy and laborious assessment procedures. Thus, it is essential that an objective quality evaluation model is developed. The speed-up advantage offered by an objective quality evaluation model, which can predict the quality of rendered virtual views based on the depth maps used in the rendering process, allows for faster quality assessments for immersive video applications. This is particularly important given the lack of a suitable reference or ground truth for comparing the available depth maps, especially when live content services are offered in those applications. This paper presents a no-reference depth map quality evaluation model based on a proposed depth map edge confidence measurement technique to assist with accurately estimating the quality of rendered (virtual) views in immersive multi-view video content. The model is applied for depth image-based rendering in multi-view video format, providing comparable evaluation results to those existing in the literature, and often exceeding their performance

    NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior

    Full text link
    Training a Neural Radiance Field (NeRF) without pre-computed camera poses is challenging. Recent advances in this direction demonstrate the possibility of jointly optimising a NeRF and camera poses in forward-facing scenes. However, these methods still face difficulties during dramatic camera movement. We tackle this challenging problem by incorporating undistorted monocular depth priors. These priors are generated by correcting scale and shift parameters during training, with which we are then able to constrain the relative poses between consecutive frames. This constraint is achieved using our proposed novel loss functions. Experiments on real-world indoor and outdoor scenes show that our method can handle challenging camera trajectories and outperforms existing methods in terms of novel view rendering quality and pose estimation accuracy. Our project page is https://nope-nerf.active.vision

    {D-NeRF}: {N}eural Radiance Fields for Dynamic Scenes

    Get PDF
    Trabajo presentado en la IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), celebrada de forma virtual desde Nashville, TN (Estados Unidos), del 20 al 25 de junio de 2021Neural rendering techniques combining machine learning with geometric reasoning have arisen as one of the most promising approaches for synthesizing novel views of a scene from a sparse set of images. Among these, stands out the Neural radiance fields (NeRF), which trains a deep network to map 5D input coordinates (representing spatial location and viewing direction) into a volume density and view-dependent emitted radiance. However, despite achieving an unprecedented level of photorealism on the generated images, NeRF is only applicable to static scenes, where the same spatial location can be queried from different images. In this paper we introduce D-NeRF, a method that extends neural radiance fields to a dynamic domain, allowing to reconstruct and render novel images of objects under rigid and non-rigid motions. For this purpose we consider time as an additional input to the system, and split the learning process in two main stages: one that encodes the scene into a canonical space and another that maps this canonical representation into the deformed scene at a particular time. Both mappings are learned using fully-connected networks. Once the networks are trained, D-NeRF can render novel images, controlling both the camera view and the time variable, and thus, the object movement. We demonstrate the effectiveness of our approach on scenes with objects under rigid, articulated and non-rigid motions.Peer reviewe

    Volumetric performance capture from minimal camera viewpoints

    Get PDF
    We present a convolutional autoencoder that enables high fidelity volumetric reconstructions of human performance to be captured from multi-view video comprising only a small set of camera views. Our method yields similar end-to-end reconstruction error to that of a probabilistic visual hull computed using significantly more (double or more) viewpoints. We use a deep prior implicitly learned by the autoencoder trained over a dataset of view-ablated multi-view video footage of a wide range of subjects and actions. This opens up the possibility of high-end volumetric performance capture in on-set and prosumer scenarios where time or cost prohibit a high witness camera count

    Objective Quality Assessment in Free-Viewpoint Video Production

    Full text link
    • …
    corecore