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Point of View & Time
Figure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex
non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without
the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances
synthesised by the proposed model.

Abstract

Neural rendering techniques combining machine learn-
ing with geometric reasoning have arisen as one of the most
promising approaches for synthesizing novel views of a
scene from a sparse set of images. Among these, stands out
the Neural radiance fields (NeRF) [26], which trains a deep
network to map 5D input coordinates (representing spatial
location and viewing direction) into a volume density and
view-dependent emitted radiance. However, despite achiev-
ing an unprecedented level of photorealism on the gener-
ated images, NeRF is only applicable to static scenes, where
the same spatial location can be queried from different im-
ages. In this paper we introduce D-NeRF, a method that
extends neural radiance fields to a dynamic domain, allow-
ing to reconstruct and render novel images of objects under
rigid and non-rigid motions from a single camera moving
around the scene. For this purpose we consider time as an
additional input to the system, and split the learning process
in two main stages: one that encodes the scene into a canon-
ical space and another that maps this canonical represen-
tation into the deformed scene at a particular time. Both

mappings are simultaneously learned using fully-connected
networks. Once the networks are trained, D-NeRF can ren-
der novel images, controlling both the camera view and the
time variable, and thus, the object movement. We demon-
strate the effectiveness of our approach on scenes with ob-
jects under rigid, articulated and non-rigid motions. Code,
model weights and the dynamic scenes dataset will be re-
leased.

1. Introduction

Rendering novel photo-realistic views of a scene from
a sparse set of input images is necessary for many appli-
cations in e.g. augmented reality, virtual reality, 3D con-
tent production, games and the movie industry. Recent
advances in the emerging field of neural rendering, which
learn scene representations encoding both geometry and
appearance [26, 23, 19, 50, 29, 35], have achieved re-
sults that largely surpass those of traditional Structure-
from-Motion [14, 41, 38], light-field photography [18] and
image-based rendering approaches [5]. For instance, the
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Neural Radiance Fields (NeRF) [26] have shown that sim-
ple multilayer perceptron networks can encode the mapping
from 5D inputs (representing spatial locations (x, y, z) and
camera views (θ, φ)) to emitted radiance values and volume
density. This learned mapping allows then free-viewpoint
rendering with extraordinary realism. Subsequent works
have extended Neural Radiance Fields to images in the wild
undergoing severe lighting changes [23] and have proposed
sparse voxel fields for rapid inference [19]. Similar schemes
have also been recently used for multi-view surface recon-
struction [50] and learning surface light fields [30].

Nevertheless, all these approaches assume a static scene
without moving objects. In this paper we relax this assump-
tion and propose, to the best of our knowledge, the first end-
to-end neural rendering system that is applicable to dynamic
scenes, made of both still and moving/deforming objects.
While there exist approaches for 4D view synthesis [2], our
approach is different in that: 1) we only require a single
camera; 2) we do not need to pre-compute a 3D reconstruc-
tion; and 3) our approach can be trained end-to-end.

Our idea is to represent the input of our system with
a continuous 6D function, which besides 3D location and
camera view, it also considers the time component t.
Naively extending NeRF to learn a mapping from (x, y, z, t)
to density and radiance does not produce satisfying results,
as the temporal redundancy in the scene is not effectively
exploited. Our observation is that objects can move and
deform, but typically do not appear or disappear. Inspired
by classical 3D scene flow [44], the core idea to build our
method, denoted Dynamic-NeRF (D-NeRF in short), is to
decompose learning in two modules. The first one learns a
spatial mapping (x, y, z, t)→ (∆x,∆y,∆z) between each
point of the scene at time t and a canonical scene config-
uration. The second module regresses the scene radiance
emitted in each direction and volume density given the tu-
ple (x + ∆x, y + ∆y, z + ∆z, θ, φ). Both mappings are
learned with deep fully connected networks without convo-
lutional layers. The learned model then allows to synthesize
novel images, providing control in the continuum (θ, φ, t)
of the camera views and time component, or equivalently,
the dynamic state of the scene (see Fig. 1).

