Clemson University

TigerPrints

All Dissertations Dissertations

5-2017

Data Movement Challenges and Solutions with
Software Defined Networking

Ryan Izard

Clemson University, rizard@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all dissertations

Recommended Citation

Izard, Ryan, "Data Movement Challenges and Solutions with Software Defined Networking" (2017). All Dissertations. 1910.
https://tigerprints.clemson.edu/all_dissertations/1910

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1910?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1910&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DATA MOVEMENT CHALLENGES AND SOLUTIONS WITH
SOFTWARE DEFINED NETWORKING

A Dissertation
Presented to
the Graduate School of

Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Computer Engineering

by
Ryan Izard
May 2017

Accepted by:
Dr. Kuang-Ching Wang, Committee Chair
Dr. Harlan Russell
Dr. Richard Brooks
Dr. Jim Martin

Abstract

With the recent rise in cloud computing, applications are routinely accessing and interacting with
data on remote resources. Interaction with such remote resources for the operation of media-rich
applications in mobile environments is also on the rise. As a result, the performance of the underlying
network infrastructure can have a significant impact on the quality of service experienced by the
user. Despite receiving significant attention from both academia and industry, computer networks
still face a number of challenges. Users oftentimes report and complain about poor experiences
with their devices and applications, which can oftentimes be attributed to network performance
when downloading or uploading application data. This dissertation investigates problems that arise
with data movement across computer networks and proposes novel solutions to address these issues
through software defined networking (SDN).

SDN is lauded to be the paradigm of choice for next generation networks. While academia
explores use cases in various contexts, industry has focused on data center and wide area networks.
There is a significant range of complex and application-specific network services that can potentially
benefit from SDN, but introduction and adoption of such solutions remains slow in production
networks. One impeding factor is the lack of a simple yet expressive enough framework applicable to
all SDN services across production network domains. Without a uniform framework, SDN developers
create disjoint solutions, resulting in untenable management and maintenance overhead. The SDN-
based solutions developed in this dissertation make use of a common agent-based approach. The
architecture facilitates application-oriented SDN design with an abstraction composed of software
agents on top of the underlying network.

There are three key components modern and future networks require to deliver exceptional data
transfer performance to the end user: (1) user and application mobility, (2) high throughput data

transfer, and (3) efficient and scalable content distribution. Meeting these key components will

ii

not only ensure the network can provide robust and reliable end-to-end connectivity, but also that
network resources will be used efficiently.

First, mobility support is critical for user applications to maintain connectivity to remote, cloud-
based resources. Today’s network users are frequently accessing such resources while on the go,
transitioning from network to network with the expectation that their applications will continue
to operate seamlessly. As users perform handovers between heterogeneous networks or between
networks across administrative domains, the application becomes responsible for maintaining or
establishing new connections to remote resources. Although application developers often account
for such handovers, the result is oftentimes visible to the user through diminished quality of service
(e.g. rebuffering in video streaming applications). Many intra-domain handover solutions exist for
handovers in WiFi and cellular networks, such as mobile IP, but they are architecturally complex and
have not been integrated to form a scalable, inter-domain solution. A scalable framework is proposed
that leverages SDN features to implement both horizontal and vertical handovers for heterogeneous
wireless networks within and across administrative domains. User devices can select an appropriate
network using an on-board virtual SDN implementation that manages available network interfaces.
An SDN-based counterpart operates in the network core and edge to handle user migrations as they
transition from one edge attachment point to another. The framework was developed and deployed
as an extension to the Global Environment for Network Innovations (GENI) testbed; however,
the framework can be deployed on any OpenFlow enabled network. Evaluation revealed users can
maintain existing application connections without breaking the sockets and requiring the application
to recover.

Second, high throughput data transfer is essential for user applications to acquire large remote
data sets. As data sizes become increasingly large, often combined with their locations being far from
the applications, the well known impact of lower Transmission Control Protocol (TCP) throughput
over large delay-bandwidth product paths becomes more significant to these applications. While
myriads of solutions exist to alleviate the problem, they require specialized software and/or network
stacks at both the application host and the remote data server, making it hard to scale up to a large
range of applications and execution environments. This results in high throughput data transfer that
is available to only a select subset of network users who have access to such specialized software. An
SDN based solution called Steroid OpenFlow Service (SOS) has been proposed as a network service

that transparently increases the throughput of TCP-based data transfers across large networks. SOS

iii

shifts the complexity of high performance data transfer from the end user to the network; users do not
need to configure anything on the client and server machines participating in the data transfer. The
SOS architecture supports seamless high performance data transfer at scale for multiple users and for
high bandwidth connections. Emphasis is placed on the use of SOS as a part of a larger, richer data
transfer ecosystem, complementing and compounding the efforts of existing data transfer solutions.
Non-TCP-based solutions, such as Aspera, can operate seamlessly alongside an SOS deployment,
while those based on TCP, such as wget, curl, and GridFTP, can leverage SOS for throughput
improvement beyond what a single TCP connection can provide. Through extensive evaluation in
real-world environments, the SOS architecture is proven to be flexibly deployable on a variety of
network architectures, from cloud-based, to production networks, to scaled up, high performance
data center environments. Evaluation showed that the SOS architecture scales linearly through the
addition of SOS “agents” to the SOS deployment, providing data transfer performance improvement
to multiple users simultaneously. An individual data transfer enhanced by SOS was shown to have
increased throughput nearly forty times the same data transfer without SOS assistance.

Third, efficient and scalable video content distribution is imperative as the demand for multi-
media content over the Internet increases. Current state of the art solutions consist of vast content
distribution networks (CDNs) where content is oftentimes hosted in duplicate at various geographi-
cally distributed locations. Although CDNs are useful for the dissemination of static content, they
do not provide a clear and scalable model for the on demand production and distribution of live,
streaming content. IP multicast is a popular solution to scalable video content distribution; how-
ever, it is seldom used due to deployment and operational complexity. Inspired from the distributed
design of todays CDNs and the distribution trees used by IP multicast, a SDN based framework
called GENI Cinema (GC) is proposed to allow for the distribution of live video content at scale.
GC allows for the efficient management and distribution of live video content at scale without the
added architectural complexity and inefficiencies inherent to contemporary solutions such as IP mul-
ticast. GC has been deployed as an experimental, nation-wide live video distribution service using
the GENI network, broadcasting live and prerecorded video streams from conferences for remote
attendees, from the classroom for distance education, and for live sporting events. GC clients can
easily and efficiently switch back and forth between video streams with improved switching latency
latency over cable, satellite, and other live video providers.

The real world deployments and evaluation of the proposed solutions show how SDN can be

iv

used as a novel way to solve current data transfer problems across computer networks. In addition,
this dissertation is expected to provide guidance for designing, deploying, and debugging SDN-based

applications across a variety of network topologies.

Dedication

For their unconditional love, support, and encouragement, I dedicate this dissertation to my wife

Anna Maria Izard and daughter Bowman Claire Izard.

vi

Acknowledgements

I would like to thank my advisor, Dr. Kuang-Ching Wang, for his guidance, support, and patience
throughout both my undergraduate and Ph.D. studies at Clemson. He has been instrumental in my
growth as a researcher and engineer. Dr. Wang demonstrated ceaseless commitment to my success
during my time at Clemson for which I am forever grateful.

I would also like to thank my committee members, Dr. Harlan Russell, Dr. Richard Brooks, and
Dr. Jim Martin for their support and encouragement of my work over the years, including taking
the time to review and provide direction on my dissertation.

In addition, I would like to thank all my friends and colleagues from our research group at
Clemson, including Dr. Ke Xu, Dr. Fan Yang, Dr. Juan Deng, Qing Wang, Geddings Barrineau,
Junaid Zulfigar, Benton Kribbs, and Joe Porter. I would not have been able to persevere without
their constant enthusiasm and support of my work.

I would also like to thank all who I worked with over the years at the Global Environment
for Network Innovations (GENI) project office and in the GENI community, including Dr. Niky
Riga, Dr. Vic Thomas, Dr. Ali Sydney, Heidi Picher Dempsey, Manu Gosain, Sarah Briggs, Tim
Upthegrove, Luisa Nevers, Marshall Brinn, Tom Mitchell, Kirk Webb, and Joe Breen. Through my
work on various GENI projects that contributed to my dissertation, these individuals have helped
tremendously in the setup of various experiments, the efficient collection of data, and debugging my
GENI experiments. Without their help, support, and encouragement, I would not have been able
to complete my work in a timely manner.

