
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 6, December 2023, pp. 7099~7107

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i6.pp7099-7107 7099

Journal homepage: http://ijece.iaescore.com

Resource allocation for fog computing based on

software-defined networks

Sepideh Sheikhi Nejad1, Ahmad Khademzadeh2, Amir Masoud Rahmani3, Ali Broumandnia1
1Department of Computer Engineering, Islamic Azad University South Tehran Branch, Tehran, Iran

2Department of Computer Engineering, Research Center ITRC, Tehran, Iran
3Department of Computer Engineering Science and Research Branch, Islamic Azad University, Tehran, Iran

Article Info ABSTRACT

Article history:

Received Aug 26, 2022

Revised Mar 15, 2023

Accepted Apr 3, 2023

 With the emergence of cloud computing as a processing backbone for

internet of thing (IoT), fog computing has been proposed as a solution for

delay-sensitive applications. According to fog computing, this is done by

placing computing servers near IoT. IoT networks are inherently very

dynamic, and their topology and resources may be changed drastically in a

short period. So, using the traditional networking paradigm to build their

communication backbone, may lower network performance and higher

network configuration convergence latency. So, it seems to be more

beneficial to employ a software-defined network paradigm to implement

their communication network. In software-defined networking (SDN),

separating the network’s control and data forwarding plane makes it possible

to manage the network in a centralized way. Managing a network using a

centralized controller can make it more flexible and agile in response to any

possible network topology and state changes. This paper presents a software-

defined fog platform to host real-time applications in IoT. The effectiveness

of the mechanism has been evaluated by conducting a series of simulations.

The results of the simulations show that the proposed mechanism is able to

find near to optimal solutions in a very lower execution time compared to

the brute force method.

Keywords:

Fog computing

Fog node

Resource allocation

Software defined network

Task mapping

This is an open access article under the CC BY-SA license.

Corresponding Author:

Ahmad Khademzadeh

Department of Computer Engineering, Research Center ITRC

Tehran, Iran

Email: a.khademzadeh@itrc.ac.ir

1. INTRODUCTION

Internet of thing (IoT) comprises many smart devices that are connected via wired or wireless

connections and are also connected to a cloud data center. The deployment of a cloud computing data center

at the core of the IoT network has advantages such as ubiquitous access, unlimited scalability, and elasticity

[1]. However, due to the centralization caused by deploying a central cloud data center in IoT and the

geographical distance of cloud data centers from IoT devices, the links connecting the IoT de-vices and cloud

data centers may become performance bottlenecks. Such performance bottlenecks can increase the execution

latency of computation-al tasks submitted by IoT devices to the cloud data center, making it challenging to

host delay-sensitive applications in such an IoT network. To mitigate these challenges, a new paradigm

called “fog computing” [2] has been proposed in recent years. The idea behind fog computing is to reduce the

average execution latency of tasks by placing a set of fog computing servers between IoT devices and cloud

data centers.

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7099-7107

7100

If an IoT-based fog computing model is implemented using traditional networking paradigms, the

convergence to a new desirable configuration will be time-consuming, making it challenging to quickly adapt

the platform to host new services with a short lifespan. As such, it is crucial to adjust the networking

paradigm to make it agile enough to update its configuration to handle such services. According to the

software-defined networking (SDN) paradigm, to address these challenges and leverage the features of

SDNs, it seems to be a promising solution to implement the network of IoT-based fog computing models.

The concept of SDN has been proposed in [3] and has garnered significant attention from both industry

and academia [4]. So, using the SDN idea to implement the network IoT-based fog computing model has been

considered in several types of research. Therefore, the implementation of an IoT-based fog computing model

using the SDN paradigm has been considered in various research studies. Sood et al. [3] examined current

efforts to merge SDN and IoT. Gupta et al. [5] proposed a middleware based on SDN-cloud fog computing.

Hakiri et al. [6] proposed a novel architecture for controlling wireless fog-based SDN, in order to reduce delay.

In [7] studied a software-defined fog computing in IoT architecture for resource management. Misra and Saha

[8] studied a greedy heuristic scheme for multi-hop task offloading in IoT-based fog computing via software-

defined methods. Misra and Bera [9] proposed mobility-aware task offloading in software-defined vehicular

networks to optimize the computational offloading and network latency in vehicular networks. This scheme is

based on SDN and has a node selection and task computation phase.