We thoroughly evaluate D-NeRF on scenes undergoing
very different types of deformation, from articulated mo-
tion to humans performing complex body poses. We show
that by decomposing learning into a canonical scene and
scene flow D-NeRF is able to render high-quality images
while controlling both camera view and time components.
As a side-product, our method is also able to produce com-
plete 3D meshes that capture the time-varying geometry and
which remarkably are obtained by observing the scene un-
der a specific deformation only from one single viewpoint.

2. Related work
Neural implicit representation for 3D geometry. The
success of deep learning on the 2D domain has spurred a
growing interest in the 3D domain. Nevertheless, which
is the most appropriate 3D data representation for deep
learning remains an open question, especially for non-
rigid geometry. Standard representations for rigid geome-
try include point-clouds [42, 33], voxels [13, 48] and oc-
trees [45, 39]. Recently, there has been a strong burst in
representing 3D data in an implicit manner via a neural net-
work [24, 31, 6, 47, 8, 12]. The main idea behind this ap-
proach is to describe the information (e.g. occupancy, dis-
tance to surface, color, illumination) of a 3D point x as the
output of a neural network f(x). Compared to the previ-
ously mentioned representations, neural implicit represen-
tations allow for continuous surface reconstruction at a low
memory footprint.

The first works exploiting implicit representations [24,
31, 6, 47] for 3D representation were limited by their re-
quirement of having access to 3D ground-truth geometry,
often expensive or even impossible to obtain for in the
wild scenes. Subsequent works relaxed this requirement
by introducing a differentiable render allowing 2D super-
vision. For instance, [20] proposed an efficient ray-based
field probing algorithm for efficient image-to-field supervi-
sion. [29, 49] introduced an implicit-based method to cal-
culate the exact derivative of a 3D occupancy field surface
intersection with a camera ray. In [37], a recurrent neu-
ral network was used to ray-cast the scene and estimate the
surface geometry. However, despite these techniques have
a great potential to represent 3D shapes in an unsupervised
manner, they are typically limited to relatively simple ge-
ometries.

NeRF [26] showed that by implicitly representing a rigid
scene using 5D radiance fields makes it possible to capture
high-resolution geometry and photo-realistically rendering
novel views. [23] extended this method to handle variable
illumination and transient occlusions to deal with in the wild
images. In [19], even more complex 3D surfaces were rep-
resented by using voxel-bouded implicit fields. And [50]
circumvented the need of multiview camera calibration.

However, while all mentioned methods achieve impres-
sive results on rigid scenes, none of them can deal with dy-
namic and deformable scenes. Occupancy flow [28] was the
first work to tackle non-rigid geometry by learning continu-
ous vector field assigning a motion vector to every point in
space and time, but it requires full 3D ground-truth super-
vision. Neural volumes [21] produced high quality recon-
struction results via an encoder-decoder voxel-based repre-
sentation enhanced with an implicit voxel warp field, but
they require a muti-view image capture setting.

To the best of our knowledge, D-NeRF is the first ap-
proach able to generate a neural implicit representation
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Figure 2: Problem Definition. Given a sparse set of images of a dynamic scene moving non-rigidly and being captured by a monocular
camera, we aim to design a deep learning model to implicitly encode the scene and synthesize novel views at an arbitrary time. Here,
we visualize a subset of the input training frames paired with accompanying camera parameters, and we show three novel views at three
different time instances rendered by the proposed method.

for non-rigid and time-varying scenes, trained solely on
monocular data without the need of 3D ground-truth super-
vision nor a multi-view camera setting.