Lastly, I would like to thank my parents, Richard and Linda Izard, for surrounding me with their

unconditional love, support, and encouragement as I strived to earn my degree.

vii

Contents

Title Page e i
Abstract L e ii
Dedication L e vi
Acknowledgements vii
List of Tables xii
List of Algorithms xiii
List of Figures e xiv

1 Introduction 1
1.1 User and Application Mobility 2
1.2 High Throughput Data Transfer 2
1.3 Efficient and Scalable Content Distribution 3
1.4 Problem and Objectives L 4

2 Background 6
2.1 User and Application Mobility 6
2.2 High Throughput Data Transfer 8
2.3 Efficient and Scalable Content Distribution 10

3 An Agent-Based Framework 12
3.1 SDN Stakeholder Requirements 15
3.1.1 SDN Operators o v v vt e 15

3.1.2 Application Providers 16

3.1.3 Application Users 17

3.2 Framework Components L 17
321 The Agent. e 17

3.2.2 The Controller Plugin 19

3.2.3 Inclusion of a Software Forwarding Device 20
3.3 Deployment with a SDN 20
User and Application Mobility 22
4.1 The Mobility Problem 23
4.2 An SDN-Based Mobility Solution 23
4.2.1 Network Level 25
422 Client Level e 27
4.2.3 Network and Client DHCP Signaling 30
4.2.4 Handover Architecture Complexity 30
4.3 Scalability and Evaluation 31
4.3.1 Scalability through Inter-Domain Handover 31
4.3.2 Handover in Vehicular Networks 38
4.3.3 Handover Analysis e 46
High Throughput Data Transfer 51
5.1 The Data Transfer Problem 52
5.1.1 Components of High Performance Data Transfer 52
5.1.2 Transparency for High Performance Data Transfer 56
5.2 SDN-based Solution 58
5.2.1 Addressing the Requirements of High Throughput Data Transfer 58
5.2.2 SOS Architecture and Design Patterns 59
5.2.3 SOS Agents 67
5.2.4 SOS Floodlight OpenFlow Controller 82
5.2.5 Deploying SOS at Scale 89
5.2.6 Design Decisions and Assumptions L0 93
5.3 Evaluation 96
5.3.1 Cloud-Based Environment L. 96
5.3.2 Production Network Environment 97
5.3.3 Scale-Up Datacenter Environment 101

ix

6 Efficient and Scalable Content Distribution 109

6.1 Content Distribution Problem 0oL 110
6.1.1 Static Content Distribution 110

6.1.2 Dynamic Content Distribution, 111

6.2 The GENI Cinema Solution 113
6.2.1 System Architecture 115

6.2.2 Capacity-Aware Content Distribution 122

6.2.3 Workflow 122

6.24 Example. e 123

6.3 Evaluation. 131
6.3.1 Bandwidth Consumption and Latency 131

6.3.2 Scalability 133

6.3.3 IP Multicast e 135

7 Conclusions and Future Work 151
7.1 User and Application Mobility 151
7.2 High Throughput Data Transfer 152
7.3 Efficient and Scalable Content Delivery 153
Bibliography 154
A SDN Development Troubleshooting Guide 162
A.1 Physical Switch Selection L 162
A.2 Physical Switch Operating Mode 163
A3 MAC Learning o o o o 165
A4 MTU. . e 167
AL Linux e 168
A5.1 Firewall Rules 168

A.5.2 Traffic Control Queues L 168

A53 NICQueueso 169

A.6 CPU Affinity and NUMA Architectures 170
A.7 Underlay and Network Equipment Problems 170

A.7.1 Faulty Hardware

A.7.2 Buggy Software

xi

List of Tables

5.2.1 OpenFlow flows required to transparently insert SOS agents X and Y into a TCP
connection between hosts A and B. These flows indicate the flows required if the
hardware switches of the SOS deployment support all the required packet header
matches and actions. Lo 65

5.2.2 OpenFlow flows required to transparently insert SOS agents X and Y into a TCP
connection between hosts A and B. These flows indicate the flows required if the
hardware switches of the SOS deployment do not support all the required packet
header matches and actions. In this case, the unsupported matches and actions
can be supplemented through a software switch on the SOS agent. These flows are
continued on Table 5.2.3. L L 68

5.2.3 OpenFlow flows required to transparently insert SOS agents X and Y into a TCP
connection between hosts A and B. These flows indicate the flows required if the
hardware switches of the SOS deployment do not support all the required packet
header matches and actions. In this case, the unsupported matches and actions can

be supplemented through a software switch on the SOS agent. This is a continuation

of Table 5.2.2. e 69
5.2.4 Floodlight services used by the SOS Floodlight module 83
5.2.5 REST APIs defined by the SOS Floodlight module 86

5.3.1 A performance comparison of a disk-to-disk, 10GB DNA file data transfer over a
GRE tunnel, between VMs, on Stanford InstaGENI and MAX InstaGENI 97

5.3.2 Use of two independent clients and servers in an SOS architecture 107

6.3.1 Channel switching delay as perceived by the consumer 132

xii

List of Algorithms

5.1 SOS Floodlight controller packet-in processing chain

5.2 Packet handling by SOS Floodlight module

xiii

List of Figures

2.1.1

3.0.1
3.0.2

3.2.1

4.2.1

4.2.2

4.2.3
4.24
4.2.5

4.2.6
4.3.1
4.3.2

Mobile IPv4 e 7
The agent-based framework for a SDN 13
A comparison between southbound protocol agents and the proposed framework’s

agents ... L. L 15
The logical components of the agent-based framework. The dashed lines indicate
the agents can be within a forwarding device or on a separate machine attached to

the forwarding device. Lo 18

Handover system architecture as deployed at Clemson University. The blue-shaded
right half of the figure indicates the SDN-based solution as a part of the larger
campus network. L 24
General handover system architecture. The blue-shaded right half of the figure
indicates the SDN-based solution as a part of a larger network. For brevity and

clarity, it is only depicted in Administrative Domain A; however, it is also present

in each administrative domain. oL L Lo 25
Network level architecture as deployed at Clemson University 26
Client level architecture 28

DHCP Signaling between the Client Level and Network Level Floodlight OpenFlow

Controllers e 29
Influence of the agent-based architecture on the handover solution 31
Inter-domain handover architecture enables handovers between administrative domains 32

The client is connected to an administrative domain and the system in in a steady

Xiv

4.3.3

4.34

4.3.5

4.3.6

4.3.7

5.1.1

5.2.1

5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

5.2.7
5.3.1
5.3.2
5.3.3

5.3.4
5.3.5
5.3.6

6.1.1
6.2.1

The client’s current administrative domain notifies the neighboring administrative
domain that the client is going to perform a handover.
The adjacent administrative domain proactively fetches the client’s connections to
any correspondent node(s). Lo o
The adjacent administrative domain accepts the client’s DHCP-initiated connection,
resulting in the client-level handover to occur.
The adjacent administrative domain notifies the origin administrative domain that
the client has completed the handover.
The origin administrative domain tears down the client’s old connections, notifying

any upstream administrative domains of the handover event.

The components of a data transfer. When moving data between components, bot-
tlenecks must be considered. Lo L Lo

General SOS Architecture. The OpenFlow logo indicates possible network locations

where SOS can support and leverage OpenFlow switches, both physical and software.

Simple SOS deployment with two OpenFlow switches
Logical flows in an SOS deployment
SOS flows in a deployment with white box switches
SOS agent data forwarding software architecture
An example use case demonstrating SOS scalability using parallel TCP or multiple
TCP connections layered on top of the SOS framework.
The influence of the agent-based framework in the design of the SOS architecture .
SOS on MAX InstaGENI and Stanford InstaGENI
SOSon AL2S o e
SOS agent number of parallel sockets and send/receive data chunk size parameter
SWEEDS .+ v v v e e e e e e e e e e e e
The scalable SOS deployment in the CloudLab testbed
TCP traflic generation between the client and the server

Performance scales linearly as agents are added to an SOS deployment

The architecture of a content delivery network

GENTI Cinema logical architecture

XV

37

39

40

41

42

53

60
61
64
67
70

91
94
97
98

6.2.2 GENI Cinema web server e
6.2.3 GENI Cinema Floodlight OpenFlow controller
6.2.4 GENI Cinema Ingress VLC server
6.2.5 GENI Cinema Egress VLC server
6.2.6 GENI Cinema “sort” switch. The sort switch uses OpenFlow 1.1+ groups and buckets

to duplicate direct video streams to the users based on present user demand.
6.2.7 How channels and clients relate to the GENI Cinema “sort” switch
6.2.8 The influence of the agent-based framework in the design of the GC architecture . .
6.2.9 Zero producers and a single waiting consumer results in no flows installed
6.2.10 The producer on which the consumer was waiting joins, and the stream is routed

via flows
6.2.11 A new consumer joins and requests a different stream. This stream was already

present, so flows are installed. oL L
6.2.12 A consumer switches to another stream. The stream is already at the sort switch,

so only a group and bucket operation is required.o L
6.2.13 Another consumer joins, involving a second sort switch
6.2.14 A consumer switches to the green stream. 00
6.3.1 Example GENI Cinema deployment
6.3.2 The GC architecture can scale through the addition of ingress and egress servers as

the numbers of producers and consumers grow. Network bandwidth consumption

must scale with the number of consumers through the addition of links or utilization

of higher capacity links. L
6.3.3 Example PIM-SM rendezvous point content distribution tree
6.3.4 Example PIM-SM shortest path content distribution tree

6.3.50 Components of a GCjoin.

xvi

Chapter 1

Introduction

Computing technology has become ever-present in the day-to-day lives of people all around the
world. It is constantly shrinking in form factor, increasing in efficiency, and decreasing in price,
making it more accessible and appealing to users. A major trend in recent years has been cloud
computing. Rather than users relying on and accessing device-local resources, they are becoming
increasingly reliant on remote cloud-based resources to access media-rich content while on the move.
As a result, the performance of the underlying network infrastructure can have a significant impact
on the quality of service experienced by users.