Therefore, due to the advantages of SDN and following the aforementioned research works, in this

paper, we consider the platform of software-defined IoT-based fog computing to address the problem of

processing delay-sensitive applications on this platform.

− Analyzing the network between fog servers to find all possible paths between every pair of fog servers

and indexing them as a hypergraph to facilitate the assigning process.

− Selecting a mapping between the task graph and the constructed hypergraph, leading to the task’s lowest

execution latency. A set of simulations have been conducted to evaluate the effectiveness of the proposed

method, and the proposed method's performance is compared to the exhaustive optimal search method.

The main contribution of this paper is to extend the previously proposed task processing latency

models proposed in [6]–[9] to consider the latency of processing tasks with multi-node weighted directed

graphs. The necessity of considering such tasks arises from the fact that there may be situations in which a

single network fog server cannot handle the submitted task, and the task must be partitioned into dependent

sub-tasks. The directed graph of the task would model the dependency between sub-tasks, and the graph

nodes would denote each sub-task. Therefore, this graph should be assigned to a connected set of fog servers

so that the processing latency of the task falls within an acceptable range according to the timing constraints

of the submitted real-time task. In light of this, the proposed task offloading method in this paper is

composed of two parts. The first part is similar to previously proposed methods for offloading tasks from IoT

devices to fog servers. The second part deals with assigning the task graph to a suitable subset of fog servers.

The problem of assigning the multi-node task graph to the cluster of fog servers can be modeled as a

variation of the well-known sub-graph isomorphism problem, which is NP-hard [10]. Thus, the second part

of the proposed method is designed based on a greedy approach that achieves optimal solutions with lower

execution time than exhaustive optimal search. To this end, the second part of the proposed method takes the

following actions: i) finding the critical path in the task graph, ii) analyzing the network between fog servers

to find all possible paths between every pair of fog servers and indexing them as a hypergraph to facilitate the

assigning process, and iii) selecting a mapping between the task graph and the constructed hypergraph,

leading to the task’s lowest execution latency.

2. RELATED WORK

This section provides an overview of related literature on the task offloading problem in IoT-based

fog computing and software-defined fog computing. Specifically, with regard to the main contribution of this

paper, which pertains to the mapping of undirected multi-node task graphs to fog servers, a brief review of

related works in the field of task graph mapping is also presented. Subsection 2.1 primarily examines

research conducted on task offloading in IoT-based fog computing, while subsection 2.2 examines literature

addressing task offloading in software-defined fog computing. Finally, subsection 2.3 offers a succinct

overview of the concept of task graph mapping.

2.1. Task offloading in IoT based fog computing

To address task offloading in the fog computing environment, Sood and Singh in [11], proposed a

priority-based resource allocation scheme. Liu et al. [12] studied offloading processes in a fog computing

system with mobile devices by utilizing queuing theory to form a theoretical foundation for formulating a

multi-objective optimization problem to minimize energy consumption, execution delay, and payment cost.

Int J Elec & Comp Eng ISSN: 2088-8708

Resource allocation for fog computing based on software-defined networks (Sepideh Sheikhi Nejad)

7101

They proposed a task offloading method based on finding the optimal offloading probability and transmitting

power for each mobile device. Wang et al. [13] proposed a resource management framework equipped with

mechanisms for provisioning and auto-scaling edge node resources. Shojafar et al. [14] considered the

resource scheduling challenges as a part of task offloading in IoT-based fog computing in vehicular

networks. Zeng et al. [15] proposed an innovative algorithm for scheduling tasks and resource management

with minimized task completion time in fog computing based on software-defined embedded systems.

Gu et al. [16] considered the integration of fog computing and medical cyber-physical devices, and have

proposed an algorithm for jointly optimize base station association, task distribution, and virtual machine

placement to minimize the cost of this network. Pham-Nguyen and Tran-Minh [17] considered the service

deployment problem as a multi-objective optimization that minimizes the overall response time of an

application. Huang et al. [18] have proposed the task offloading problem in IoT-based fog computing with

deep reinforcement learning in single -nodes task graphs.

