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 With the emergence of cloud computing as a processing backbone for 

internet of thing (IoT), fog computing has been proposed as a solution for 

delay-sensitive applications. According to fog computing, this is done by 

placing computing servers near IoT. IoT networks are inherently very 

dynamic, and their topology and resources may be changed drastically in a 

short period. So, using the traditional networking paradigm to build their 

communication backbone, may lower network performance and higher 

network configuration convergence latency. So, it seems to be more 

beneficial to employ a software-defined network paradigm to implement 

their communication network. In software-defined networking (SDN), 

separating the network’s control and data forwarding plane makes it possible 

to manage the network in a centralized way. Managing a network using a 

centralized controller can make it more flexible and agile in response to any 

possible network topology and state changes. This paper presents a software-

defined fog platform to host real-time applications in IoT. The effectiveness 

of the mechanism has been evaluated by conducting a series of simulations. 

The results of the simulations show that the proposed mechanism is able to 

find near to optimal solutions in a very lower execution time compared to 

the brute force method. 
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1. INTRODUCTION 

Internet of thing (IoT) comprises many smart devices that are connected via wired or wireless 

connections and are also connected to a cloud data center. The deployment of a cloud computing data center 

at the core of the IoT network has advantages such as ubiquitous access, unlimited scalability, and elasticity 

[1]. However, due to the centralization caused by deploying a central cloud data center in IoT and the 

geographical distance of cloud data centers from IoT devices, the links connecting the IoT de-vices and cloud 

data centers may become performance bottlenecks. Such performance bottlenecks can increase the execution 

latency of computation-al tasks submitted by IoT devices to the cloud data center, making it challenging to 

host delay-sensitive applications in such an IoT network. To mitigate these challenges, a new paradigm 

called “fog computing” [2] has been proposed in recent years. The idea behind fog computing is to reduce the 

average execution latency of tasks by placing a set of fog computing servers between IoT devices and cloud 

data centers. 

https://creativecommons.org/licenses/by-sa/4.0/
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If an IoT-based fog computing model is implemented using traditional networking paradigms, the 

convergence to a new desirable configuration will be time-consuming, making it challenging to quickly adapt 

the platform to host new services with a short lifespan. As such, it is crucial to adjust the networking 

paradigm to make it agile enough to update its configuration to handle such services. According to the 

software-defined networking (SDN) paradigm, to address these challenges and leverage the features of 

SDNs, it seems to be a promising solution to implement the network of IoT-based fog computing models. 

The concept of SDN has been proposed in [3] and has garnered significant attention from both industry 

and academia [4]. So, using the SDN idea to implement the network IoT-based fog computing model has been 

considered in several types of research. Therefore, the implementation of an IoT-based fog computing model 

using the SDN paradigm has been considered in various research studies. Sood et al. [3] examined current 

efforts to merge SDN and IoT. Gupta et al. [5] proposed a middleware based on SDN-cloud fog computing. 

Hakiri et al. [6] proposed a novel architecture for controlling wireless fog-based SDN, in order to reduce delay. 

In [7] studied a software-defined fog computing in IoT architecture for resource management. Misra and Saha 

[8] studied a greedy heuristic scheme for multi-hop task offloading in IoT-based fog computing via software-

defined methods. Misra and Bera [9] proposed mobility-aware task offloading in software-defined vehicular 

networks to optimize the computational offloading and network latency in vehicular networks. This scheme is 

based on SDN and has a node selection and task computation phase. 

Therefore, due to the advantages of SDN and following the aforementioned research works, in this 

paper, we consider the platform of software-defined IoT-based fog computing to address the problem of 

processing delay-sensitive applications on this platform. 

− Analyzing the network between fog servers to find all possible paths between every pair of fog servers 

and indexing them as a hypergraph to facilitate the assigning process. 

− Selecting a mapping between the task graph and the constructed hypergraph, leading to the task’s lowest 

execution latency. A set of simulations have been conducted to evaluate the effectiveness of the proposed 

method, and the proposed method's performance is compared to the exhaustive optimal search method. 