Despite receiving significant attention from both academia and industry, computer networks still
face a number of challenges. Users oftentimes report and complain about poor experiences with
their devices and applications. Examples include trouble displaying high quality video streams and
accessing remote content in a timely manner. These service degradations and failures are sometimes
due to the design of the device or of the application itself; however, the cause of such problems can
also be attributed to poor performance when transferring data over the network. This dissertation
investigates problems that arise with data movement across computer networks and proposes novel
solutions to address these issues through software defined networking (SDN). These solutions are
used to form a framework for a SDN-based network architecture that improves the quality of service
and network experience provided to end users, network operators, and application developers. There
are three key components modern and future networks require to deliver an exceptional quality of
service when moving data between network endpoints: (1) user and application mobility, (2) high

throughput data transfer, and (3) efficient and scalable content distribution.

1.1 User and Application Mobility

Users frequently require access to remote resources while on the go. Horizontal handovers are
well studied [1, 2, 3] and have been implemented in networks today [4] within single administrative
domains. Vertical handovers, on the other hand, are well-studied but are still evolving. They are
often reliant on the application itself to recover broken connections after a handover occurs. The
broken connections are due to post-handover loss of end-to-end IP connectivity. Mobile IPv4 (RFC
5944) [5] provides a mechanism by which a device can retain the use of an IP address even after it has
associated with a foreign network. However, it results in a triangle-routing problem after handovers
[6]. The introduction of IPv6 features to Mobile IP (MIPv6) [7] running on an IPv6 network can
alleviate the triangle through the use of what is known as route optimization. A limitation of these
MIPv6 schemes is that they require custom software on the client to enable mobility and have
yet to be fully developed and integrated into many network infrastructures. Furthermore, a broad
consensus has yet to be achieved for mobility across administrative domains.

This dissertation explores the use of SDN as a network layer agnostic solution to achieving
mobility across both heterogeneous networks and across administrative domains. SDN has been
proposed as a possible solution to achieve device mobility across wireless networks. The authors in [2,
3] have shown its feasibility in homogeneous networks, such as WiFi, LTE, and Ethernet, respectively.
Furthermore, others [8] have explored OpenFlow combined with the IEEE 802.21 Media Independent
Handover specification [9] to handover between heterogeneous wireless networks; however, they have
only considered the use of SDN [10] on the mobile device and not in the network core. Additional
work [11] has focused on algorithms for network selection between handovers, but did not focus on
the development of an architecture to support such handovers. In this dissertation, a SDN-based
framework to support handovers between heterogeneous networks and across administrative domains

is proposed.
1.2 High Throughput Data Transfer

Users naturally desire to transfer data as quickly as possible. This requires a network capable of
facilitating high throughput data transfers. Between endpoints on local area networks, data transfers
can occur rapidly and reliably without assistance using Transmission Control Protocol (TCP) [12].

However, over high-performance wide area networks, link latency poses a problem. Common reliable

transport protocols, such as TCP, have difficulty making full use of the available bandwidth due in
part to protocol windowing mechanisms that ensure reliability [13]. Other transport protocols,
have been proposed that can achieve a higher throughput over the network. Parallel TCP, such as
MPTCP [14] is particularly successful due to its use of multiple TCP connections spanning multiple
network paths. Such solutions can utilize the aggregate link bandwidth to achieve higher throughput
[13]. However, to achieve this increased level of performance, such solutions require modification to
end user machines. Modification required by the end user entails the installation of additional kernel
modules and special configuration of the standard network stack to support these high-performance,
specialized transport protocols. This is oftentimes difficult for average network users who either do
not have permission, the required software, or the expertise to perform such modifications.

This dissertation proposes the use of SDN to achieve transparent, reliable, high throughput data
transfer as a network service. The proposed solution is scalable to any number of users as long as
there is sufficient bandwidth available in the network. Such a solution can be realized underneath
or in supplement to existing data transfer tools to further increase performance. It can also be used
in a cloud-based approach to enhance data transfer speeds to and from remote locations where a

high bandwidth network connection is unavailable.
1.3 Efficient and Scalable Content Distribution

A recent study has shown that a significant percentage of traffic on the Internet consists of live,
streaming multimedia content [15]. This number is only expected to rise in the coming years [16].
The use of content delivery networks (CDNs) is a common practice to enable mass-delivery of static
content to users distributed geographically [17]. Real-world deployment of such techniques requires
negotiation with regional Internet service providers (ISPs), who serve as content access points for
regional end users [17]. Furthermore, although CDNs have are widely deployed for the distribution
of static content, they were not designed for the distribution of live, streaming content.

Other methods of content distribution are based on IP multicast. This requires integration and
support within backbone and regional ISPs [18]. Furthermore, IP multicast uses a subscription-
based model that is reliant on timers in order to detect when a router no longer requires a particular
content stream for downstream distribution [19]. This delay can result in unnecessary use of net-
work bandwidth when there is zero demand for content. And lastly, IP multicast has not achieved

widespread adoption, due in part to its complex architecture and configuration requirements.

This dissertation explores the use of SDN as a demand-driven mechanism to efficiently distribute
video content to users at scale. The solution proposed combines the effectiveness of a distributed
architecture proposed by CDNs with novel use of SDN in place of IP multicast. The result is an
architecture that makes efficient use of available network bandwidth for the delivery of content to the
user. It can be deployed in the cloud to ride over top of backbone networks and ISPs, eliminating the
need for integration into physical forwarding devices. An overlay is advantageous, since many modern
forwarding devices have limited or insufficient SDN capabilities for the deployment of the proposed
solution. Like a CDN, for integration into an ISP, the proposed solution imposes the requirement
of a single server connected to the video distribution network, in contrast to IP multicast solutions

that require complex per-forwarding-device configuration.
1.4 Problem and Objectives

A fundamental problem limiting the three requirements of user and application mobility, high
throughput data transfer, and efficient and scalable content distribution is a lack of centralized
control over network forwarding devices. These three requirements have traditionally been tackled
around the existing, rigid network infrastructure. In the recent years, SDN has taken a great leap
forward with the advent of OpenFlow [10] — a SDN protocol. OpenFlow allows software developers
to extend their algorithms into the network infrastructure by providing an interface over which
network forwarding elements, such as switches and routers, can be programmed from a centralized
control framework. This adds flexibility and extends programmatic control into the network data
plane, which until recently was closed and difficult to manipulate in a uniform manner and on a
large scale.

OpenFlow shows great promise as a SDN protocol [20] due to its simplicity and wide and in-
creasing adoption by incumbent and startup networking vendors [21, 22]. It has even been adopted
within the enterprise networks of largely application-focused companies [22].

Researchers have proposed a number of use cases for OpenFlow, which augment network in-
frastructure and architecture. To help facilitate these endeavors, Internet2 [23] at one time used
OpenFlow to run their Advanced Layer 2 Service (AL2S) [24] and Advanced Layer 3 Service (AL3S)
[25] networks, which provide high-speed network access to research institutions across the United
States. Furthermore, the Global Environment for Network Innovations (GENI) [26] was founded

as a future Internet testbed with SDN as a core technology. GENI is operated by OpenFlow and

provides a service for researchers conducting experiments with SDN protocols such as OpenFlow.
The objective of this dissertation is to develop methods for a network infrastructure that allow end
users to access their content and transfer data while on the go, provide a way for high performance
data transfers to make better use of the available network bandwidth over large links, and allow live,
streaming application data to be disseminated to large number of users, across geographically large
networks at scale. The work in this dissertation achieves these goals and demonstrates their viability

through the use of real-world deployments and analytical analysis of the network architecture.

Chapter 2

Background

2.1 User and Application Mobility

Vertical handovers, or handovers between different radio access technologies, cause interruptions
in connectivity for mobile users during the process of obtaining a different IP address and during
the radio access technology “switch” [27]. This results in the temporary loss of IP connectivity and
in the inability for the network to deliver existing connections to the device’s new attachment point.

Many handover decision algorithms have been developed to alleviate the resource allocation
problem presented by heterogeneous wireless networks. Most of these algorithms require the ability
to make a handover decision based on the current conditions of all radio access technologies. 802.21
[9] is a framework that was developed to support media independent handovers. The goal of this
framework is to provide a standardized interface for every radio access technology that handover
decision algorithms can utilize to create a global view of the available network states.

In commercial cellular networks, handovers are conducted between base stations using carefully
crafted and specific routes in the network. Base station adjacencies are known, where connections
are proactively routed to neighboring base stations based on an expected client migration pattern
[28]. Any deviation from this pattern results in a dropped connection as the network works to
recover the connections and reroute them to the unexpected new client attachment point.