2.2. Software-defined fog platform and task assignment

To address the issue of task offloading in the fog SDN, Bu and Wang [4] proposed a novel

networking for edge computing patterns using the idea of software defined networking. Huang et al. [18]

considered a SDN-based mobile edge computing framework to provide a higher level of data-plane flexibility

and programmability. The network deployment and conditions of the proposed framework. In [19] studied a

offloading model cooperative software-defined for device-to-device communication in advanced long-term

evolution (LTE) networks. Misra and Saha [8] proposed an integer linear programming formulation for the

task offloading problem in IoT-based fog computing with a software-defined access network. In addition,

Misra and Bera in [9] considered optimizing the computational offloading and network latency in vehicular

networks with SDN access networks.

2.3. Task graph mapping

Mirza et al. [20] proposed a systematic review in the scope of mapping and scheduling data flow

graphs in streaming applications. Sugiarto et al. [21] presented an efficient mapping strategy for a task graph

on a machine based on spiking neural network (SNN) architecture. Simon et al. [22] proposed a directed

cycling graph scheduling algorithm over multiprocessor system-on-chips intending to minimize energy

consumption. Taura and Chien [23] have presented a graph-theoretic formulation of task scheduling

problems and have proposed a heuristic algorithm based on their proposed model.

3. THE PROPOSED SOFTWARE-DEFINED PLATFORM

We propose a software-defined fog platform as shown in Figure 1, the requests of each IoT device

would be submitted to the fog-cloud network through base stations in the form of a multi-nodes weighted

directed task graph. The base stations and the fog domains are SDN-enabled and can be monitored and

managed by the SDN controller through its southbound Application programming interface (APIs). This

module aims to reduce task execution latency by forwarding tasks to proper base stations and fog domains.

The problem is formulated as integer programming and is presented below.

The physical network is shown as a 𝐺 =< 𝐼, 𝑉, 𝐿 > where I is the set of IoT devices, V denotes a set

of nodes including base stations and fog servers and, L denotes the set of communication links between the

nodes is proposed in [21]. The computational capacity of network nodes is denoted by 𝑊 = { 𝑤1, … , 𝑤𝑁}

where 𝑤𝑖 is the processing capacity of 𝑖𝑡ℎ node of the network and 𝑁 = |𝑉|. Furthermore, a bandwidth of

network links is presented by 𝐵 = {𝑏1, . . , 𝑏𝑀} where 𝑏𝑗 is the bandwidth of 𝑗𝑡ℎ link of network and 𝑀 = |𝐿|.

Following this notation, it is implicitly assumed that the base station nodes are seen the same as the fog

servers while they have no processing capacity by default.

Let 𝑇 = {𝑡1
1, … . , 𝑡𝑅1

1 , … , 𝑡1
𝐾 , … . , 𝑡𝑅𝑘

𝐾 } be the set of all tasks submitted by IoT devices where 𝑡𝑠
𝑜 is the

𝑜𝑡ℎ task of the 𝑠𝑡ℎ IoT device, and 𝑅𝑘 is the number of tasks submitted by 𝐾𝑡ℎ IoT device. Each 𝑡𝑠
𝑜 is by

itself a directed acyclic graph (DAG). So, each task is shown as 𝑡𝑠
𝑜 =< 𝑉𝑠

𝑜, 𝐿𝑠
𝑜 >. 𝑉𝑠

𝑜 denotes a set of nodes in

each task and 𝐿𝑠
𝑜 denotes the set of communication links between the nodes. Each task has a processing

requirement and communication requirement, the processing requirements of task nodes is denoted by

𝑃𝑠
𝑜 =< 𝑝𝑠1

𝑜 , … , 𝑝𝑠𝐻
𝑜 > where 𝑝𝑠𝑓

𝑜 is the processing requirement of 𝑓𝑡ℎ node of the task and 𝐻 = |𝑉𝑠
𝑜|.

Furthermore, the communication requirement of task links is presented by 𝐶𝑠
𝑜 =< 𝑐𝑠1

𝑜 , … , 𝑐𝑠𝑍
𝑜 > where 𝑐𝑠𝑞

𝑜 is

the communication requirement of 𝑞𝑡ℎ link of task and 𝑍 = |𝐿𝑠
𝑜|. We calculate the maximum delay taken to

process a task. Maximum delay (Mdf) to service a task in a fog domain is expressed as (1):

Mdf = Dp
 + Dt

 + Dc
 (1)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7099-7107

7102

𝐷𝑝
 is the sum of all propagation delay, and 𝐷𝑡

 is the transmission delay, and Dc is the multi-node task graph

processing delay which includes both queuing delay and multi-node task graph processing delay.

