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Synchronous programming languages emerged in the 1986slagdr implementing reactive sys-
tems, which interact with events from physical environnsemtd often must do so under strict timing
constraints. In this report, we encode inside ATS varioaktiene primitives in an experimental syn-
chronous language called Prelude, where ATS is a statitgigd language with an ML-like func-
tional core that supports both dependent types (of DMLe$tghd linear types. We show that the
verification requirements imposed on these primitives afolmally expressed in terms of depen-
dent types in ATS. Moreover, we modify the Prelude compiteatitomatically generate ATS code
from Prelude source. This modified compiler allows us tolgalely on typechecking in ATS to
discharge proof obligations originating from the need foesheck Prelude code. Whereas ATS is
typically used as a general purpose programming languagdeneby demonstrate that it can also
be conveniently used to support some forms of advanced staticking in languages equipped with
less expressive types.

1 Introduction

Building software that must work reliably is an undeniabhallenging process. Yet, engineers can still
construct reliable real-time systems that operate undiet ##mporal requirements. Companies have
long adopted model-based methods for designing real-toftevare[1]. Model-based design methods
emphasize automatically generating code from high-levadets that formally describe the behavior of
a system. In fact, synchronous programming languages dhelpet a movement towards this paradigm
(of model-based automatic code generation) when they wéneaduced in the 1980s.

In synchronous programs, tasks communicate through data flath the assumption that each data
flow produces values instantaneously at every step of a lglobgal clock. However, the simplicity
of a single system-wide global logical clock can be the sewtserious limitation in practice. If a
system consists of communicating periodic tasks that needrt at different rates, the global logical
clock can become an obstacle as the programmer must syimhiahthe tasks manually. The process
of manual synchronization is likely to be both tedious anreprone with little support provided by
the compiler for preventing subtle timing bugs. As a part isf RhD thesis, Julien Forget developed
Prelud€[6], a synchronous language that features priesifior describing the real-time behavior of tasks
in a multi-rate periodic system. Synchronizing data flowthwdifferent clocks in Prelude is still left to
the programmer, but the language provides operators totljinmodify real-time clocks. For example,
a programmer can stretch a clock to accomplish under-sagpli shrink it for over-sampling. The
typechecker of Prelude then automatically verifies that@hmunicating tasks are synchronized. The
advantage of this system is that the language offers thityatoileasily adjust the temporal behavior of
tasks while providing support for verification in the typestam.
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In this report, we encode inside ATS the clock calculus preskin Prelude, where ATS is a statically
typed programming language with a functional core of MUestyThe type system of ATS is rooted in
the Applied Type System framework[11], which gives the laage its name. In ATS, both dependent
types[13| 12] (of DML-style) and linear types are supportdkk assign dependent types to the real-time
clocks available in Prelude and then develop functions piucae the behavior of clock transformation
operators. With these functions, we can typecheck the attoatly generated ATS code from Prelude
source (by a modified Prelude compiler) and formally verifgttthe data flows in the original Prelude
source are properly synchronized. A running version of oadified compiler can be found onlie

Although ATS is typically used as a source programming laggy we hereby demonstrate that it
can also be conveniently used as a target language for thegriof supporting advanced static checking
in a host language equipped with less expressive types.diti@t the reported use of dependent types
for reasoning about temporal properties should be intaegest its own regard.

2 Multi-Rate Flowsin Prelude

An embedded real-time system continuously interacts wétlown environment and often must do so
under strict timing constraints. For example, a task majodarally sample a sensor and provide data
that can in turn be used by the application logic to adjusbihtput of an actuator. In order to guarantee
that the system is responsive, engineers need to dementteaithe worst case execution time (WCET)
for the communication from the sensor, to the applicatigidocand then to the actuator can never exceed
a required deadline. Synchronous programming languaggdigi development by abstracting time for
the designer and providing well-defined semantics to enadiéication and automatic code generation
from a model of the system.