As shown in Figure (2.1.1), Mobile IPv4 (RFC 5944) [5] provides a mechanism by which a mobile
device can retain the use of an IP address even after it has associated with a foreign network. Upon

migration, the mobile device reports its new IP address to the home network, and a tunnel is formed

Correspondent
Node

Internet
= N Foreign
Tunnel Agent
Home Network Foreign Network
A
Mobile)
Node

Figure 2.1.1: Mobile IPv4

between the mobile device and a home agent at the mobile device’s home network. Egress traffic
from the mobile device is routed normally, while ingress traffic is routed back to the home network
and through the tunnel to the mobile device. The use of a tunnel creates what is known as the
Mobile IP triangle routing problem, which adds delay, increases overhead due to encapsulation, and
consumes extra network resources. The introduction of IPv6 features to Mobile IP (MIPv6) [7]
running on an IPv6 network can alleviate the triangle routing problem through the use of what is
known as route optimization. Mobile IPv6 route optimization utilizes binding messages exchanged
between the mobile host and the correspondent host. The mobile host notifies the correspondent
host of its new IP address using a binding message that includes this new IP in the form of a “care
of” address. After processing this binding message, the correspondent host then relays all packets to
the host at the “care of” address instead. A limitation of these MIPv6 schemes is that they require
custom software on the client to enable mobility and have yet to be fully developed and integrated
into many network infrastructures for support on forwarding devices and on the server-side hosts.
The WiRover [29] project at Wisconsin-Madison is a system that utilizes multiple radios to in-
crease the bandwidth and continuity of wireless network access for buses. WiRover uses pre-collected
signal data along bus routes to allow their system to proactively make an intelligent handover deci-

sion. Although the WiRover project itself is does not facilitate vertical handovers, the researchers’

previous efforts in [30] include using the aggregation and simultaneous use of 3G and WiFi networks.

There are several existing heterogeneous wireless network testbeds that provide vertical handover
capabilities. For example, [31] uses MIPv4 to achieve IP mobility, enabling the researchers to
evaluate novel handover decision algorithms. Other testbeds, such as [32], make use of MIPv6 and
its route optimization features, as described above; however, they do not allow for mobility in an
IPv4 environment.

The work in [33] started the discussion of how handover can be implemented as a network
service. The researchers describe how the client-level component proposed in this dissertation could
participate in a Handover as a Service scheme, using a central database to make the handover decision
for a mobile host based on the mobile host’s current location and historical network information for

that location.
2.2 High Throughput Data Transfer

It is common for data transfers that can tolerate periodic data loss, such as video streaming, to
use User Datagram Protocol (UDP) for data delivery. One lost UDP packet, translating to one lost
video frame, for example, is not typically perceptible to the end user. However, a lost packet during
a file download can result in a corrupt or incomplete file. As such, data transfers that require the
complete, ordered delivery of data to the destination must use a transport protocol, such as TCP,
that provides such guarantees [12].

Although TCP provides a guarantee of intact and ordered data delivery to the application, TCP’s
windowing algorithm restricts the flow of data and reduces the data transfer rate upon a loss through
its additive increase multiplicative decrease congestion control policy [34]. Solutions such as selective
acknowledgement [35] and additive increase smooth decrease [36] have been proposed to help reduce
the effects of packet loss over a TCP connection by allowing for selective retransmission of data
and utilizing a larger TCP window as compared to the traditional algorithm during loss situations,
respectively. TFRC (TCP-friendly rate control) [37], WARC (window averaging rate control) [3§],
HERC (high speed equation based rate control) [39] as well as CUBIC [40], BIC-TCP (binary
increase congestion control) [41], and H-TCP (high speed TCP) [42], to name a few, are additional
TCP variants designed to alleviate the common “sawtooth” pattern exhibited by TCP. They overlook
periodic TCP losses and attempt to maintain a stable TCP window size. Other solutions such as

TCP quick timeout (TCP-QT) [43] aim to improve the time required for TCP to detect a data loss

and initiate a retransmission. However, despite such improvements and even on reliable networks,
TCP still struggles to keep up with the pace its unreliable data transfer counterpart (i.e. UDP) can
achieve.

Although network hardware has increased in speed, sophistication, and reliability, such as slow
dial up and DSL being phased out in favor of fiber to the home, an ever-present problem in computer
networks is latency. The decrease in throughput due to latency is becoming an increasing problem
with the increased requirement to transfer science datasets such as telescope imagery and physics and
DNA data sets exceeding exabytes [44]. Such large data sets are unable to be effectively transferred
over existing networks [45], and oftentimes the physical transportation of hard disks is seen as a
more appealing solution [44].

The use of multiple, simultaneous TCP connections has been proposed and is proven as a viable
solution to increasing the throughput of such large data transfers over high latency networks [46].
Many parallel TCP solutions are discussed in the literature, such as Globus GridFTP [47], which
also supports file striping from parallel servers in addition to the use of multiple TCP connections.
Furthermore, although it is not TCP-based, Aspera [48] has developed a rapid and reliable file
transfer technology that operates using UDP for data transfer along with TCP feedback connections
that ensure reliability. Aspera is a well known and successful technology; however, it is proprietary
and requires custom software installed on both the client and the server conducting the data transfer.
Like Aspera, other UDP-based technologies exist, such as UDT [49] and FDT [50], but they suffer
from the same portability problem, requiring application layer solutions on the client and server
devices. pTCP is a parallel TCP solution that utilizes different network interfaces to transmit
multiple TCP connections across multi-homed devices, thus making use of the aggregate bandwidth
available [51]. There are many MP-TCP (multi-path TCP) implementations [52, 53] that take
advantage of multiple links and in-network paths in order to increase aggregate bandwidth. These
can be and are often used on top of network layer load balancing solutions such as ECMP [54].

SDN has been used for data transfer applications. In particular, studies have been conducted
on the use of parallel TCP and the minimization of its effect on background network traffic [55].
OpenFlow, due to its comprehensive network knowledge, has been proposed as a solution to help
identify and alleviate bottlenecks introduced by the use of parallel and multipath TCP [56]. However,
OpenFlow, or SDN in general has not been proposed as a mechanism to seamlessly implement parallel

TCP to improve TCP throughput.

2.3 Efficient and Scalable Content Distribution

As the demand for multimedia content over the Internet increases, researchers have been exploring
options for the efficient distribution of content at scale and with high quality of service. Current
state of the art solutions consist of vast CDNs, where content is oftentimes hosted in duplicate at
various geographically distributed locations. This serves as both a load balancing solution, as well
as a means to reduce access latency [17]. Users in a given geographic area are served by the local
content node or cluster of nodes. Such a solution often requires collaboration with ISPs in order to
push the content closer to the edge [17]. Although CDNs are a popular content distribution solution
that work well for static content, they are not designed for the delivery of live, streaming multimedia
content.

IP multicast has been considered for the distribution of live video content. IPTV has been pro-
posed to use IP multicast to provide television service to users around the world [57]. Multicast
Backbone (MBoune) [58] is another well-known IP multicast deployment used primarily for experi-
mentation. IP multicast’s distributed publish-subscribe algorithm is a natural fit for the distribution
of content. Hosts utilize IGMP to advertise and request multicast content groups on demand [19].
Routers then utilize one or more protocols to fetch the requested content for users. A multicast tree
is constructed between the participating routers, and reverse path filtering prevents the formation
of loops.

In practice though, IP multicast has not gained wide support, for which there are many reasons.
First, network routers must be configured to support IP multicast, which is often a challenging
task [18]. Unlike IP unicast, IP multicast does not have a clearly defined service model. While
IGMP is the dominant protocol used for host-to-router IP multicast, there are a vast array of
implementations for intra-domain IP multicast, such as PIM-SM [59], PIM-DM [60], MOSPF [61],
and DVMRP [62], to name a few. Inter-domain IP multicast also has many protocols, for example
MSDP [63] and BGMP [64]. Since a well-defined IP multicast solution does not exist, many Internet
service providers do not support IP multicast at all or support it in a limited fashion as per the IP
multicast implementation chosen [65]. Inter-domain IP multicast use is further limited in practice,
due to security and content management concerns [18].

Although IP multicast has shown promise as a video delivery solution, it is complex and there

are inefliciencies that can result in excessive network bandwidth usage. Anyone can join a multicast

10

group and anyone can send to a multicast group [18]. It is the job of the subscriber to filter the
desired content, which means undesired content must traverse the network prior to being discarded.
Furthermore, although studies have been done on IP multicast congestion control [66], a solution has
yet to be widely accepted. Lastly, when leaving an IP multicast group, timers in hosts and routers
are used to trigger stream termination. This allows IP multicast streams to persist for a period of

time and utilize link bandwidth when there is no demand by users from a downstream router [19].

11

Chapter 3

An Agent-Based Framework

SDN enables users and operators with great freedom to customize their networks to support a wide
range of applications and services. SDN’s decoupled control plane in the form of a centralized
controller makes it convenient to programmatically achieve application-specific, hard-to-do-today
traffic forwarding methods [67]. For example, SDN has been envisioned to be useful for network
operators to perform fine-grained traffic engineering, for applications to incur very high throughput
data transfers, and for users to easily and consciously stay connected to the network on the move.
Network Function Virtualization (NFV) is yet another new paradigm powered by SDN to imple-
ment scalable network services. However, despite them being feasible, production offerings of such
services remain slow to enter. Among all factors, the lack of a simple yet unifying framework for
deploying, managing, and maintaining the wide range of such services has critically contributed to
the slow progress. While protocols such as OpenFlow offer the lowest, and the most crucial, level of
abstraction that enables SDN, there remains the need of an overarching framework to provide clarity
of the development, deployment, and life-cycle management process for all entities that constitute
the large SDN ecosystem.