The main contribution of this paper is to extend the previously proposed task processing latency 

models proposed in [6]–[9] to consider the latency of processing tasks with multi-node weighted directed 

graphs. The necessity of considering such tasks arises from the fact that there may be situations in which a 

single network fog server cannot handle the submitted task, and the task must be partitioned into dependent 

sub-tasks. The directed graph of the task would model the dependency between sub-tasks, and the graph 

nodes would denote each sub-task. Therefore, this graph should be assigned to a connected set of fog servers 

so that the processing latency of the task falls within an acceptable range according to the timing constraints 

of the submitted real-time task. In light of this, the proposed task offloading method in this paper is 

composed of two parts. The first part is similar to previously proposed methods for offloading tasks from IoT 

devices to fog servers. The second part deals with assigning the task graph to a suitable subset of fog servers. 

The problem of assigning the multi-node task graph to the cluster of fog servers can be modeled as a 

variation of the well-known sub-graph isomorphism problem, which is NP-hard [10]. Thus, the second part 

of the proposed method is designed based on a greedy approach that achieves optimal solutions with lower 

execution time than exhaustive optimal search. To this end, the second part of the proposed method takes the 

following actions: i) finding the critical path in the task graph, ii) analyzing the network between fog servers 

to find all possible paths between every pair of fog servers and indexing them as a hypergraph to facilitate the 

assigning process, and iii) selecting a mapping between the task graph and the constructed hypergraph, 

leading to the task’s lowest execution latency. 

 

 

2. RELATED WORK 

This section provides an overview of related literature on the task offloading problem in IoT-based 

fog computing and software-defined fog computing. Specifically, with regard to the main contribution of this 

paper, which pertains to the mapping of undirected multi-node task graphs to fog servers, a brief review of 

related works in the field of task graph mapping is also presented. Subsection 2.1 primarily examines 

research conducted on task offloading in IoT-based fog computing, while subsection 2.2 examines literature 

addressing task offloading in software-defined fog computing. Finally, subsection 2.3 offers a succinct 

overview of the concept of task graph mapping. 

 

2.1.  Task offloading in IoT based fog computing 

To address task offloading in the fog computing environment, Sood and Singh in [11], proposed a 

priority-based resource allocation scheme. Liu et al. [12] studied offloading processes in a fog computing 

system with mobile devices by utilizing queuing theory to form a theoretical foundation for formulating a 

multi-objective optimization problem to minimize energy consumption, execution delay, and payment cost. 
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They proposed a task offloading method based on finding the optimal offloading probability and transmitting 

power for each mobile device. Wang et al. [13] proposed a resource management framework equipped with 

mechanisms for provisioning and auto-scaling edge node resources. Shojafar et al. [14] considered the 

resource scheduling challenges as a part of task offloading in IoT-based fog computing in vehicular 

networks. Zeng et al. [15] proposed an innovative algorithm for scheduling tasks and resource management 

with minimized task completion time in fog computing based on software-defined embedded systems. 

Gu et al. [16] considered the integration of fog computing and medical cyber-physical devices, and have 

proposed an algorithm for jointly optimize base station association, task distribution, and virtual machine 

placement to minimize the cost of this network. Pham-Nguyen and Tran-Minh [17] considered the service 

deployment problem as a multi-objective optimization that minimizes the overall response time of an 

application. Huang et al. [18] have proposed the task offloading problem in IoT-based fog computing with 

deep reinforcement learning in single -nodes task graphs. 

 

2.2.  Software-defined fog platform and task assignment 

To address the issue of task offloading in the fog SDN, Bu and Wang [4] proposed a novel 

networking for edge computing patterns using the idea of software defined networking. Huang et al. [18] 

considered a SDN-based mobile edge computing framework to provide a higher level of data-plane flexibility 

and programmability. The network deployment and conditions of the proposed framework. In [19] studied a 

offloading model cooperative software-defined for device-to-device communication in advanced long-term 

evolution (LTE) networks. Misra and Saha [8] proposed an integer linear programming formulation for the 

task offloading problem in IoT-based fog computing with a software-defined access network. In addition, 

Misra and Bera in [9] considered optimizing the computational offloading and network latency in vehicular 

networks with SDN access networks. 