Novel view synthesis. Novel view synthesis is a long
standing vision and graphics problem that aims to synthe-
size new images from arbitrary view points of a scene cap-
tured by multiple images. Most traditional approaches for
rigid scenes consist on reconstructing the scene from multi-
ple views with Structure-from-Motion [14] and bundle ad-
justment [41], while other approaches propose light-field
based photography [18]. More recently, deep learning based
techniques [36, 16, 10, 9, 25] are able to learn a neural vol-
umetric representation from a set of sparse images.

However, none of these methods can synthesize novel
views of dynamic scenes. To tackle non-rigid scenes most
methods approach the problem by reconstructing a dynamic
3D textured mesh. 3D reconstruction of non-rigid sur-
faces from monocular images is known to be severely ill-
posed. Structure-from-Template (SfT) approaches [3, 7, 27]
recover the surface geometry given a reference known
template configuration. Temporal information is another
prior typically exploited. Non-rigid-Structure-from-Motion
(NRSfM) techniques [40, 1] exploit temporal information.
Yet, SfT and NRSfM require either 2D-to-3D matches or
2D point tracks, limiting their general applicability to rela-
tively well-textured surfaces and mild deformations.

Some of these limitations are overcome by learning
based techniques, which have been effectively used for syn-
thesizing novel photo-realistic views of dynamic scenes.
For instance, [2, 54, 15] capture the dynamic scene at the
same time instant from multiple views, to then generate 4D
space-time visualizations. [11, 32, 53] also leverage on si-
multaneously capturing the scene from multiple cameras to
estimate depth, completing areas with missing information
and then performing view synthesis. In [51], the need of
multiple views is circumvented by using a pre-trained net-
work that estimates a per frame depth. This depth, jointly
with the optical flow and consistent depth estimation across
frames, are then used to interpolate between images and

render novel views. Nevertheless, by decoupling depth es-
timation from novel view synthesis, the outcome of this
approach becomes highly dependent on the quality of the
depth maps as well as on the reliability of the optical flow.
Very recently, X-Fields [4] introduced a neural network
to interpolate between images taken across different view,
time or illumination conditions. However, while this ap-
proach is able to process dynamic scenes, it requires more
than one view. Since no 3D representation is learned, vari-
ation in viewpoint is small.

D-NeRF is different from all prior work in that it does
not require 3D reconstruction, can be learned end-to-end,
and requires a single view per time instance. Another ap-
pealing characteristic of D-NeRF is that it inherently learns
a time-varying 3D volume density and emitted radiance,
which turns the novel view synthesis into a ray-casting pro-
cess instead of a view interpolation, which is remarkably
more robust to rendering images from arbitrary viewpoints.

3. Problem Formulation

Given a sparse set of images of a dynamic scene captured
with a monocular camera, we aim to design a deep learning
model able to implicitly encode the scene and synthesize
novel views at an arbitrary time (see Fig. 2).

Formally, our goal is to learn a mapping M that, given
a 3D point x = (x, y, z), outputs its emitted color c =
(r, g, b) and volume density σ conditioned on a time instant
t and view direction d = (θ, φ). That is, we seek to estimate
the mapping M : (x,d, t)→ (c, σ).

An intuitive solution would be to directly learn the trans-
formation M from the 6D space (x,d, t) to the 4D space
(c, σ). However, as we will show in the results section, we
obtain consistently better results by splitting the mapping M

into Ψx and Ψt, where Ψx represents the scene in canoni-
cal configuration and Ψt a mapping between the scene at
time instant t and the canonical one. More precisely, given
a point x and viewing direction d at time instant t we first
transform the point position to its canonical configuration
as Ψt : (x, t) → ∆x. Without loss of generality, we chose
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Figure 3: D-NeRF Model. The proposed architecture consists of two main blocks: a deformation network Ψt mapping all scene
deformations to a common canonical configuration; and a canonical network Ψx regressing volume density and view-dependent RGB
color from every camera ray.

t = 0 as the canonical scene Ψt : (x, 0) → 0. By doing so
the scene is no longer independent between time instances,
and becomes interconnected through a common canonical
space anchor. Then, the assigned emitted color and vol-
ume density under viewing direction d equal to those in the
canonical configuration Ψx : (x + ∆x,d)→ (c, σ).