When a synchronous program is compiled, all of the nodes amds fare translated into a single-
step function that is invoked repeatedly. The time betweepssis the period of the system, and the
Synchronous Hypothesis states that all the flows must bealesed before the end of each step. Itis up
to the system designer to ensure that this requirement is®agtral synchronous languages[2, 3] have
been developed since the 1980s, with Lustre[4] currentlyisg as the underlying language powering
the SCADE Suite developed by Esterel Systems.

This abstraction for time in a synchronous language is oatgcenvenience because it not only
alleviates the need for the programmer to worry about lovelldming details but also produces fully
deterministic code. However, it makes it difficult at the saiime to compose systems where tasks may
run at different rates. In order to make tasks execute atdbieadl rates, the programmer must essentially
schedule tasks by hand in terms of a global logical clockctvisan be both tedious and error-prone.

Prelude addresses the problem of manual synchronizatiandtti-rate periodic systems by remov-
ing the notion of a single system-wide global clock. Instéeassigns each periodic flowits own clock
C represented as a pdin, p) wheren € N (that is,n is a positive integer) ang € Q™ (that is,p is a
positive rational number); the integeiis referred to as the period 6fand p the phase offset. Note that
the period of a flowF is just the inter-arrival time of values produced Byand the phase offset is the
initial delay of the flow. The activation time of a flow (that its start date) is given by- p. In Prelude’s
clock calculus, every date (that is, a point in time in thegoam) is required to be an integer so as to
simplify schedulability analysis. Therefore, we need tswea that the datig is an integer for every flow.

In other words, a clock defined &s, p) is valid if and only if bothn € N* andn- p € N* hold.

1An end-to-end demonstration of our system is availablecatps : //travis—ci.org/wdblair/overture
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imported node
database (i: int rate (10, 0))
returns (o: int rate (10, 0));

imported node
controller(i: int rate (100, 0); Jj: int rate (100, 0))
returns (o: int rate (100, 0); p: int rate (100, 0));

sensor i;
actuator o;

node

sampling (i: rate (10, 0)) returns (o: rate (100, 0))
var command: rate (100, 0);
var response: rate (10, 0);

let
(0, command) = controller(i/"10, (0 fby response)/"10);
response = database (commandx~10) ;

tel

Figure 1: A multi-rate periodic system in the Prelude larggua

In Prelude, a generic flow consists of an infinite list of tgpié € N. (v;,t;), wherey; is the value
of the flow produced at timg. Under the normal synchronous paradigm, every flow prodgoese
value during each tick of the logical clock. There is no langjee notion of a global time scale in
Prelude. Instead, every flow is assigned its own clock, whah be lengthened as well as shortened.
By modifying a clock, we alter the rate at which values aredpied in a program. If a value contained
in a flow is undefined for some arbitrary date, we cannot adjsiseal-time behavior while expecting
deterministic results. As such, itis useful to define a atdiskata flows that are strictly periodic. Formally
speaking, a data flow is strictly periodic if and only if

IneNTVieN.ti1—ti=n

wheren is the period of the clock assigned to the flow dni$ the date when valuieis produced by
the flow[6]. Intuitively, a strictly periodic data flow prodes a value after each period. In Prelude,
a set of operators are provided to transform the clocks regitp strictly periodic flows which greatly
facilitates communication between tasks that executdfateint rates. In Figurigl 3 presented in Secftibn 3
we describe how to encode the semantics of these operatothénATS programming language.

As an example, let us consider a simple system where a clentrahs with a clock of(100,0)
and interacts with a fast running task that provides ciititz#a from the environment with a clock of
(10,0). Figure[l implements this system where tdoatroller node sends a command to ttiatabase
node and receives a response back from it. Observe thabtiteoller executes 10 times slower than
thedatabase. If we want thecontroller node’s outputommand to be synchronized with theatabase,
we must over-sample it using the" operator. Likewise, we under-sample tiaabase node’s output
response in order to synchronize it with theontroller node by using the ~ operator.