 

2.3.  Task graph mapping 

Mirza et al. [20] proposed a systematic review in the scope of mapping and scheduling data flow 

graphs in streaming applications. Sugiarto et al. [21] presented an efficient mapping strategy for a task graph 

on a machine based on spiking neural network (SNN) architecture. Simon et al. [22] proposed a directed 

cycling graph scheduling algorithm over multiprocessor system-on-chips intending to minimize energy 

consumption. Taura and Chien [23] have presented a graph-theoretic formulation of task scheduling 

problems and have proposed a heuristic algorithm based on their proposed model. 

 

 

3. THE PROPOSED SOFTWARE-DEFINED PLATFORM 

We propose a software-defined fog platform as shown in Figure 1, the requests of each IoT device 

would be submitted to the fog-cloud network through base stations in the form of a multi-nodes weighted 

directed task graph. The base stations and the fog domains are SDN-enabled and can be monitored and 

managed by the SDN controller through its southbound Application programming interface (APIs). This 

module aims to reduce task execution latency by forwarding tasks to proper base stations and fog domains. 

The problem is formulated as integer programming and is presented below.  

The physical network is shown as a 𝐺 =< 𝐼, 𝑉, 𝐿 > where I is the set of IoT devices, V denotes a set 

of nodes including base stations and fog servers and, L denotes the set of communication links between the 

nodes is proposed in [21]. The computational capacity of network nodes is denoted by 𝑊 = { 𝑤1, … , 𝑤𝑁} 

where 𝑤𝑖  is the processing capacity of 𝑖𝑡ℎ node of the network and 𝑁 = |𝑉|. Furthermore, a bandwidth of 

network links is presented by 𝐵 = {𝑏1, . . , 𝑏𝑀} where 𝑏𝑗 is the bandwidth of 𝑗𝑡ℎ link of network and 𝑀 = |𝐿|. 

Following this notation, it is implicitly assumed that the base station nodes are seen the same as the fog 

servers while they have no processing capacity by default. 

Let 𝑇 = {𝑡1
1, … . , 𝑡𝑅1

1 , … , 𝑡1
𝐾 , … . , 𝑡𝑅𝑘

𝐾 } be the set of all tasks submitted by IoT devices where 𝑡𝑠
𝑜 is the 

𝑜𝑡ℎ task of the 𝑠𝑡ℎ IoT device, and 𝑅𝑘 is the number of tasks submitted by 𝐾𝑡ℎ IoT device. Each 𝑡𝑠
𝑜 is by 

itself a directed acyclic graph (DAG). So, each task is shown as 𝑡𝑠
𝑜 =< 𝑉𝑠

𝑜, 𝐿𝑠
𝑜 >. 𝑉𝑠

𝑜 denotes a set of nodes in 

each task and 𝐿𝑠
𝑜 denotes the set of communication links between the nodes. Each task has a processing 

requirement and communication requirement, the processing requirements of task nodes is denoted by  

𝑃𝑠
𝑜 =< 𝑝𝑠1

𝑜 , … , 𝑝𝑠𝐻
𝑜 > where 𝑝𝑠𝑓

𝑜  is the processing requirement of 𝑓𝑡ℎ node of the task and 𝐻 = |𝑉𝑠
𝑜|. 

Furthermore, the communication requirement of task links is presented by 𝐶𝑠
𝑜 =< 𝑐𝑠1

𝑜 , … , 𝑐𝑠𝑍
𝑜 > where 𝑐𝑠𝑞

𝑜  is 

the communication requirement of 𝑞𝑡ℎ link of task and 𝑍 = |𝐿𝑠
𝑜|. We calculate the maximum delay taken to 

process a task. Maximum delay (Mdf) to service a task in a fog domain is expressed as (1): 

 

Mdf = Dp
 + Dt

 + Dc
       (1) 
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𝐷𝑝
  is the sum of all propagation delay, and 𝐷𝑡

  is the transmission delay, and Dc is the multi-node task graph 

processing delay which includes both queuing delay and multi-node task graph processing delay. 

