131 research outputs found

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Using Genetic Programming to Build Self-Adaptivity into Software-Defined Networks

    Full text link
    Self-adaptation solutions need to periodically monitor, reason about, and adapt a running system. The adaptation step involves generating an adaptation strategy and applying it to the running system whenever an anomaly arises. In this article, we argue that, rather than generating individual adaptation strategies, the goal should be to adapt the control logic of the running system in such a way that the system itself would learn how to steer clear of future anomalies, without triggering self-adaptation too frequently. While the need for adaptation is never eliminated, especially noting the uncertain and evolving environment of complex systems, reducing the frequency of adaptation interventions is advantageous for various reasons, e.g., to increase performance and to make a running system more robust. We instantiate and empirically examine the above idea for software-defined networking -- a key enabling technology for modern data centres and Internet of Things applications. Using genetic programming,(GP), we propose a self-adaptation solution that continuously learns and updates the control constructs in the data-forwarding logic of a software-defined network. Our evaluation, performed using open-source synthetic and industrial data, indicates that, compared to a baseline adaptation technique that attempts to generate individual adaptations, our GP-based approach is more effective in resolving network congestion, and further, reduces the frequency of adaptation interventions over time. In addition, we show that, for networks with the same topology, reusing over larger networks the knowledge that is learned on smaller networks leads to significant improvements in the performance of our GP-based adaptation approach. Finally, we compare our approach against a standard data-forwarding algorithm from the network literature, demonstrating that our approach significantly reduces packet loss.Comment: arXiv admin note: text overlap with arXiv:2205.0435

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Data Movement Challenges and Solutions with Software Defined Networking