We propose to learn Ψx and Ψt using a sparse set of T
RGB images {It,Tt}Tt=1 captured with a monocular cam-
era, where It ∈ RH×W×3 denotes the image acquired un-
der camera pose Tt ∈ R4×4 SE(3), at time t. Although
we could assume multiple views per time instance, we want
to test the limits of our method, and assume a single image
per time instance. That is, we do not observe the scene un-
der a specific configuration/deformation state from different
viewpoints.

4. Method

We now introduce D-NeRF, our novel neural renderer for
view synthesis trained solely from a sparse set of images of
a dynamic scene. We build on NeRF [26] and generalize it
to handle non-rigid scenes. Recall that NeRF requires mul-
tiple views of a rigid scene In contrast, D-NeRF can learn a
volumetric density representation for continuous non-rigid
scenes trained with a single view per time instant.

As shown in Fig. 3, D-NeRF consists of two main neu-
ral network modules, which parameterize the mappings ex-
plained in the previous section Ψt,Ψx. On the one hand we
have the Canonical Network, an MLP (multilayer percep-
tron) Ψx(x,d) 7→ (c, σ) is trained to encode the scene in
the canonical configuration such that given a 3D point x and
a view direction d returns its emitted color c and volume
density σ. The second module is called Deformation Net-
work and consists of another MLP Ψt(x, t) 7→ ∆x which
predicts a deformation field defining the transformation be-
tween the scene at time t and the scene in its canonical
configuration. We next describe in detail each one of these
blocks (Sec. 4.1), their interconnection for volume render-
ing (Sec. 4.2) and how are they learned (Sec. 4.3).

4.1. Model Architecture

Canonical Network. With the use of a canonical config-
uration we seek to find a representation of the scene that
brings together the information of all corresponding points
in all images. By doing this, the missing information from a
specific viewpoint can then be retrieved from that canonical
configuration, which shall act as an anchor interconnecting
all images.

The canonical network Ψx is trained so as to encode vol-
umetric density and color of the scene in canonical config-
uration. Concretely, given the 3D coordinates x of a point,
we first encode it into a 256-dimensional feature vector.
This feature vector is then concatenated with the camera
viewing direction d, and propagated through a fully con-
nected layer to yield the emitted color c and volume density
σ for that given point in the canonical space.

Deformation Network. The deformation network Ψt is op-
timized to estimate the deformation field between the scene
at a specific time instant and the scene in canonical space.
Formally, given a 3D point x at time t, Ψt is trained to out-
put the displacement ∆x that transforms the given point to
its position in the canonical space as x + ∆x. For all ex-
periments, without loss of generality, we set the canonical
scene to be the scene at time t = 0:

Ψt(x, t) =

{
∆x, if t 6= 0

0, if t = 0
(1)

As shown in previous works [34, 43, 26], directly feed-
ing raw coordinates and angles to a neural network results in
low performance. Thus, for both the canonical and the de-
formation networks, we first encode x, d and t into a higher
dimension space. We use the same positional encoder as
in [26] where γ(p) =< (sin(2lπp), cos(2lπp)) >L

0 . We in-
dependently apply the encoder γ(·) to each coordinate and
camera view component, using L = 10 for x, and L = 4
for d and t.
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4.2. Volume Rendering

We now adapt NeRF volume rendering equations to ac-
count for non-rigid deformations in the proposed 6D neural
radiance field. Let x(h) = o+hd be a point along the cam-
era ray emitted from the center of projection o to a pixel p.
Considering near and far bounds hn and hf in that ray, the
expected color C of the pixel p at time t is given by:

C(p, t) =

∫ hf

hn

T(h, t)σ(p(h, t))c(p(h, t),d)dh, (2)

where p(h, t) = x(h) + Ψt(x(h), t), (3)
[c(p(h, t),d), σ(p(h, t))] = Ψx(p(h, t),d), (4)

and T(h, t) = exp

(
−
∫ h

hn

σ(p(s, t))ds

)
. (5)

The 3D point p(h, t) denotes the point on the camera ray
x(h) transformed to canonical space using our Deformation
Network Ψt, and T(h, t) is the accumulated probability that
the ray emitted from hn to hf does not hit any other particle.
Notice that the density σ and color c are predicted by our
Canonical Network Ψx.

As in [26] the volume rendering integrals in Eq. (2)
and Eq. (5) can be approximated via numerical quadrature.
To select a random set of quadrature points {hn}Nn=1 ∈
[hn, hf ] a stratified sampling strategy is applied by uni-
formly drawing samples from evenly-spaced ray bins. A
pixel color is approximated as:

C ′(p, t) =

N∑
n=1

T′(hn, t)α(hn, t, δn)c(p(hn, t),d), (6)

where α(h, t, δ) = 1− exp(−σ(p(h, t))δ), (7)

and T′(hn, t) = exp

(
−

n−1∑
m=1

σ(p(hm, t))δm

)
, (8)

and δn = hn+1−hn is the distance between two quadrature
points.

4.3. Learning the Model

The parameters of the canonical Ψx and deformation
Ψt networks are simultaneously learned by minimizing the
mean squared error with respect to the T RGB images
{It}Tt=1 of the scene and their corresponding camera pose
matrices {Tt}Tt=1. Recall that every time instant is only
acquired by a single camera.

At each training batch, we first sample a random set of
pixels {pt,i}Ns

i=1 corresponding to the rays cast from some
camera position Tt to some pixels i of the corresponding
RGB image t. We then estimate the colors of the chosen
pixels using Eq. (6). The training loss we use is the mean

squared error between the rendered and real pixels:

L =
1

Ns

Ns∑
i=1

∥∥∥Ĉ(p, t)− C ′(p, t)
∥∥∥2
2

(9)

where Ĉ are the pixels’ ground-truth color.

5. Implementation Details
Both the canonical network Ψx and the deformation net-

work Ψt consists on simple 8-layers MLPs with ReLU ac-
tivations. For the canonical network a final sigmoid non-
linearity is applied to c and σ. No non-linearlity is applied
to ∆x in the deformation network.

For all experiments we set the canonical configuration
as the scene state at t = 0 by enforcing it in Eq. (1). To
improve the networks convergence, we sort the input im-
ages according to their time stamps (from lower to higher)
and then we apply a curriculum learning strategy where we
incrementally add images with higher time stamps.

The model is trained with 400×400 images during 800k
iterations with a batch size of Ns = 4096 rays, each sam-
pled 64 times along the ray. As for the optimizer, we
use Adam [17] with learning rate of 5e − 4, β1 = 0.9,
β2 = 0.999 and exponential decay to 5e − 5. The model
is trained with a single Nvidia® GTX 1080 for 2 days.

6. Experiments
This section provides a thorough evaluation of our sys-

tem. We first test the main components of the model,
namely the canonical and deformation networks (Sec. 6.1).
We then compare D-NeRF against NeRF and T-NeRF,
a variant in which does not use the canonical mapping
(Sec. 6.2). Finally, we demonstrate D-NeRF ability to syn-
thesize novel views at an arbitrary time in several complex
dynamic scenes (Sec. 6.3).

In order to perform an exhaustive evaluation we have ex-
tended NeRF [26] rigid benchmark with eight scenes con-
taining dynamic objects under large deformations and real-
istic non-Lambertian materials. As in the rigid benchmark
of [26], six are rendered from viewpoints sampled from the
upper hemisphere, and two are rendered from viewpoints
sampled on the full sphere. Each scene contains between
100 and 200 rendered views depending on the action time
span, all at 800 × 800 pixels. We will release the path-
traced images with defined train/validation/test splits for
these eight scenes.