 

 

 
 

Figure 1. The architecture of the SDN fog platform 

 

 

The multi-node task graph processing delay is the total time taken by the fog domain to compute a 

task. Let 𝑥𝑖
𝑓
 be the mapping parameter indicating the hosting the 𝑓𝑡ℎ node of the 𝑡𝑠

𝑜 task by the 𝑖𝑡ℎ node of 

the G. Furthermore let 𝑃𝐻𝑢,𝑣 be the set of all possible paths between nodes 𝑢, 𝑣 ∈ 𝐺 . Besides let 𝑦𝑝
𝑞
 be the 

parameter indicating the mapping of the 𝑞𝑡ℎ link of the 𝑡𝑠
𝑜 task to the path 𝑝 ∈ 𝑃𝐻𝑢,𝑣 . So, the multi-node task 

graph processing delay for processing the task 𝑡𝑠
𝑜 can be computed as: 

 

Dc = ∑  xi
f. Df,i

que
+ xi

f. Df,i
proc

+ yp
q

. ∑ Dq,J
t

J∈p,
p∈ PHu,v,u,v∈G,

(xu
α=1 and xv

β
=1),q==(α,β)

f∈Vs
o,i∈V,q∈Ls

o 
  

  

 

where 𝐷𝑓,𝑖
𝑞𝑢𝑒

 and 𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

 are in order the queuing latency and the processing latency of the 𝑓𝑡ℎ node of the 𝑡𝑠
𝑜 

task by the 𝑖𝑡ℎ node of the G, and 𝐷𝑞,𝐽
𝑡  is transmission delay over 𝐽𝑡ℎ link of the G and is member of  

𝑝 ∈  𝑃𝐻𝑢,𝑣 hosting the 𝑞𝑡ℎ link of the 𝑡𝑠
𝑜 the task with starting and ending nodes hosted by 𝑣 ∈ 𝐺. 

Therefore, the optimization objective function can be defined as (4)-(10). 

 

P: Minimize Mdf   (4) 

 

s. t: xi
f ∈ {0,1}    (5) 

 

yp
q

∈ {0,1}     (6) 

 

xi
f = {1 hosting the f th node of the ts

o task by the ith node of the G 
0                                                                otherwisw

 (7) 

 

yp
q

= {
1 mapping of the qth link of the ts

o task to the path p ∈  PHu,v

0                                                             otherwise
  (8) 
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∀ ϑ ∈ V, ∀ ts
o  ∑   ps,γ

o xϑ
γ

γ∈Vs
o ≤ wϑ

  (9) 

 

∀J ∈ B , ∀ ts
o ∑ csq

o yp
q

≤ bJJ∈p,
p∈ PHu,v,u,v∈G,

(xu
α=1 and xv

β
=1),q==(α,β)

 (10) 

 

Constraints (5), (7) means, 𝑥𝑖
𝑓
 either gets a value of zero or a value of 1. If its value is 1, it means that the 𝑓𝑡ℎ 

node of the task 𝑡𝑠
𝑜 is mapped to the 𝑖𝑡ℎ node of the G. Constraints (6), (8), means, 𝑦𝑝

𝑞
 either gets a value of 

zero or a value of 1. If its value is 1, it means that the 𝑞𝑡ℎ link of the task 𝑡𝑠
𝑜 is mapped to the path 𝑝 ∈ 𝑃𝐻𝑢,𝑣, 

in which p passes through the 𝐽𝑡ℎ link of the G. Constraint (9) stand for the processing capacity limitation of 

the 𝑖𝑡ℎ node of the 𝐺. Constraint (10) stands for bandwidth capacity limitation of the 𝐽𝑡ℎ link of the G. 

 

 

4. THE PROPOSED ALGORITHM 

We introduce a heuristic greedy algorithm called SDN BSA. The proposed algorithm is an 

adaptation of the BSA algorithm presented in [24]. This algorithm starts by scheduling all the nodes to one 

fog node in a virtual way. It then improves the schedule by migrating the nodes to other fog nodes.  