Figure 1. The architecture of the SDN fog platform

The multi-node task graph processing delay is the total time taken by the fog domain to compute a

task. Let 𝑥𝑖
𝑓
 be the mapping parameter indicating the hosting the 𝑓𝑡ℎ node of the 𝑡𝑠

𝑜 task by the 𝑖𝑡ℎ node of

the G. Furthermore let 𝑃𝐻𝑢,𝑣 be the set of all possible paths between nodes 𝑢, 𝑣 ∈ 𝐺 . Besides let 𝑦𝑝
𝑞
 be the

parameter indicating the mapping of the 𝑞𝑡ℎ link of the 𝑡𝑠
𝑜 task to the path 𝑝 ∈ 𝑃𝐻𝑢,𝑣 . So, the multi-node task

graph processing delay for processing the task 𝑡𝑠
𝑜 can be computed as:

Dc = ∑ xi
f. Df,i

que
+ xi

f. Df,i
proc

+ yp
q

. ∑ Dq,J
t

J∈p,
p∈ PHu,v,u,v∈G,

(xu
α=1 and xv

β
=1),q==(α,β)

f∈Vs
o,i∈V,q∈Ls

o

where 𝐷𝑓,𝑖
𝑞𝑢𝑒

 and 𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

 are in order the queuing latency and the processing latency of the 𝑓𝑡ℎ node of the 𝑡𝑠
𝑜

task by the 𝑖𝑡ℎ node of the G, and 𝐷𝑞,𝐽
𝑡 is transmission delay over 𝐽𝑡ℎ link of the G and is member of

𝑝 ∈ 𝑃𝐻𝑢,𝑣 hosting the 𝑞𝑡ℎ link of the 𝑡𝑠
𝑜 the task with starting and ending nodes hosted by 𝑣 ∈ 𝐺.

Therefore, the optimization objective function can be defined as (4)-(10).

P: Minimize Mdf (4)

s. t: xi
f ∈ {0,1} (5)

yp
q

∈ {0,1} (6)

xi
f = {1 hosting the f th node of the ts

o task by the ith node of the G
0 otherwisw

 (7)

yp
q

= {
1 mapping of the qth link of the ts

o task to the path p ∈ PHu,v

0 otherwise
 (8)

Int J Elec & Comp Eng ISSN: 2088-8708

Resource allocation for fog computing based on software-defined networks (Sepideh Sheikhi Nejad)

7103

∀ ϑ ∈ V, ∀ ts
o ∑ ps,γ

o xϑ
γ

γ∈Vs
o ≤ wϑ

 (9)

∀J ∈ B , ∀ ts
o ∑ csq

o yp
q

≤ bJJ∈p,
p∈ PHu,v,u,v∈G,

(xu
α=1 and xv

β
=1),q==(α,β)

 (10)

Constraints (5), (7) means, 𝑥𝑖
𝑓
 either gets a value of zero or a value of 1. If its value is 1, it means that the 𝑓𝑡ℎ

node of the task 𝑡𝑠
𝑜 is mapped to the 𝑖𝑡ℎ node of the G. Constraints (6), (8), means, 𝑦𝑝

𝑞
 either gets a value of

zero or a value of 1. If its value is 1, it means that the 𝑞𝑡ℎ link of the task 𝑡𝑠
𝑜 is mapped to the path 𝑝 ∈ 𝑃𝐻𝑢,𝑣,

in which p passes through the 𝐽𝑡ℎ link of the G. Constraint (9) stand for the processing capacity limitation of

the 𝑖𝑡ℎ node of the 𝐺. Constraint (10) stands for bandwidth capacity limitation of the 𝐽𝑡ℎ link of the G.

4. THE PROPOSED ALGORITHM

We introduce a heuristic greedy algorithm called SDN BSA. The proposed algorithm is an

adaptation of the BSA algorithm presented in [24]. This algorithm starts by scheduling all the nodes to one

fog node in a virtual way. It then improves the schedule by migrating the nodes to other fog nodes.

