25 research outputs found

    Applied Type System: An Approach to Practical Programming with Theorem-Proving

    Full text link
    The framework Pure Type System (PTS) offers a simple and general approach to designing and formalizing type systems. However, in the presence of dependent types, there often exist certain acute problems that make it difficult for PTS to directly accommodate many common realistic programming features such as general recursion, recursive types, effects (e.g., exceptions, references, input/output), etc. In this paper, Applied Type System (ATS) is presented as a framework for designing and formalizing type systems in support of practical programming with advanced types (including dependent types). In particular, it is demonstrated that ATS can readily accommodate a paradigm referred to as programming with theorem-proving (PwTP) in which programs and proofs are constructed in a syntactically intertwined manner, yielding a practical approach to internalizing constraint-solving needed during type-checking. The key salient feature of ATS lies in a complete separation between statics, where types are formed and reasoned about, and dynamics, where programs are constructed and evaluated. With this separation, it is no longer possible for a program to occur in a type as is otherwise allowed in PTS. The paper contains not only a formal development of ATS but also some examples taken from ats-lang.org, a programming language with a type system rooted in ATS, in support of employing ATS as a framework to formulate advanced type systems for practical programming

    Termination of Dependently Typed Rewrite Rules

    Get PDF
    Our interest is in automated termination proofs of higher-order rewrite rules in presence of dependent types modulo a theory T on base types. We first describe an original transformation to a type discipline without type dependencies which preserves non-termination. Since the user must reason on expressions of the transformed language, we then introduce an extension of the computability path ordering CPO for comparing dependently typed expressions named DCPO. Using the previous result, we show that DCPO is a well-founded order, behaving well in practice

    Automated Random Testing of Numerical Constrained Types

    Get PDF
    International audienceWe propose an automated testing framework based on constraint programming techniques. Our framework allows the developer to attach a numerical constraint to a type that restricts its set of possible values. We use this constraint as a partial specification of the program, our goal being to derive property-based tests on such annotated programs. To achieve this, we rely on the user-provided constraints on the types of a program: for each function f present in the program, that returns a constrained type, we generate a test. The tests consists of generating uniformly pseudo-random inputs and checking whether f 's output satisfies the constraint. We are able to automate this process by providing a set of generators for primitive types and generator combinators for composite types. To derive generators for constrained types, we present in this paper a technique that characterizes their inhabitants as the solution set of a numerical CSP. This is done by combining abstract interpretation and constraint solving techniques that allow us to efficiently and uniformly generate solutions of numerical CSP. We validated our approach by implementing it as a syntax extension for the OCaml language

    Dependent types for multi-rate flows in synchronous programming

    Get PDF
    Synchronous programming languages emerged in the 1980s as tools for implementing reactive systems, which interact with events from physical environments and often must do so under strict timing constraints. In this report, we encode inside ATS various real-time primitives in an experimental synchronous language called Prelude, where ATS is a statically typed language with an ML-like functional core that supports both dependent types (of DML-style) and linear types. We show that the verification requirements imposed on these primitives can be formally expressed in terms of dependent types in ATS. Moreover, we modify the Prelude compiler to automatically generate ATS code from Prelude source. This modified compiler allows us to solely rely on typechecking in ATS to discharge proof obligations originating from the need to typecheck Prelude code. Whereas ATS is typically used as a general purpose programming language, we hereby demonstrate that it can also be conveniently used to support some forms of advanced static checking in languages equipped with less expressive types.Published versio

    Helmholtz: A Verifier for Tezos Smart Contracts Based on Refinement Types

    Get PDF
    A smart contract is a program executed on a blockchain, based on which many cryptocurrencies are implemented, and is being used for automating transactions. Due to the large amount of money that smart contracts deal with, there is a surging demand for a method that can statically and formally verify them. This article describes our type-based static verification tool HELMHOLTZ for Michelson, which is a statically typed stack-based language for writing smart contracts that are executed on the blockchain platform Tezos. HELMHOLTZ is designed on top of our extension of Michelson’s type system with refinement types. HELMHOLTZ takes a Michelson program annotated with a user-defined specification written in the form of a refinement type as input; it then typechecks the program against the specification based on the refinement type system, discharging the generated verification conditions with the SMT solver Z3. We briefly introduce our refinement type system for the core calculus Mini-Michelson of Michelson, which incorporates the characteristic features such as compound datatypes (e.g., lists and pairs), higher-order functions, and invocation of another contract. HELMHOLTZ successfully verifies several practical Michelson programs, including one that transfers money to an account and that checks a digital signature
    corecore