6.1. Dissecting the Model

This subsection provides insights about D-NeRF be-
haviour when modeling a dynamic scene and analyze the
two main modules, namely the canonical and deformation
networks.
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Figure 4: Visualization of the Learned Scene Representation. Given a dynamic scene at a specific time instant, D-NeRF learns a
displacement field ∆x that maps all points x of the scene to a common canonical configuration. The volume density and view-dependent
emitted radiance for this configuration is learned and transferred to the original input points to render novel views. This figure represents,
from left to right: the learned radiance from a specific viewpoint, the volume density represented as a 3D mesh and a depth map, and the
color-coded points of the canonical configuration mapped to the deformed meshes based on ∆x. The same colors on corresponding points
indicate the correctness of such mapping.

Canonical Spacet=0.5 t=1

Figure 5: Analyzing Shading Effects. Pairs of corresponding
points between the canonical space and the scene at times t = 0.5
and t = 1.

We initially evaluate the ability of the canonical network
to represent the scene in a canonical configuration. The re-
sults of this analysis for two scenes are shown the first row
of Fig. 4 (columns 1-3 in each case). The plots show, for
the canonical configuration (t = 0), the RGB image, the 3D
occupancy network and the depth map, respectively. The
rendered RGB image is the result of evaluating the canoni-
cal network on rays cast from an arbitrary camera position
applying Eq. (6). To better visualize the learned volumet-
ric density we transform it into a mesh applying marching
cubes [22], with a 3D cube resolution of 2563 voxels. Note
how D-NeRF is able to model fine geometric and appear-
ance details for complex topologies and texture patterns,
even when it was only trained with a set of sparse images,
each under a different deformation.

In a second experiment we assess the capacity of the net-
work to estimate consistent deformation fields that map the
canonical scene to the particular shape at each input image.
The second and third rows of Fig. 4 show the result of ap-

plying the corresponding translation vectors to the canon-
ical space for t = 0.5 and t = 1. The fourth column in
each of the two examples visualizes the displacement field,
where the color-coded points in the canonical shape (t = 0)
at mapped to the different shape configurations at t = 0.5
and t = 1. Note that the colors are consistent along the
time instants, indicating that the displacement field is cor-
rectly estimated.

Another question that we try to answer is how D-NeRF
manages to model phenomena like shadows/shading ef-
fects, that is, how the model can encode changes of ap-
pearance of the same point along time. We have carried
an additional experiment to answer this. In Fig. 5 we show
a scene with three balls, made of very different materials
(plastic –green–, translucent glass –blue– and metal –red–).
The figure plots pairs of corresponding points between the
canonical configuration and the scene at a specific time in-
stant. D-NeRF is able to synthesize the shading effects by
warping the canonical configuration. For instance, observe
how the floor shadows are warped along time. Note that the
points in the shadow of, e.g. the red ball, at t = 0.5 and
t = 1 map at different regions of the canonical space.

6.2. Quantitative Comparison

We next evaluate the quality of D-NeRF on the novel
view synthesis problem and compare it against the origi-
nal NeRF [26], which represents the scene using a 5D in-
put (x, y, z, θ, φ), and T-NeRF, a straight-forward exten-
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Figure 6: Qualitative Comparison. Novel view synthesis results of dynamic scenes. For every scene we show an image synthesised
from a novel view at an arbitrary time by our method, and three close-ups for: ground-truth, NeRF, T-NeRF, and D-NeRF (ours).