It should be noted that each link of the task graph may be mapped to a path on the fog domain. To

make it possible to use the mapping technique of BSA in our presented problem a preprocessing step should

be done on the fog domain topology. This preprocessing step indexes all possible paths between each pair of

fog servers in the fog domain. By doing so, a hypergraph of the fog domain topology will be constructed in

which each node is a fog server and each link represents a physical path over the fog domain. The paths

represented by hypergraph links do not include any duplicate fog servers or physical links. The paths

between each pair of fog servers can be found by depth first search (DFS).

Upon receiving a task by a base station, it will be forwarded to the SDN controller for making

decisions about its mapping. Benefiting this it can make a central decision about the task mapping. To do this

the controller designates a fog server as the “Admin node” of the mapping.

To minimize the overall task execution time, it is required to minimize the execution time of the

longest path of the task graph. To do so, a function will scan the task graph and find its longest path. All fog

servers will be checked for their available computational resources to host accumulated computational

demands of the nodes in the longest path. If there is such a fog server it will be determined as the admin node

and all of the longest path nodes will be mapped to this node. If there is not enough room over none of the

fog servers to host all of the longest path nodes, a part of the longest path will be mapped to neighbor fog

servers regarding their available resource and the delay constraint of the task.

After determining the admin node, the mapping of each task node will be done according to its data

dependency on its previous nodes in the task graph and availability of the resources on the fog servers and their

connections. While implementing the algorithm, we have a large data-producing parent that the volume of data

they send to their child node is the maximum, here it is better to put the child next to these parents to minimize

latency. Each fog node also has its computation capacity and bandwidth (communication capacity). Now, based

on the selected admin node and capacity of the fog node, the node in the task graph maps to the fog node, after

mapping the resources, the mapped value is reduced from the fog node capacity, and then the management

module updates the fog node capacity. The mapping algorithm 1 is described as a pseudo-code as:

Algorithm 1: SDN BSA
SDN BSA Algorithm:

0. Preprocess the physical network topology and constructed the hypergraph.

1. Partitioning of task graph into sub-tasks

a. Select Critical Path(CP)

b. Select (CPN ancestors)

c. Add CPN near family to CPN

- Select one of the parents of the first node at CPN, if all parents of the selected

node are in CPN add selected in CPN. Else, select one of the parents of the

selected node with the farthest distance from the first node and call this routine

for the newly selected node in a recursive way.

- Run i for other CPN nodes.

d. Add CPN Root cousins to CPN ancestor, CPN Root cousin is a node that is left out of

CPN after completion of c.

2. Select Admin node in the hypergraph

a. The admin node in the hypergraph has the most number of links to the other nodes with

the ability to host task nodes.

3. Assign all CPN ancestors to the admin node

4. Migrate the task nodes on CPN ancestors to adjacent fog servers using the following

routine:

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7099-7107

7104

a. For each task node that must be migrated to other fog servers, the following

conditions should hold:

(Start of time node in adjacent fog node-max (start of time node in admin node, the

data arrival time of node receive from its parent))>=delay of processing task graph

nodes and transmission required data on nodes for forwarding target fog server.

5. RESULT AND PERFORMANCE OF THE METHOD

In this section, a series of simulations have been carried out, and the results of the simulations are

presented. These simulations are coded using Python 3.8. A random topology generator is implemented to

create the fog node networks and SDN controllers. Additionally, a random task graph generator has been

developed for sequential generation of task graphs. All coding runs on a system with 8 GB of RAM and a

Core i7 CPU. For each node in the fog network, computation node frequencies of [0.2, 1.5 GHz] and

bandwidths of [250 kbps, 54 Mbps] are considered. The transmission rate between the fog nodes is expected

to be higher, approximately 100 Mbps, the average packet size [0, 1 KB, 80 KB]. For each task, computation

node frequencies of [0.1, 0.5 GHz] and bandwidths of [150 kbps, 10 Mbps] are considered, as per reference

[25]. The simulation parameters, such as the fog network size, the values of task node and fog node capacity,

and the size of the task graph, are also reported for each experiment.

Simulation 1: the first experiment presents the results of the analysis of the working time of the

SDN-BSA algorithm. The effect of the estimation on the algorithm’s total working time is explained in the

subsequent section. The reported results are then evaluated. The average mapping time plays an important

role in the application of SDN-BSA. In this part, the average time of the proposed SDN-BSA algorithm is

compared to the comprehensive execution time of the mapping algorithm. As shown in Figure 2, in

experiment 1, due to the exponential growth of the average execution time of the comprehensive

implementation for the size of the task graph, the two algorithms are implemented in a network of size 3. The

parameters used in the fog network and task diagram are shown in Table 1. A series of sequences consisting

of 3 tasks each is applied to both algorithms, and the average working time of each algorithm is measured.