Without such a framework, “motivating demos” of such services [68, 69, 70, 71] have often been
derived using a variety of methods, which do not have a standard at this point, such as (1) do-it-all
in the controller, including making per-packet decisions for all packets via OpenFlow packet-ins,
sometimes due to certain packet mutation or header match operations not implemented on the SDN
switch, (2) design for a single domain without discussion of its coexistence with today’s non-SDN

networks, especially the Internet, (3) overlooking scale up paths needed in large production offer-

12

Control Plane

Network Services

Custom Services

Plugins

Northbound APIs

Network Controller(s)

a da a
E Forwarding E Forwarding Forwarding E g
T Device Device Device n||n
a t t]|t
™
[\ Forwarding Forwarding / \ Forwarding
Device Device Device

Figure 3.0.1: The agent-based framework for a SDN

ings, (4) bypassing discussion of the means of authentication, authorization, and accounting for
such services (who, how, where), and (5) the use of vendor/experimenter extensions to add features
to the OpenFlow protocol requiring non-standard support at the switch and the controller. These
limitations result in control plane bottlenecks through excessive control plane processing of data
plane packets and are oftentimes customized to a particular deployment. Furthermore, emphasis is
seldom placed on the manageability of such use cases in production environments across network
domains with diverse SDN capabilities, such as their installation, upgradability, scalability, elastic-
ity, security, and fault tolerance. Through the agent-based solution proposed in this dissertation,
these shortcomings can however be systematically addressed with a common software agent-based
architecture. This common software agent-based architecture is discussed in Sections 3.1, 3.2, and
3.3.

Early research on SDN has largely focused on the southbound protocol architecture, i.e. controller-
to-switch communication protocols such as OpenFlow, and the abstraction it exposes. The agent-
based framework shown in Figure 3.0.1 is defined to supplement such architecture in order to address
the common need of the integration of custom applications within the data plane independent of the
southbound protocol. Functionally, the agent complements any SDN forwarding device to enable
application-specific customization. The SDN controller can interact with the application-specific
agents to perform packet manipulation using defined application program interfaces (APIs). To
arrive at the agent-based solution, diverse SDN applications were studied and the core requirements

of the various stakeholders were identified. These stakeholders can be largely categorized as: (1)

13

SDN operators, (2) application providers, and (3) application users, each of which imposes distinct
requirements on a production SDN. SDN operators require a solution to manage a diverse set of cus-
tom applications and enhance performance. Application providers require a solution that facilitates
uniform application design across various SDN deployments, provides scalability, elasticity, as well
as one that provides persistent network connectivity. Application users require enhanced quality of
service.

The framework has the following advantages: (1) it addresses the manageability of custom SDN
applications by providing a modular framework for design, deployment, and resource allocation; (2)
it removes controller bottlenecks caused by per-packet operations; (3) it addresses scalability and
elasticity by allowing a variable number of agents to be deployed proportional to the capacity and
scope of the application. The framework also has the flexibility of being deployed with software
switches running on servers, which can also address hardware-specific limitations of a particular
environment.

It is useful to note a parallel effort that also serves to address complementary needs of the
ecosystem. The Open Networking Foundation (ONF) defines an agent-based architecture [72] where
agents are communication interfaces in the controller and network elements to abstract away the
southbound protocol from the controller and switch implementations. At the same time, the Open
Networking Lab develops has been developing the Open Networking Operating System (ONOS) [73],
which provides the foundation for building highly available SDN controllers that can operate across
wide geographical areas controlling large numbers of OpenFlow forwarding devices. The agent-
based framework proposed in this dissertation focuses on the structural division of responsibilities
among customizable software agents and SDN controllers, whereas the agents proposed by the ONF
serve a different purpose to abstract away southbound protocol implementations. Figure 3.0.2 shows
southbound agents, such as those proposed by the ONF in comparison to the agents proposed in this
dissertation. Throughout this dissertation, the Floodlight open source SDN controller [74] is used
to demonstrate the interaction of the agent framework with a controller in the SDN architecture.

In the following sections the three stakeholder requirements are addressed -- of the SDN operators,
the application providers, and the application users -- and how they define and validate the agent-

based SDN framework. The technical components of the agent-based framework follow.

14

Controller Core

Plugin Plugin Plugin

Southbound Southbound A B n
Agent 1* Agent 2*
4 # 4 4 4

(SB Protocol APIs (((Agent APls (
v * ¥ ¥ i

Controller in
Control Plane

8]

E @ || Southbound Southbound Agent | | Agent | | Agent
- %: Agent1* Agept 2* A B .
;rl:ué‘%' \ v Iph ‘ ll d Virtual |
E = Flow/Rule Tables ypséﬁ;ﬂdmlgsua

[z,

*Southbound (SB) protocol agents

Figure 3.0.2: A comparison between southbound protocol agents and the proposed framework’s
agents

3.1 SDN Stakeholder Requirements

The agent-based framework proposed is derived from the needs of three comprehensive and unique
perspectives -- (1) the SDN operators, (2) the application providers, and (3) the application users.
The following discuss the requirements of each stakeholder and how the agent-based architecture

addresses these requirements.

3.1.1 SDN Operators

SDN operators require a solution to manage a diverse set of custom applications and enhance perfor-
mance. However, in order to allow applications and services to utilize the network, SDN operators
need a production-quality method to manage these applications. Without this, routine procedures
such as installing, updating, running, and otherwise maintaining applications could jeopardize the
stability of the SDN. The agent-based framework proposed allows SDN operators to maintain the
network and its applications in a modular way. Similar to how applications can be installed and
maintained on general-purpose servers, the agent-based solution allows applications to be manipu-

lated independent from one another such that the maintenance of one does not impact others.

15

SDN operators also have an interest in maintaining a reliable and efficient network that meets the
needs of the applications that run on top of it. This includes orchestrating traffic engineering and big
data transfers, such as efficient packet handling and optimal bandwidth utilization across large net-
works. Some of these items are addressed by applications implemented over present SDN protocols,
such as OpenFlow. However, with the agent-based framework, these SDN operator requirements
can all be implemented. Agents are deployed within the SDN to accomplish a range of network
engineering tasks from simple load balancing to more complex tasks such as high-throughput data
transfer. SDN operators can take advantage of the programmability of the agent-based framework in
order to deploy custom applications of their own as underlying services to enhance the performance

of higher-level consumer services.

3.1.2 Application Providers

Application providers require a solution that facilitates uniform application design across various
SDN deployments, provides scalability, and provides elasticity. When application providers launch
new SDN-based applications, they need these assurances in order to provide a consistent and reliable
experience to their customers. An agent-based SDN framework provides a simple and universal way
of integrating applications into the SDN. Application providers are able to concentrate more on the
quality of their services and less on accounting for the various flavors of SDNs and their peculiarities.
The agent-based framework also affords the deployment of multiple instances of agents throughout
the SDN and across multiple SDNs. Furthermore, it is not rigid and allows agents to be allocated and
decommissioned dynamically as application demand fluctuates. As such, the agent-based approach
provides a scalable and elastic solution sought by application providers.

Application providers also demand the underlying network provide persistent network connec-
tivity. For example, they need to ensure their services can operate over the network in mobile
environments. The advent of laptops, tablets, smartphones, connected vehicles and other mobile
devices has created an unprecedented demand for mobility support within the network. Multiplayer
games, messaging applications, social networking applications, and video streaming applications,
just to name a few, all require a persistent and reliable connection to the network in order to oper-
ate as designed. Solutions to connection persistence across networks do exist; however, an accepted
solution does not exist to address migration across networks of different technologies. The ability to

handover between heterogeneous networks increases the device’s (and thus the application’s) connec-

16

tion alternatives and allows an application connection to persist across various access technologies,
as they are available. These requirements can be solved using the agent-based SDN framework

proposed.

3.1.3 Application Users

Application users require enhanced quality of service. When they connect to the network, they
desire fast access to content and services. This requires the underlying network be able to handle
the demands of individual users on a large scale without negatively impacting other users on the
network. Among many techniques, content delivery networks (CDNs) have been used to make
this desire a reality and are deployed and used in production networks and services today. The
CDN concept can be realized within the agent-based framework, where content can be processed
by agents and delivered to the application users, resulting in potentially less load on edge servers
and less network bandwidth usage. The client or customer needs only to request the content, which
the agents can then react to and deliver in the most optimal manner. As such, the agent-based

framework can be used to satisfy the quality of service requirements of application users.

3.2 Framework Components

As shown in Figure 3.0.1, the agent-based framework augments the existing SDN architecture with
an agent component in the data plane and a plugin component in the control plane. These agents
and plugins complement each other in a customizable relationship i.e. one-to-one, one-to-many,
many-to-one, many-to-many, etc. to form the agent-based framework. Here, the design is broken
down, with a discussion on the details of each component and how they come together to form the
agent-based framework. Figure 3.2.1 shows the relationship between the logical components of the
agent-based framework. Note that in subsequent figures, plugin-to-agent API links are omitted for

brevity.

3.2.1 The Agent

The agent is functionally a software component associated with a forwarding device. The forwarding
device can direct data to and from one or more agents, where the agents perform advanced packet

processing. These agents can be installed as a part of the forwarding device itself, or they could be

17

Controller

Controller API Plugin Plugin Plugin
Core <:>

Controller in
Control Plane

API API API

§ Physical and [Packets !
S o Virtual Port () :
a E Bindings l Ngt?\f?zlrk ‘API E
& A | AgentB
£ = | Stack :
5 A Flow/Rule | & _API |
g Tables ' AgentA '
B

Figure 3.2.1: The logical components of the agent-based framework. The dashed lines indicate the
agents can be within a forwarding device or on a separate machine attached to the forwarding device.

attached to the forwarding device in the data plane. The hardware on which the agent is configured is
not rigidly defined and can be anything from a switch to a general-purpose server. On this hardware,
multiple agents supporting one or more applications can be installed and managed independently.