    Get PDF
    With the recent rise in cloud computing, applications are routinely accessing and interacting with data on remote resources. Interaction with such remote resources for the operation of media-rich applications in mobile environments is also on the rise. As a result, the performance of the underlying network infrastructure can have a significant impact on the quality of service experienced by the user. Despite receiving significant attention from both academia and industry, computer networks still face a number of challenges. Users oftentimes report and complain about poor experiences with their devices and applications, which can oftentimes be attributed to network performance when downloading or uploading application data. This dissertation investigates problems that arise with data movement across computer networks and proposes novel solutions to address these issues through software defined networking (SDN). SDN is lauded to be the paradigm of choice for next generation networks. While academia explores use cases in various contexts, industry has focused on data center and wide area networks. There is a significant range of complex and application-specific network services that can potentially benefit from SDN, but introduction and adoption of such solutions remains slow in production networks. One impeding factor is the lack of a simple yet expressive enough framework applicable to all SDN services across production network domains. Without a uniform framework, SDN developers create disjoint solutions, resulting in untenable management and maintenance overhead. The SDN-based solutions developed in this dissertation make use of a common agent-based approach. The architecture facilitates application-oriented SDN design with an abstraction composed of software agents on top of the underlying network. There are three key components modern and future networks require to deliver exceptional data transfer performance to the end user: (1) user and application mobility, (2) high throughput data transfer, and (3) efficient and scalable content distribution. Meeting these key components will not only ensure the network can provide robust and reliable end-to-end connectivity, but also that network resources will be used efficiently. First, mobility support is critical for user applications to maintain connectivity to remote, cloud-based resources. Today\u27s network users are frequently accessing such resources while on the go, transitioning from network to network with the expectation that their applications will continue to operate seamlessly. As users perform handovers between heterogeneous networks or between networks across administrative domains, the application becomes responsible for maintaining or establishing new connections to remote resources. Although application developers often account for such handovers, the result is oftentimes visible to the user through diminished quality of service (e.g. rebuffering in video streaming applications). Many intra-domain handover solutions exist for handovers in WiFi and cellular networks, such as mobile IP, but they are architecturally complex and have not been integrated to form a scalable, inter-domain solution. A scalable framework is proposed that leverages SDN features to implement both horizontal and vertical handovers for heterogeneous wireless networks within and across administrative domains. User devices can select an appropriate network using an on-board virtual SDN implementation that manages available network interfaces. An SDN-based counterpart operates in the network core and edge to handle user migrations as they transition from one edge attachment point to another. The framework was developed and deployed as an extension to the Global Environment for Network Innovations (GENI) testbed; however, the framework can be deployed on any OpenFlow enabled network. Evaluation revealed users can maintain existing application connections without breaking the sockets and requiring the application to recover. Second, high throughput data transfer is essential for user applications to acquire large remote data sets. As data sizes become increasingly large, often combined with their locations being far from the applications, the well known impact of lower Transmission Control Protocol (TCP) throughput over large delay-bandwidth product paths becomes more significant to these applications. While myriads of solutions exist to alleviate the problem, they require specialized software and/or network stacks at both the application host and the remote data server, making it hard to scale up to a large range of applications and execution environments. This results in high throughput data transfer that is available to only a select subset of network users who have access to such specialized software. An SDN based solution called Steroid OpenFlow Service (SOS) has been proposed as a network service that transparently increases the throughput of TCP-based data transfers across large networks. SOS shifts the complexity of high performance data transfer from the end user to the network; users do not need to configure anything on the client and server machines participating in the data transfer. The SOS architecture supports seamless high performance data transfer at scale for multiple users and for high bandwidth connections. Emphasis is placed on the use of SOS as a part of a larger, richer data transfer ecosystem, complementing and compounding the efforts of existing data transfer solutions. Non-TCP-based solutions, such as Aspera, can operate seamlessly alongside an SOS deployment, while those based on TCP, such as wget, curl, and GridFTP, can leverage SOS for throughput improvement beyond what a single TCP connection can provide. Through extensive evaluation in real-world environments, the SOS architecture is proven to be flexibly deployable on a variety of network architectures, from cloud-based, to production networks, to scaled up, high performance data center environments. Evaluation showed that the SOS architecture scales linearly through the addition of SOS “agents†to the SOS deployment, providing data transfer performance improvement to multiple users simultaneously. An individual data transfer enhanced by SOS was shown to have increased throughput nearly forty times the same data transfer without SOS assistance. Third, efficient and scalable video content distribution is imperative as the demand for multimedia content over the Internet increases. Current state of the art solutions consist of vast content distribution networks (CDNs) where content is oftentimes hosted in duplicate at various geographically distributed locations. Although CDNs are useful for the dissemination of static content, they do not provide a clear and scalable model for the on demand production and distribution of live, streaming content. IP multicast is a popular solution to scalable video content distribution; however, it is seldom used due to deployment and operational complexity. Inspired from the distributed design of todays CDNs and the distribution trees used by IP multicast, a SDN based framework called GENI Cinema (GC) is proposed to allow for the distribution of live video content at scale. GC allows for the efficient management and distribution of live video content at scale without the added architectural complexity and inefficiencies inherent to contemporary solutions such as IP multicast. GC has been deployed as an experimental, nation-wide live video distribution service using the GENI network, broadcasting live and prerecorded video streams from conferences for remote attendees, from the classroom for distance education, and for live sporting events. GC clients can easily and efficiently switch back and forth between video streams with improved switching latency latency over cable, satellite, and other live video providers. The real world dep loyments and evaluation of the proposed solutions show how SDN can be used as a novel way to solve current data transfer problems across computer networks. In addition, this dissertation is expected to provide guidance for designing, deploying, and debugging SDN-based applications across a variety of network topologies

    Resource allocation for fog computing based on software-defined networks

    Get PDF
    With the emergence of cloud computing as a processing backbone for internet of thing (IoT), fog computing has been proposed as a solution for delay-sensitive applications. According to fog computing, this is done by placing computing servers near IoT. IoT networks are inherently very dynamic, and their topology and resources may be changed drastically in a short period. So, using the traditional networking paradigm to build their communication backbone, may lower network performance and higher network configuration convergence latency. So, it seems to be more beneficial to employ a software-defined network paradigm to implement their communication network. In software-defined networking (SDN), separating the network’s control and data forwarding plane makes it possible to manage the network in a centralized way. Managing a network using a centralized controller can make it more flexible and agile in response to any possible network topology and state changes. This paper presents a software-defined fog platform to host real-time applications in IoT. The effectiveness of the mechanism has been evaluated by conducting a series of simulations. The results of the simulations show that the proposed mechanism is able to find near to optimal solutions in a very lower execution time compared to the brute force method
    • …
    corecore