The size of applied tasks varies from 1 to 3. The fog networks and task graphs are randomly generated.

Figure 2. Average of working time

Table 1. The parameters of task graph and fog network
 Computation capacity Communicational capacity

Fog node [0.2, 1.5 GHz] [250 kbps, 54 Mbps]
 Computation demand Communicational demand

Task node [0.1, 0.5 GHz] [150 kbps, 10 Mbps]

Simulation 2: to evaluate the average working time of the proposed SDN-BSA algorithm for larger

samples, we analyze the proposed algorithm on task graphs with sizes between 20 and 140. The computation

capacity and communication capacity for the fog network and task graph are according to Table 2. As shown

in Figure 3, the average working time increases with an increasing task graph size.

Int J Elec & Comp Eng ISSN: 2088-8708

Resource allocation for fog computing based on software-defined networks (Sepideh Sheikhi Nejad)

7105

Table 2. The parameters of task graph
 Size Computation capacity

Fog network related to the selected topology [0.2, 1.5 GHz]
 Size Computation demand

Task graph [20, 140] [0.1, 0.5 GHz]

Figure 3. Average of working time

As shown in Figure 4, to demonstrate the superiority of the proposed SDN-BSA algorithm, we

compare the total delay obtained from the proposed algorithm with the brute force algorithm. The parameters

used in Figure 4 are extracted from Table 3. The figure shows the comprehensive results of the SDN-BSA

algorithm.

Simulation 3: to confirm the SDN-BSA, the overall delay obtained by this algorithm is compared to

the delay of the exhaustive. Figure 4 shows the results of this simulation using the benchmarks with the

parameters listed in Table 3. As shown in Figure 4, the delay gained by algorithm SDN-BSA approves the

results of exhaustive.

Figure 4. The results of simulation 3

Table 3. The critical parameters in simulation 3
Criterion C#1 C#2 C#3 C#4

Min of node computation demand in task graph 0.1 GHz 0.2 GHz 0.3 GHz 0.1 GHz
Max of node computation demand n task graph 0.4GHz 0.5GHz 0.5 GHz 0.5 GHz

Min of link communication demand in task graph 150 kbps 160 kbps 165 kbps 180 kbps
Max of link communication demand in task graph 5 Mbps 8 Mbps 10 Mbps 10 Mbps

SDN BSA

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 6, December 2023: 7099-7107

7106

6. CONCLUSION

In summary, this paper presents a new approach for task offloading in the SDN-Fog platform by

proposing a formal model to address the delay-sensitive task offloading problem. A brute force technique and

a heuristic task assignment technique were proposed and evaluated through simulations. The results show

that the proposed heuristic method, based on constructing a hypergraph of the underlying network, is superior

to the brute force technique and is capable of reducing delay by 22% and 6% compared to Detour and Soft-

VAN, respectively. This research contributes to the field of IoT and fog computing by proposing a new

approach for task offloading in SDN-Fog platforms that addresses the challenges of delay-sensitive

applications.

REFERENCES
[1] F. A. Zaman, A. Jarray, and A. Karmouch, “Software defined network-based edge cloud resource allocation framework,” IEEE

Access, vol. 7, pp. 10672–10690, 2019, doi: 10.1109/ACCESS.2018.2889943.
[2] OpenFog Consortium Architecture Working Group, “OpenFog reference architecture for fog computing,” OPFRA001,

vol. 20817, 2017.

[3] K. Sood, S. Yu, and Y. Xiang, “Software-defined wireless networking opportunities and challenges for internet-of-things: a
review,” IEEE Internet of Things Journal, vol. 3, no. 4, pp. 453–463, Aug. 2016, doi: 10.1109/JIOT.2015.2480421.