The intent of any agent is to operate on packets within the network. As such, the agents tap
into the underlying SDN using standard socket programming techniques and the local network stack
of the agent’s host. The forwarding device sends packets to and from the agent’s host using rules
installed in the data plane by the controller plugin. To allow packets to pass between the agent’s host
and the agent’s network sockets, packets must be able to be delivered to the agent processes onboard
the host. This involves configuring the agent’s host operating system (OS) to route applicable packets
to and from the data plane network interface(s) and the agent(s).

The controller plugin is responsible for communicating all relevant information to its agent coun-
terpart(s) in the data plane so that they can operate on packets in the prescribed manner. An API
is required between both the plugin and the agent to relay such information. A representational
state transfer (REST) API is readily available in many OpenFlow controllers, such as the Floodlight

controller. REST is recommended due to its ease of implementation and management, however any

18

API can be used.

The agent’s custom software is not constrained in any way at the application layer. Agent
software design is only limited by the host OS and the hardware capabilities of the machine on
which the agent is hosted. As such, an easy-to-manage/customize OS is recommended, Linux for
example, and hardware such as central processing units (CPUs), random access memory (RAM),
network cards that can support the processing of packets at the rate required by the installed agent

application is also recommended for optimum performance.

3.2.2 The Controller Plugin

In order to orchestrate the routing of packets to and from the agent software in the data plane, the
control plane must also be augmented with a plugin. Figure 3.2.1 also shows a network controller,
where the controller has been extended to include plugins. These plugins work in tandem with the
agents to form the agent-based framework. Due to the modular nature of many network controllers,
such as the Floodlight controller, plugins can be readily configured in the control plane without
modifying or interfering with other controller functions. However, plugins need not be installed on
the controller directly. Controller APIs may be leveraged to implement the control plane agent as a
northbound application. The high availability concept can be implemented in the control plane to
install, update, and otherwise modify plugins in a production SDN.

The controller plugins can be either reactive or proactive, depending on the use case. In the
reactive case, OpenFlow packet-in messages can be received by the plugin and analyzed, for example.
Rules can then be inserted to direct applicable packets to the corresponding agent installed in the
data plane. In the latter case, the plugin proactively inserts rules to direct the packets of interest
to the agents. In either case, if the agents require information from plugins in order to operate on
the packets, an API can be used, such as REST, to relay the necessary information. In order for
the agent’s host OS to receive the packets directed to the agent application, the data plane rules
inserted by the controller plugin may require the use of destination MAC and/or IP address rewrite

actions.

19

3.2.3 Inclusion of a Software Forwarding Device

The inclusion of a software forwarding device in the agent-based framework is not a necessity; how-
ever, it can greatly increase the usefulness of the agent deployment. Present day hardware forwarding
devices sometimes hinder SDN deployments by supporting limited feature sets of southbound proto-
cols. If such missing features are required by the agent application, the use of a software forwarding
device can overcome this limitation. The modular design of the agent-based framework allows for
a software forwarding device to be used, and in the future, replaced with a hardware forwarding
device as missing features required by the agent gain hardware support. The use of a software
forwarding device also has the advantage of being able to be updated as new protocols and features
are implemented. With respect to OpenFlow, a software forwarding device such as Open vSwitch
[75] (OVS) supports all OpenFlow matches and actions and is readily extended with new OpenFlow
features as subsequent protocol versions are released.

To use a software forwarding device in the agent-based framework, a general-purpose server can
be used as a host for both the agent(s) and the software forwarding device. Data plane network
interface(s) are attached to the host and wired to the software forwarding device installation. An
OpenFlow software forwarding device such as OVS contains a LOCAL port, which is attached to
the local network stack of the host of the software forwarding device installation. Packets can be
relayed to and from the software forwarding device’s LOCAL port and agent network sockets using
the host machine’s loopback interface. This requires the host machine’s route table to be configured

to pass these packets.

3.3 Deployment with a SDN

In order for the agent-based framework to operate, the use of a SDN infrastructure is a necessity;
however, it is not required that the entire network be a SDN. Non-SDNs can be interconnected with
SDNs in a larger network infrastructure equipped with an agent-based framework deployment. The
agent-based framework assumes there is a controller plugin to insert rules that intercept and route
packets to and from the agents within the data plane, rewriting packet headers if necessary. At the
very least, the point of packet interception in the network must be under the control of a SDN.
When deploying the framework with a SDN, there are many items to consider. The recommended

“recipe” for deploying agents within a SDN is to consider the purpose of the application, the data it

20

will handle, and its requirements. Applications requiring low-latency will dictate where the agents
are physically installed. The amount of data to be processed by the agent can also influence where
the agent is installed, on what type of hardware, and the number of agent instances. If the goal of
the agent(s) is to process traffic into and out of a particular sub-network, the agent(s) might need
to be deployed at each ingress/egress point of the sub-network. On the other hand, if the goal of the
agent(s) is to process packets from devices attached to the network, perhaps one agent or a collection
of agents needs to be at each geographic edge. Similarly, the volume and rate of data the agent and
the plugin are required to process can also impact the choice of hardware such as network interface
cards and quantity of agents. Lastly, depending on the method and frequency of communication
between the agent(s) and the plugin, more than one plugin might be necessary to balance the load
and to scale.

This dissertation leverages a common agent-based framework in order to address data movement
for user and application mobility, high throughput data transfer, and scalable content distribution.
Application providers require persistent connectivity and mobility support over heterogeneous net-
works. The agent-based framework can be used to address these requirements by providing handover
as a service to connected devices [33]. Likewise, high throughput data transfer is important for SDN
operators to transparently and reliably enhance data transfers that traverse the network. Lastly,
content dissemination at scale is a requirement of application users. The agent-based framework
is used as the foundation for an SDN-based content distribution service. In all three of these data
movement studies, the agent-based framework is used as a common platform in their SDN imple-
mentations. The agent, the controller plugin, and the inclusion of a software forwarding device are

common themes and are present in each solution discussed in the following chapters.

21

Chapter 4

User and Application Mobility

Users desire persistent connectivity while on the go. As they migrate from one network to
the next, they expect their applications to continue to operate seamlessly. Although applications
oftentimes attempt to overcome this problem, some applications do not or do so unnecessarily.
Through the use of SDN, a network architecture can be implemented such that user devices can
continue to transmit and receive data as they migrate from one access location to the next or from
one access technology to another, all while maintaining application sockets. An SDN-based solution

is proposed to address the following issues:

e Handover architecture complexity. A single network controller can be used to manage all

clients.
e Scalability. The architecture proposed can support clients at scale.

e Handover in vehicular networks. Data from the device can be leveraged to assist the network

in proactively configuring data flows prior the handover.

The work so far has been published in [76]. In this chapter, Section 4.1 discusses the mobility
problem, Section 4.2 introduces an SDN-based solution to the mobility problem, and Section 4.3
discusses scalability of the mobility solution and evaluation in a real-world deployment.

All source code for the handover implementation can be found at http://www.github.com/

rizard/GENIVerticalHandover. It is broken down into client level and network level components.

22

4.1 The Mobility Problem

Present heterogeneous wireless networks provide vast connectivity options for users. In a smart
phone context, users can choose to connect to their provider’s cellular network or to connect to
various WiFi access points. Oftentimes, users migrate from network to network while using an
application onboard their smart device. As they migrate in and out of range of networks, the device
must switch to provide the application with a network connection. However, due the combined
effect of routing within the network and the fact that these access technologies are likely under the
control of different administrative domains assigning different IP addresses in different subnets, the
user’s device will not be able to maintain its application connections after a network switch occurs.
This break in existing application connections is oftentimes masked from the user by the application
being “smart” enough to reestablish broken sockets with the correspondent node.

In an ideal scenario, adhering to the layered nature of the network stack, the application should
not have to be responsible for recovering from handovers. The network should be able to provide
the application with a guarantee of continuous connectivity regardless of any changes to network
connectivity that occur during the life of the application’s connections.

Another issue present in existing mobile network architectures is the use of carefully crafted
handovers specific to deployments. Network providers use sophisticated yet complex solutions to
make an educated guess on where network users are going to move next. If the user does not follow
one of the predicted patterns, dropped connections will occur as a result. SDN, can be used to
reduce the complexity of the handover algorithm and allow for user-tailored handovers as opposed
to fitting the user into a set of predefined handovers. This can be especially problematic in vehicular

networks where there are a potentially large number of clients moving at high speed.