It should be noted that each link of the task graph may be mapped to a path on the fog domain. To 

make it possible to use the mapping technique of BSA in our presented problem a preprocessing step should 

be done on the fog domain topology. This preprocessing step indexes all possible paths between each pair of 

fog servers in the fog domain. By doing so, a hypergraph of the fog domain topology will be constructed in 

which each node is a fog server and each link represents a physical path over the fog domain. The paths 

represented by hypergraph links do not include any duplicate fog servers or physical links. The paths 

between each pair of fog servers can be found by depth first search (DFS). 

Upon receiving a task by a base station, it will be forwarded to the SDN controller for making 

decisions about its mapping. Benefiting this it can make a central decision about the task mapping. To do this 

the controller designates a fog server as the “Admin node” of the mapping.  

To minimize the overall task execution time, it is required to minimize the execution time of the 

longest path of the task graph. To do so, a function will scan the task graph and find its longest path. All fog 

servers will be checked for their available computational resources to host accumulated computational 

demands of the nodes in the longest path. If there is such a fog server it will be determined as the admin node 

and all of the longest path nodes will be mapped to this node. If there is not enough room over none of the 

fog servers to host all of the longest path nodes, a part of the longest path will be mapped to neighbor fog 

servers regarding their available resource and the delay constraint of the task. 

After determining the admin node, the mapping of each task node will be done according to its data 

dependency on its previous nodes in the task graph and availability of the resources on the fog servers and their 

connections. While implementing the algorithm, we have a large data-producing parent that the volume of data 

they send to their child node is the maximum, here it is better to put the child next to these parents to minimize 

latency. Each fog node also has its computation capacity and bandwidth (communication capacity). Now, based 

on the selected admin node and capacity of the fog node, the node in the task graph maps to the fog node, after 

mapping the resources, the mapped value is reduced from the fog node capacity, and then the management 

module updates the fog node capacity. The mapping algorithm 1 is described as a pseudo-code as: 

 

Algorithm 1: SDN BSA 
SDN BSA Algorithm: 

0. Preprocess the physical network topology and constructed the hypergraph. 

1. Partitioning of task graph into sub-tasks 

a. Select Critical Path(CP) 

b. Select (CPN ancestors) 

c. Add CPN near family to CPN 

- Select one of the parents of the first node at CPN, if all parents of the selected 

node are in CPN add selected in CPN. Else, select one of the parents of the 

selected node with the farthest distance from the first node and call this routine 

for the newly selected node in a recursive way.  

- Run i for other CPN nodes. 

d. Add CPN Root cousins to CPN ancestor, CPN Root cousin is a node that is left out of 

CPN after completion of c. 

2. Select Admin node in the hypergraph 

a. The admin node in the hypergraph has the most number of links to the other nodes with 

the ability to host task nodes.  

3. Assign all CPN ancestors to the admin node 

4. Migrate the task nodes on CPN ancestors to adjacent fog servers using the following 

routine: 
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a. For each task node that must be migrated to other fog servers, the following 

conditions should hold:  

(Start of time node in adjacent fog node-max (start of time node in admin node, the 

data arrival time of node receive from its parent))>=delay of processing task graph 

nodes and transmission required data on nodes for forwarding target fog server. 

 

 

5. RESULT AND PERFORMANCE OF THE METHOD  

In this section, a series of simulations have been carried out, and the results of the simulations are 

presented. These simulations are coded using Python 3.8. A random topology generator is implemented to 

create the fog node networks and SDN controllers. Additionally, a random task graph generator has been 

developed for sequential generation of task graphs. All coding runs on a system with 8 GB of RAM and a 

Core i7 CPU. For each node in the fog network, computation node frequencies of [0.2, 1.5 GHz] and 

bandwidths of [250 kbps, 54 Mbps] are considered. The transmission rate between the fog nodes is expected 

to be higher, approximately 100 Mbps, the average packet size [0, 1 KB, 80 KB]. For each task, computation 

node frequencies of [0.1, 0.5 GHz] and bandwidths of [150 kbps, 10 Mbps] are considered, as per reference 

[25]. The simulation parameters, such as the fog network size, the values of task node and fog node capacity, 

and the size of the task graph, are also reported for each experiment. 