[4] C. Bu and J. Wang, “Computing tasks assignment optimization among edge computing servers via SDN,” Peer-to-Peer

Networking and Applications, vol. 14, no. 3, pp. 1190–1206, May 2021, doi: 10.1007/s12083-021-01081-x.
[5] H. Gupta, S. B. Nath, S. Chakraborty, and S. K. Ghosh, “SDFog: a software defined computing architecture for QoS aware

service orchestration over edge devices,” arXiv preprint arXiv: 1609.01190, Sep. 2016.
[6] A. Hakiri, B. Sellami, P. Patil, P. Berthou, and A. Gokhale, “Managing wireless fog networks using software-defined

networking,” in 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), Oct. 2017,

pp. 1149–1156, doi: 10.1109/AICCSA.2017.9.
[7] S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusinovic, “Software-defined fog network architecture for IoT,” Wireless

Personal Communications, vol. 92, no. 1, pp. 181–196, Jan. 2017, doi: 10.1007/s11277-016-3845-0.

[8] S. Misra and N. Saha, “Detour: dynamic task offloading in software-defined fog for IoT applications,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 5, pp. 1159–1166, May 2019, doi: 10.1109/JSAC.2019.2906793.

[9] S. Misra and S. Bera, “Soft-VAN: mobility-aware task offloading in software-defined vehicular network,” IEEE Transactions on

Vehicular Technology, vol. 69, no. 2, pp. 2071–2078, Feb. 2020, doi: 10.1109/TVT.2019.2958740.
[10] D. Eppstein, “Subgraph isomorphism in planar graphs and related problems,” Journal of Graph Algorithms and Applications,

vol. 3, no. 3, pp. 1–27, 1999, doi: 10.7155/jgaa.00014.

[11] S. K. Sood and K. D. Singh, “SNA based resource optimization in optical network using fog and cloud computing,” Optical
Switching and Networking, vol. 33, pp. 114–121, Jul. 2019, doi: 10.1016/j.osn.2017.12.007.

[12] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective optimization for computation offloading in fog computing,”

IEEE Internet of Things Journal, vol. 5, no. 1, pp. 283–294, Feb. 2018, doi: 10.1109/JIOT.2017.2780236.
[13] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “ENORM: a framework for Edge NOde resource management,”

IEEE Transactions on Services Computing, vol. 13, no. 6, pp. 1086–1099, 2020, doi: 10.1109/TSC.2017.2753775.

[14] M. Shojafar, N. Cordeschi, and E. Baccarelli, “Energy-efficient adaptive resource management for real-time vehicular
cloud services,” IEEE Transactions on Cloud Computing, vol. 7, no. 1, pp. 196–209, Jan. 2019,

doi: 10.1109/TCC.2016.2551747.

[15] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and image placement in fog computing
supported software-defined embedded system,” IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, Dec. 2016,

doi: 10.1109/TC.2016.2536019.

[16] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang, “Cost efficient resource management in fog computing supported medical
cyber-physical system,” IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 1, pp. 108–119, Jan. 2017, doi:

10.1109/TETC.2015.2508382.

[17] H.-N. Pham-Nguyen and Q. Tran-Minh, “Dynamic resource provisioning on fog landscapes,” Security and Communication
Networks, pp. 1–15, May 2019, doi: 10.1155/2019/1798391.

[18] L. Huang, X. Feng, L. Qian, and Y. Wu, “Deep reinforcement learning-based task offloading and resource allocation for mobile

edge computing,” in Machine Learning and Intelligent Communications, Springer International Publishing, 2018, pp. 33–42.
[19] Y. Cui et al., “Software defined cooperative offloading for mobile cloudlets,” IEEE/ACM Transactions on Networking, vol. 25,

no. 3, pp. 1746–1760, Jun. 2017, doi: 10.1109/TNET.2017.2650964.

[20] U. M. Mirza, M. A. Arslan, G. Cedersjo, S. M. Sulaman, and J. W. Janneck, “Mapping and scheduling of dataflow graphs-a
systematic map,” in 2014 48th Asilomar Conference on Signals, Systems and Computers, Nov. 2014, pp. 1843–1847, doi:

10.1109/ACSSC.2014.7094787.

[21] I. Sugiarto, P. Campos, N. Dahir, G. Tempesti, and S. Furber, “Optimized task graph mapping on a many-core neuromorphic
supercomputer,” in 2017 IEEE High Performance Extreme Computing Conference (HPEC), Sep. 2017, pp. 1–7, doi:

10.1109/HPEC.2017.8091066.