Hell Warrior Mutant Hook Bouncing Balls
Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
NeRF 44e-3 13.52 0.81 0.25 9e-4 20.31 0.91 0.09 21e-3 16.65 0.84 0.19 1e-2 18.28 0.88 0.23
T-NeRF 47e-4 23.19 0.93 0.08 8e-4 30.56 0.96 0.04 18e-4 27.21 0.94 0.06 6e-4 32.01 0.97 0.04
D-NeRF 31e-4 25.02 0.95 0.06 7e-4 31.29 0.97 0.02 11e-4 29.25 0.96 0.11 5e-4 32.80 0.98 0.03

Lego T-Rex Stand Up Jumping Jacks
Method MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
NeRF 9e-4 20.30 0.79 0.23 3e-3 24.49 0.93 0.13 1e-2 18.19 0.89 0.14 1e-2 18.28 0.88 0.23
T-NeRF 3e-4 23.82 0.90 0.15 9e-4 30.19 0.96 0.13 7e-4 31.24 0.97 0.02 6e-4 32.01 0.97 0.03
D-NeRF 6e-4 21.64 0.83 0.16 6e-4 31.75 0.97 0.03 5e-4 32.79 0.98 0.02 5e-4 32.80 0.98 0.03

Table 1: Quantitative Comparison. We report MSE/LPIPS (lower is better) and PSNR/SSIM (higher is better).

sion of NeRF in which the scene is represented by a 6D
input (x, y, z, θ, φ, t), without considering the intermediate
canonical configuration of D-NeRF.

Table 1 summarizes the quantitative results on the 8 dy-
namic scenes of our dataset. We use several metrics for
the evaluation: Mean Squared Error (MSE), Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity (SSIM) [46] and
Learned Perceptual Image Patch Similarity (LPIPS) [52].
In Fig. 6 we show samples of the estimated images under a
novel view for visual inspection. As expected, NeRF is not
able to model the dynamics scenes as it was designed for
rigid cases, and always converges to a blurry mean represen-
tation of all deformations. On the other hand, the T-NeRF
baseline is able to capture reasonably well the dynamics, al-
though is not able to retrieve high frequency details. For ex-
ample, in Fig. 6 top-left image it fails to encode the shoulder

pad spikes, and in the top-right scene it is not able to model
the stones and cracks. D-NeRF, instead, retains high details
of the original image in the novel views. This is quite re-
markable, considering that each deformation state has only
been seen from a single viewpoint.

6.3. Additional Results

We finally show additional results to showcase the wide
range of scenarios that can be handled with D-NeRF. Fig. 7
depicts, for four scenes, the images rendered at different
time instants from two novel viewpoints. The first column
displays the canonical configuration. Note that we are able
to handle several types of dynamics: articulated motion
in the Tractor scene; human motion in the Jumping Jacks
and Warrior scenes; and asynchronous motion of several
Bouncing Balls. Also note that the canonical configuration
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t=0.1 t=0.3 t=1.0t=0.5 t=0.8Canonical Space

Figure 7: Time & View Conditioning. Results of synthesising diverse scenes from two novel points of view across time and the learned
canonical space. For every scene we also display the learned scene canonical space in the first column.

is a sharp and neat scene, in all cases, expect for the Jump-
ing Jacks, where the two arms appear to be blurry. This,
however, does not harm the quality of the rendered images,
indicating that the network is able warp the canonical con-
figuration so as to maximize the rendering quality. This is
indeed consistent with Sec. 6.1 insights on how the network
is able to encode shading.

7. Conclusion
We have presented D-NeRF, a novel neural radiance field

approach for modeling dynamic scenes. Our method can
be trained end-to-end from only a sparse set of images ac-

quired with a moving camera, and does not require pre-
computed 3D priors nor observing the same scene config-
uration from different viewpoints. The main idea behind D-
NeRF is to represent time-varying deformations with two
modules: one that learns a canonical configuration, and an-
other that learns the displacement field of the scene at each
time instant w.r.t. the canonical space. A thorough evalu-
ation demonstrates that D-NeRF is able to synthesise high
quality novel views of scenes undergoing different types of
deformation, from articulated objects to human bodies per-
forming complex body postures.
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