4.2 An SDN-Based Mobility Solution

The SDN-based mobility solution utilizes OpenFlow to achieve IP mobility and application trans-
parent handovers. It is designed to be easily deployed on top of networks that are OpenFlow-enabled
or that can provide a subnet or VLAN for handover experimentation. The framework was devel-
oped and implemented at Clemson University as a part of the GENI WiMAX project. Figure 4.2.1

provides a general overview of how the framework is constructed and how it integrates with the

23

(I
/ OAS Rgox 5y ¥ Floodlight

} Mobility
(~ Clemson University Core _ DHCP /

T / ' H ur Controller

. GENI Campus Network \ andover J

———— | Network
/ - 4 ovs
GENI Backbone o o~ \ Edge Network ¥
Network) Edge Network X * N ovs "
7 AN 2, Client
" " B OVS «* App.
University A University B) (ovs/vnI *
- ow o
. 4

Figure 4.2.1: Handover system architecture as deployed at Clemson University. The blue-shaded
right half of the figure indicates the SDN-based solution as a part of the larger campus network.

large-scale GENI testbed. Figure 4.2.2 provides a more general vantage point of the system archi-
tecture. At the architectural level, the framework allows OpenFlow-enabled mobile devices to roam
across any OpenFlow-enabled wireless network. It requires one or more root OpenFlow switches at
the testbed ingress/egress, as well as OpenFlow switches at each edge network. The challenge in
designing a deployment based on the framework is the required integration with existing network
infrastructure where the deployment is to occur. The framework allows a mobile device to roam
from wireless Network X to Network Y (as illustrated in Figure 4.2.1), preserving end-to-end socket
connections that the device has with other hosts located either on the campus network or in the
Internet. With these minimal assumptions, the framework can be as simple or as complicated as
desired. The design of the framework can be divided into two major components: the network level
and the client level. In Figure 4.2.1, the SDN-based solution is shown shaded in blue, as a part of a
larger network.

The network level component is required to manage and maintain client IP addresses, as well
as the routing of client packets within the framework. Both of these tasks are performed with a
Floodlight OpenFlow controller [74], which maintains a global IP address pool and handles migration
events within the testbed. To maintain the global IP address pool, a custom DHCP server module is
integrated into Floodlight. The Floodlight controller is designed to be extendable to support other
use cases; for example, in a handover as a service framework, the Floodlight controller could also
make the handover decisions for the mobile devices in the network [33]. A key component of the

network level is one of more OpenFlow-enabled switches or OVSs [75] located at the root, such that

24

Administrative e

Domain A OVS Root [RRSSSs Floodlight
COTe DHCP / Mobility
Controller
Handover .
Network
Administrative Administrative = M ovs
Domain B Domain C ovs

\ Edge Network Y

ovs

Vge Network X
(o)

Vs
Y ((ut ovs -0—\::;',';' Lot ABp.
ovs =— R |
Y J

Figure 4.2.2: General handover system architecture. The blue-shaded right half of the figure indicates
the SDN-based solution as a part of a larger network. For brevity and clarity, it is only depicted in
Administrative Domain A; however, it is also present in each administrative domain.

all IP mobility-enabled networks on the edge are descendants of this root. As descendants of the root
switch, other OpenFlow switches or OVSs are deployed in the network level in order to both forward
client packets and detect migration events. From a network operations point of view, benefits of this
tree-like design include (1) a single point of integration with the network infrastructure and (2) the
requirement of no specialized hardware in the case where OVS is used in preference over physical
OpenFlow switches.

The client level component of the testbed exists entirely on-board the client and is responsible
for both switching the active physical interface and maintaining all client sockets during such a
handover event. To maintain active sockets, a default virtual network interface (VNI) is installed on
the client. All applications send and receive packets through this VNI, and by nature of a virtual
interface, it is not impacted by physical interface states. The client is also equipped with an OVS and
its own Floodlight OpenFlow controller. This controller is responsible for forwarding packets from
the VNI’s OVS to the physical interface of choice as determined by a handover decision. Further

discussion on the importance of the VNI is presented in Section 4.2.2.

4.2.1 Network Level

On the network level of the testbed, all WiFi access points (APs) are configured with Debian Linux
5.1.10, and all WiMAX gateways are configured with Debian Linux 6.0.7. On the client level, testbed

components have been verified on both Debian and Ubuntu Linux. All Linux distributions are using

25

Internet IlIﬂ]
Correspondent Node

OpenFlow Router

Foodiight Contrallr, C1emson Network 2
(DHCP Server) " WIMAX Gateway \WIMAX BS
_ 10.3.10.252
Experimenter's At OLSR Link =L AP3 10\;“1:'3%24
OpenFlow Network AP1 10.3.11.1 .3.10.
10.3.12.0/24 103100724 N wifi | [WinA)
.3.10.'5—
{ni} —

Mobile Host

Figure 4.2.3: Network level architecture as deployed at Clemson University

kernel 2.6.32. The Floodlight OpenFlow controllers used on both the client and the network levels
are sourced from Floodlight v0.90. Each controller has been extended with custom modules to
enable the handover solution. Also common to both the network and the client levels are several
OVS 1.9.0 software network bridges (OVSBs). A high-level diagram of the network level is shown
in Figure 4.2.3, as deployed at Clemson University.

Within the framework, the network component has the responsibility of maintaining the IP
address pool for every mobility-enabled network. The network level Floodlight controller acts as a
DHCP server, using DHCP requests as a trigger for migration. In the event of a migration, this
Floodlight controller is also responsible for efficiently and quickly updating the client’s location and
thus the flow of its application packets. The detection of a client connection and migration within
the framework is achieved through the use of OVSBs and OpenFlow flows. These flows detect,
encapsulate, and redirect client DHCP packets (on UDP destination port 67) to the network level
Floodlight controller. This controller contains an integrated DHCP server module, which unlike
traditional DHCP servers, associates an IP address lease with multiple MAC addresses. Each of
these MAC addresses corresponds to a participating network interface card (NIC) on the client.
When processing a DHCP packet, the controller cross-references the MAC address of the DHCP
packet with all available MAC address lists. Upon a successful match within a MAC address list,
the controller assigns the client who initiated the request the corresponding IP. Then, upon a mobile

host’s initial connection or migration to a foreign network, flows are inserted in OVSBs starting at

26

the framework root and along every hop to the client’s current location. These flows direct packets
to and from the mobile client within the framework. When a client migrates away from this network,
any existing flows associated with the client are removed and replaced with flows along the path
from the root to the newly-migrated foreign network. The use of a root switch and tree hierarchy
allows the network level controller to avoid undesirable triangle-routing in the event of a migration.

The mobility framework includes many OVSBs within the network. As discussed previously,
the network level OVSBs connect to the network level Floodlight controller / DHCP server. These
OVSBs are used in the detection of client migrations and the routing of client packets into and
out of the framework. Specifically, the OVSBs on the framework edge detect client migration by
intercepting DHCP request packets, while the OVSBs in the core direct the flow of client packets
from the framework root to the client on the framework edge.

Each network level node with OVSBs also uses OVS patch ports (OVSPPs). To ensure proper
routing of packets destined for an IP not routable by a foreign network, OVSPPs are used to connect
the external and internal facing OVSBs installed on the gateways/APs. This allows independent
subnets to operate within the framework. The OVSPPs, combined with flows that utilize these
OVSPPs, force client packets to bypass Linux routing on each hop, thus supporting cross-subnet

compatibility upon migration from the home network.

4.2.2 Client Level

Any mobile device should be able to connect to a network in the handover framework and maintain
an IP through a vertical or horizontal handover. However, if the handover is to be truly seamless
to an application, there needs to be a persistent VNI for the application to use. The VNI abstracts
the handover from the application and provides the application with an interface that is persistent
for the duration the client is active. In addition to the VNI, the client should also be able to switch
between interfaces in a manner that is simple and straightforward to the client device using the
framework. Similar to the network level design, OVSBs are also utilized in the client to achieve a
seamless handover. These client level OVSBs are used in conjunction with a client level Floodlight
OpenFlow controller and are installed for each mobility NIC on the client, as shown in Figure 4.2.4.
The local Floodlight controller inserts flows in each OVSB via the integrated Static Flow Pusher.

These flows route application packets from the client VNI to the NIC of choice. When a decision is

27

Vs)

Ethernet port OVS Bridge Applications
ethA br_ethA e.g. ping, video streaming,
| web browsing, file downloads
((‘ WiFi 0 port OVS Bridge
.O
wlanB br_wlanB OVS Bridge
1
((‘ WiFi 1 port QVS Bridge br_vni
wlanC br_wlanC
I
WiMAX port OVS Bridge Floodlight
wmxD br_wmxD Static Flow Pusher
A\

Figure 4.2.4: Client level architecture

made to switch NICs, the client will issue a DHCP request egress the new interface, which will then
trigger the aforementioned events in the network level. As a result, these OVSBs with Floodlight-
inserted flows allow the client to seamlessly switch from one network to another. All client level
tasks are encapsulated in shell scripts to provide framework client devices with a simple and single
command to execute a handover. Each client level OVSB also contains OVSPPs. To ensure proper
routing of packets from the VNI to the NIC of choice, OVSPPs are used to connect the VNI OVSB
with the OVSB of each participating NIC installed on the client, as shown in Figure 4.2.4. The
OVSPPs, combined with flows that utilize these OVSPPs, serve to link the VNI to each NIC’s
OVSB. These flows define the path (and thus the NIC) used by application packets.