[22] B. Simon, J. Falk, N. Megow, and J. Teich, “Energy minimization in DAG scheduling on MPSoCs at run-time: theory and
practice,” arXiv preprint arXiv:1912.09170, Dec. 2019.

[23] K. Taura and A. Chien, “Heuristic algorithm for mapping communicating tasks on heterogeneous resources,” in Proceedings of

the Heterogeneous Computing Workshop, HCW, 2000, pp. 102–115, doi: 10.1109/hcw.2000.843736.
[24] I. Ahmad and Y. K. Kwok, “On parallelizing the multiprocessor scheduling problem,” IEEE Transactions on Parallel and

Distributed Systems, vol. 10, no. 4, pp. 414–432, 1999, doi: 10.1109/71.762819.

[25] M. Al-khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jararweh, “Improving fog computing performance via
Fog-2- Fog collaboration,” Future Generation Computer Systems, vol. 100, pp. 266–280, Nov. 2019, doi:

10.1016/j.future.2019.05.015.

Int J Elec & Comp Eng ISSN: 2088-8708

Resource allocation for fog computing based on software-defined networks (Sepideh Sheikhi Nejad)

7107

BIOGRAPHIES OF AUTHORS

Sepideh Sheikhi Nejad received her B.S. degree in Computer Engineering from

Azad University, Ashtian, Iran, in 2006 and her M.S. degree in Computer Software

Engineering from University of Azad, south branch, Tehran, Iran, in 2010. She is currently a

Ph.D. candidate at the University of Azad, south branch. Fog computing and software defined

networking are her major fields of research. She can be contacted at email:

s.sheikhynejad9834@gmail.com.

Ahmad Khademzadeh received his B.Sc. degree in Applied Physics from

Ferdowsi University, Mashhad, Iran, in 1969 and his M.Sc. and Ph.D. degrees respectively

in Digital Communications and Information Theory and Error Control Coding from the

University of Kent, Canterbury, UK. He is currently the Head of Education, National and

International Scientific Cooperation Department Affairs, and in the meantime the head of

Post Graduate Department at the ICT Research Institute (ITRC). He was the head of

the Test Engineering Group and the director of the Computer and Communication

Department at ITRC. Dr. Khademzadeh is the chair of the IEEE Iran Section Standards

Committee and also a lecturer at Tehran Universities. He is a committee member of the

Iranian Electrical Engineering Conference Permanent Committee. He can be contacted at

email: a.khademzadeh@itrc.ac.ir.

Amir Masoud Rahmani received his B.S. in Computer Engineering from Amir

Kabir University, Tehran, in 1996, the M.S. in Computer Engineering from Sharif University

of Technology, Tehran, in 1998, and the Ph.D. degree in Computer Engineering from IAU

University, Tehran, in 2005. Currently, he is a Professor in the Department of Computer

Engineering at IAU University. He is the author/co-author of more than 150 publications in

technical journals and conferences. His research interests are in the areas of distributed

systems, ad hoc and wireless sensor networks, and evolutionary computing. He can be

contacted at email: rahmani@srbiau.ac.ir.

Ali Broumandnia received the B.Sc. degree from the Isfahan University of

Technology in 1991, M.Sc. degree from Iran University of Science and Technology in 1995,

both in hardware engineering, and a Ph.D. degree in computer engineering from Tehran Islamic

Azad University-Science and Research Branch in 2006. From 1993 through 1995, he worked on

intelligent transportation control with image processing and designed the Automatic License

Plate Recognition for Tehran Control Traffic Company. He has published over 30 computer

books, journals, and conference papers. He is interested in Persian/Arabic character recognition

and segmentation, Persian/Arabic document segmentation, medical imaging, signal and image

processing, and wavelet analysis. He is a reviewer of some international journals and

conferences. He can be contacted at email: broumandnia@gmail.com.

https://orcid.org/0000-0001-6999-5737
https://orcid.org/0000-0001-7849-8791
https://orcid.org/0000-0001-8641-6119
https://scholar.google.com/citations?hl=en&user=MI_ZxPwAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=57204588830
https://www.webofscience.com/wos/author/record/363154
https://orcid.org/0000-0001-5145-2013
https://scholar.google.com/citations?hl=fa&user=KVEn4vkAAAAJ
https://www.webofscience.com/wos/author/record/1032245