In the rest of the paper, we will define the Prelude operatecessary to implement this program in
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node

monitor (temperature: int rate (10, 0), fault: bool rate (100, 0))
returns (alert: int rate (100, 0))

let
alert = (temperature /" 10) when fault

tel

Figure 2: The boolean flowlert given here produces data only wheault produces rue.

ATS so that all synchronization constraints are checkedhbyype checker. Then, we will describe how
we can transform Prelude programs like this one into ATS tdyall communication is synchronized.

3 Assigning Typesto Flowsin ATS

At a high level, Prelude modifies the semantics of traditigychronous languages by refining the
basic flow type to have its own clock as opposed to a globakclddis refinement generates a proof
obligation for the compiler as a flow going from one task totheois not necessarily synchronized. We
can readily defer this obligation to typechecking in ATS Isgigning the following type (written in the
concrete syntax of ATS) to strictly periodic flows:

abstype SFlow(a: type, n: int, p: rat)

Note thatint andrat refer to the sorts for integers and rational numbers, résedc There is another
sort nat for natural numbers that will appear later. Givann, and p, the typeSFlow(a,n, p) is for a
strictly periodic flow of values of the typesuch that the clock assigned to the flow is of the peniadid
phase offsep. Formally speaking, a flow of the typeSFlow(a, n, p) consists of the following pairs:

Vie N.(vi,t) € F

where eaclv; is a (defined) value of the typeandt; = n- (p+i). Flows that are not strictly periodic are
also useful in Prelude. For instance, the following t@¥dow is for boolean flows:

abstype BFlow(a: type, n: int, p: rat)

Boolean flows differ from strictly periodic flows by allowinglues to be produced only on a subset of
the dates given by a flow’s clock. In Figure 2, we define a booféaw alert to give the value of a
temperature sensor only at dates whieru1t produces a rue value.

Modifying a flow’s clock affects the values that are includedthe flow. In order to determine
precisely what values remain in a flow after its clock is medifiPrelude requires that every flow passed
to a clock transformation operator be strictly periodic. ¢ same token, all clock operators yield
strictly periodic flows.

In Prelude, only integer dates are considered valid. Thesgfany flow’s clock is subject to the
requirement tham- p € N holds, wheren and p are the period and phase offset of the clock, respectively.
If this was not true, then a task’s start time could not beasgnted as an integer date. When assigning
types to a clock transformation operator, we often add agmdition to ensure that only a clock satisfying
the requirement can be actually returned by the operator.
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mul : Va:typevn:intVp:ratvk:nat (k|n) > (SFlow(a,n,p),int(k)) — SFlow(a,n/k, p-Kk)
div : Va:typevn:intVp:ratvk:nat (k|n) D (SFlow(a,n,p),int(k)) — SFlow(a,n-k, p/k)

shift @ Va:typevn:intVp:ratVvk:rat. (n-keN) > (SFlow(a,n, p),rat(k)) — SFlow(a,n, p+k)
fby : Va:typevn:intVp:rat. (a, SFlow(a,n,p)) — SFlow(a,n, p)

~ X

n
n

Figure 3: Some clock transformation operators and thegdyp

The clock transformation operators in Prelude are to beskated into regular functions in ATS.
Synchronous flows resemble infinite lazy streams in traakidunctional programming languages. For
instance, we can introduce an operateh s of the following type:

cons : Va:typevn:intvp:rat. (a, SFlow(a,n,p)) — SFlow(a,n,p—1)

Basically,cons adds a given value to the beginning of a given flow to form a new fhat starts one
period ahead of the given flow; the first produced value of #&& fiow is simply the given value, and
the rest are those produced by the given flow. As another deamvp can introduce an operatoail
of the following type:

tail : Va:typevn:intVp:rat. SFlow(a,n, p) — SFlow(a,n, p+1)

Given a flow,tail returns another one that simply delays the given flow’s atitm by one period.