The use of a VNI introduces a problem when associating with networks and routing packets to
the client from the network level. The MAC address of the VNI must be the same as that of the NIC,
otherwise WiFi APs and other access mediums will not accept packets from or know how to route
packets back to the client’s VNI at the link layer. It is not reasonable to require the modification or
“spoofing” of each NIC’s MAC address to that of the VNI. The client level solution to this problem
is to perform MAC-rewrite within the client OVSBs. When an application generates packets, they
are routed out of the client via flows on each OVSB. These flows contain actions to rewrite the
source MAC address of all egress packets from that of the VNI to that of the NIC. The flows also
contain actions to rewrite the destination MAC address of all ingress packets from that of the NIC

to that of the VNI. This rewrite process allows the client to send and receive packets from its VINI

28

MH WIMAX Gateway/AP

Root Switch OpenFlow Contrdler

...0VS Patch
Client Wireless OVS Ethernet OVS Root OVS | Floodlight Controller I
I I |] 1
DHCP discover I 1 [
- - I) -) |
, A o::dhﬁht DHCP discover
| ol
| FAoodlight DHCP offer
DHCP offer| [T . [
Tt I ' ' !
I DHCP req’ | I [[
o I i [
Foodlight DHCP req
' .
I [
| Floodlight DHCP adk
DHCP ack | | ! "] Insert flow
- |
| | Insert flow D‘
[
|

Internet

Figure 4.2.5: DHCP Signaling between the Client Level and Network Level Floodlight OpenFlow

Controllers

with any associated network on the link layer. Due to a limitation of OpenFlow 1.0, ARP packets
cannot be rewritten with flows; they must be processed instead by a controller. Thus, the client level
Floodlight controller contains a custom module to rewrite all ARP packet MAC addresses within the
controller itself. Although out-of-band processing of packets is inefficient as compared to in-band,
ARP packets are not frequent, so an occasional rewrite within the controller is a compromise made
in the client level implementation. With the advent of OVS OpenFlow 1.3 support, ARP rewrite

can be performed using flows. This can reduce the client level complexity and eliminate ARP packet

processing in the controller.

29

4.2.3 Network and Client DHCP Signaling

The sequence of events that result in a reactive handover as a client migrates to a foreign network
is shown in Figure 4.2.5. To summarize the interaction between the two components, the events are

as follows:

1. The client establishes layer 2 connection with the network and issues a DHCP discover

2. The network level Floodlight controller intercepts the DHCP discover packet, allocates an IP,

and responds with an offer
3. The client responds to the offer by sending a DHCP request

4. The network level Floodlight controller intercepts the request, triggers a migration event, and

sends a DHCP ACK to the client

5. The client receives the DHCP ACK, establishing layer 3 connectivity. Meanwhile, the network
level Floodlight controller inserts flows at the root and gateway OVSBs and removes any

existing flows belonging to the client.

After this process completes, the client will have established full network connectivity on the new

attachment point through the root node.

4.2.4 Handover Architecture Complexity

The SDN-based handover solution discussed is architecturally simple and is based on the agent-
based framework. It consists of a single control entity in the network and a single controller on the
client. These controllers interact with switches to control the flow of traffic to and from the client.
With such a simple architecture, only flows must be modified when a handover takes place. Figure
4.2.6 depicts the handover architecture in the context of the agent-based framework.

The framework also provides a convenient way to detect client initiated handovers via DHCP.
Network initiated handovers can also be conducted with minimal signaling between the client and

network controllers.

30

OVS Flow Tables Floodlicht
) loodlig
ﬁtxf‘f Client | ovs ovs Nel__t.‘lN m;;_ LEVEI ap_, | DHCP
Packets | Virtual Physical oodlight <:> Mobility
Agent <::> Port Port Controller Core Plugin
Binding Binding
Floodlight 1
Core Mobili
A oore Client-Level| REST APL | o 7L
1 Client : SR
1] Network Device | oodlight [(™ 3 goip
,’{ Controller
External " \‘ WiFi API
1 ™ -
Network Y NEtdﬁck ~~ | ovs oVS Client APl
“ etwor Physical Virtual |Packets| [ocal
\ Port Port NEtWUI’R Client
l‘ WiMAX P Bindings Binding
\| Edge - | Stack Apps
Network OVS Flow Tables

Figure 4.2.6: Influence of the agent-based architecture on the handover solution

Vertical and horizontal handovers are seamlessly supported. The underlying access technology

is abstracted away in the SDN-based implementation.

4.3 Scalability and Evaluation

4.3.1 Scalability through Inter-Domain Handover

As clients migrate from network to network, connectivity must be maintained regardless of the
network domain. In the real world, control needs to be maintained from within administrative do-
mains. Service providers are unlikely to support a model where they cede control of their network
to some centralized network level controller that governs the entire network. Such an implementa-
tion would require one or more parties relinquish control over some or all their domain forwarding
devices. Furthermore, such an implementation cannot scale with a single centralized controller. The
OpenFlow-based handover implementation can be used as a distributed solution across multiple
administrative domains without the relinquishment of intra-domain control from any party. The
problem and solution can be dissected into (1) inter-domain signaling and (2) handover delay be-
tween domains. These two problems are addressed first, followed by an example illustrating the

inter-administrative domain handover process.

31

Network
Level
Controller

Network
Level
Controller

Level
Controller

Network

Network Level
Network Level Controller
Level Controller
Controller

Figure 4.3.1: Inter-domain handover architecture enables handovers between administrative domains

32

4.3.1.1 Inter-Domain Signaling

The inter-domain handover problem only exists for clients that have migrated from one domain to
another — say domain A to domain B. The client connections need to be rerouted from domain A
to domain B, where the network level controller in domain A only has domain A visibility and the
network level controller in domain B only has domain B visibility.

The solution lies within the design of the network level. As shown in Figure 4.3.1, each admin-
istrative domain can have one or more roots to its network under the control of the network level
controller. Traffic that is egress the root(s) leaves the control of the administrative domain’s net-
work level controller, while traffic that is ingress the root(s) enters the control of the administrative
domain. These network roots serve as bridging points between providers. Flows from one root can
direct traffic into the root of another provider via root-to-root network links.

As a simple proactive example, when a migration between administrative domains occurs, a client
must issue the DHCP request in order to start the network level handover process. This DHCP
request will enter an access point of the adjacent administrative domain and will be forwarded to
the adjacent network level controller. This controller needs to “know” who this client is in order to
allocate the same IP address and insert the appropriate flows in the network. As such, the network
controllers need to be capable of sharing client information with each other.

Various algorithms can used to accomplish such client information sharing. One such implemen-
tation is reactive in nature. As a client hands over from administrative domain A to administrative
domain B, it sends a DHCP request to domain B. When the DHCP request is received from the
unknown client, the network level controller in domain B issues a query to the geographically neigh-
boring network level controller(s) for information on the client. When a neighboring controller from
domain A who is presently serving the client receives such a query, the controller can respond with
the IP address of the client, such that the new network level controller in domain B can assign the
same IP and allow the client to perform the transparent handover. In such an approach, the domain
A’s network level controller reacts to the inter-domain migration and redirects client packets from
its root to the root of the new, neighboring administrative domain B. The domain A controller is
also be responsible for removing any local, intra-domain flows present for the client, as the client is
now under the control over the adjacent administrative domain’s network level controller in domain

B.

33

The problem with the aforementioned algorithm is that it is reactive, which could introduce
undesirable switching delay. A proactive alternative can be used to alleviate such delay. Periodic,
location-triggered client information sharing can be performed between neighboring administrative
domains. An administrative domain is aware of the network connections of its own clients that
are adjacent to other administrative domains or on its geographic edge of control. As an example,
consider a heterogeneous mesh network. The administrative domain that owns such a network knows
which connections exists in the “middle” or “core” of the mesh versus at the “edge.” It can then track
the client’s physical location within its domain using access point or base station association and/or
GPS and inform known neighbor network level controllers when a client either is located at an edge
or has a trajectory towards an edge. When the new, neighboring administrative domain receives
the client’s DHCP request packet, it will already be aware of the client as provided by its old,

neighboring administrative domain. As such, a more expedient handover can be achieved.

4.3.1.2 Handover Delay Between Domains

To reduce the latency between a handover, the client’s connections can be proactively duplicated
and routed to the new anticipated attachment point before the client arrives. This process is simple
for an intra-domain handover, since the network level controller has authority to directly add all
necessary flows. In a single administrative domain, the network level controller can simply insert
duplicate flows along the anticipated route of the client’s new attachment point.

For an inter-domain handover between administrative domains, the local network level controller
needs to inform the neighboring administrative domain network level controller of an incoming client
connection. The client’s local administrative domain’s network level controller can duplicate and
route the client’s ongoing connections from it’s root to the root of the neighboring administrative
domain, which can then route the connections to the client’s anticipated location. Information such
as GPS location can be included to more precisely determine exactly where the client will attach
to the new administrative domain. If the handover is network initiated, the two network level
controllers can negotiate a new client attachment point and inform the client. Such a scenario could
further reduce delay be increasing handover precision. More on the specific approach to proactively
routing client traffic prior to conducting a handover is discussed in Section 4.3.2 with particular

attention to vehicular networks.

34

4.3.1.3 Example Inter-Administrative Domain Handover

In this section, an example handover between administrative domains is performed. The purpose is to
illustrate the steps taken and signaling performed by the client’s origin and adjacent administrative
domains. Each of the following five subsections indicates a logical step in an inter-administrative

domain handover.

Client is Connected to Origin Administrative Domain (t=0)

First, assume the client is connected to an origin administrative domain and is communicating with

a correspondent node. This state is illustrated in Figure 4.3.2.

Administrative Domain Notifies Adjacent Administrative Domain of Client’s Upcoming

Handover (t=1)

Since the client is on the edge of and leaving the origin administrative domain, the origin administra-
tive domain notifies the approp