Simulation 1: the first experiment presents the results of the analysis of the working time of the 

SDN-BSA algorithm. The effect of the estimation on the algorithm’s total working time is explained in the 

subsequent section. The reported results are then evaluated. The average mapping time plays an important 

role in the application of SDN-BSA. In this part, the average time of the proposed SDN-BSA algorithm is 

compared to the comprehensive execution time of the mapping algorithm. As shown in Figure 2, in 

experiment 1, due to the exponential growth of the average execution time of the comprehensive 

implementation for the size of the task graph, the two algorithms are implemented in a network of size 3. The 

parameters used in the fog network and task diagram are shown in Table 1. A series of sequences consisting 

of 3 tasks each is applied to both algorithms, and the average working time of each algorithm is measured. 

The size of applied tasks varies from 1 to 3. The fog networks and task graphs are randomly generated. 

 

 

 
 

Figure 2. Average of working time 

 

 

Table 1. The parameters of task graph and fog network 
 Computation capacity Communicational capacity 

Fog node [0.2, 1.5 GHz] [250 kbps, 54 Mbps] 
 Computation demand Communicational demand 

Task node [0.1, 0.5 GHz] [150 kbps, 10 Mbps] 

 

 

Simulation 2: to evaluate the average working time of the proposed SDN-BSA algorithm for larger 

samples, we analyze the proposed algorithm on task graphs with sizes between 20 and 140. The computation 

capacity and communication capacity for the fog network and task graph are according to Table 2. As shown 

in Figure 3, the average working time increases with an increasing task graph size. 
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Table 2. The parameters of task graph 
 Size  Computation capacity 

Fog network  related to the selected topology [0.2, 1.5 GHz] 
 Size  Computation demand 

Task graph  [20, 140] [0.1, 0.5 GHz] 

 

 

 
 

Figure 3. Average of working time 

 

 

As shown in Figure 4, to demonstrate the superiority of the proposed SDN-BSA algorithm, we 

compare the total delay obtained from the proposed algorithm with the brute force algorithm. The parameters 

used in Figure 4 are extracted from Table 3. The figure shows the comprehensive results of the SDN-BSA 

algorithm.  

Simulation 3: to confirm the SDN-BSA, the overall delay obtained by this algorithm is compared to 

the delay of the exhaustive. Figure 4 shows the results of this simulation using the benchmarks with the 

parameters listed in Table 3. As shown in Figure 4, the delay gained by algorithm SDN-BSA approves the 

results of exhaustive. 

 

 

 
 

Figure 4. The results of simulation 3 

 

 

Table 3. The critical parameters in simulation 3 
Criterion C#1 C#2 C#3 C#4 

Min of node computation demand in task graph 0.1 GHz 0.2 GHz 0.3 GHz 0.1 GHz 
Max of node computation demand n task graph 0.4GHz 0.5GHz 0.5 GHz 0.5 GHz 

Min of link communication demand in task graph 150 kbps 160 kbps 165 kbps 180 kbps 
Max of link communication demand in task graph 5 Mbps 8 Mbps 10 Mbps 10 Mbps 

SDN BSA 
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6. CONCLUSION  

In summary, this paper presents a new approach for task offloading in the SDN-Fog platform by 

proposing a formal model to address the delay-sensitive task offloading problem. A brute force technique and 

a heuristic task assignment technique were proposed and evaluated through simulations. The results show 

that the proposed heuristic method, based on constructing a hypergraph of the underlying network, is superior 

to the brute force technique and is capable of reducing delay by 22% and 6% compared to Detour and Soft-

VAN, respectively. This research contributes to the field of IoT and fog computing by proposing a new 

approach for task offloading in SDN-Fog platforms that addresses the challenges of delay-sensitive 

applications. 
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