There are four commonly used clock transformation opesatoFigure B plus the types assigned to
them. Thenul operator (that is¢ ~ in Prelude) speeds up a clock by shrinking its period; it Enpénts
over-sampling where every element in the flow is repektades to meet its timing constraint. Likewise,
the div operator (that is/ "~ in Prelude) slows a clock by stretching its period; it impéts under-
sampling where only one element is taken out of ewegjements of the input flow. Given a flow and a
rational numbek, theshi £t operator shifts the phase offset of the clock assigned tédineby k, thus
delaying the activation of the flow. Given an element and a,ftbefby operator does not modify the
flow’s clock at all; it instead simply shifts the flow by one et and sets the first element of the flow
with the given one. For instancéby can be implemented based oans andshi £t in the concrete
syntax of ATS as follows:

implement fby (x, f) = cons(x, shift(f, 1))
Another interesting operatate rge is given the following type:

Va:typevn:intVp: rat. (SFlow(bool,n, p), SFlow(a,n, p), SFlow(a,n, p)) — SFlow(a,n, p)

wherebooal is the type for booleans. Essentialiye rge takes three strictly periodic flows and returns
one; for each, if the value in the first flow &t is true, then the value in the second flovt;as picked to
be the value of the returned flowtgtotherwise, the value in the third flow tatis picked.

Yet another interesting operatehen is given the following type:

Va:typevn:intVp:rat. (SFlow(bool,n, p), SFlow(a,n, p)) — BFlow(a,n, p)

whereBFlow is for boolean flows. Given two strictly periodic flowshen returns a boolean flow; for
eachi, if the value of the first flow is true dt, then the value of the second flowtais picked to be the
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value of the returned flow df, otherwise, the returned flow is undefined;atNote thatwhen is so far
the only operator that does not return a strictly periodiaflo

So far we have only thought of communication through flowsnelitle as individual values arriv-
ing at dates (that is, points in time). Please recall the kiregample presented in Figure 1, where a
controller queries a faster data task for information. lteorto make the communication between them
synchronous, we specified that only one out of every 10 valueduced by the faster task is to be read
by the controller.

Suppose that the controller needs all values produced hyatadase since it was last invoked. This
requires a queuing mechanism in the clock calculus, whieHesture outlined in Prelude’s specification
but yet to be supported by the compiler. We can readily adidication support for this feature with
dependent types in ATS. Suppose we have a strictly perioglic Fl that we want to under-sample by
some factokk. We can think of the flow as having values of the tygreay(a : typek : int) for arrays
that each contaik elements of the typa. This gives us the following type for a divide operation that
performs queuing rather than under-sampling. In this wegryetime the node that consumes this flow
is activated, it has access to klbf the most recent values emitted from the flow. Putting thrsially,
the type for such an operator is as follows:

Va:typevn:intVp:ratvk:int. (k > 0) D (SFlow(a,n, p),int(k)) — SFlow(array(a,k),n-k, p/k)

Clearly, this type directly relates the number of accunadatalues produced by a given flow to the
factor by which the flow’s clock is expected to be stretched.

4 Using ATSasa Target Language

With the above outlined operators plus their types, we catewT S programs that correspond semanti-
cally to their Prelude counterparts in terms of the synclzation checks that must be performed. In this
work, we modified the Prelude compiler to automatically gatee ATS code with type signatures from
Prelude source. As we will see in this section, the trarmsiat largely straightforward.

Every imported node is declared as an external function thighr input and output flows having the
same clock, and every node that is actually implementedahuBe is translated into a function definition
in ATS. Probably the biggest issue is to bridge the semaafidgtween Prelude, a concurrent declarative
language, and ATS, a call-by-value language with an MLAik&ctional core. This is especially evident
when we translate programs where certain flows are passeglesents before they are actually defined.
For instance, please take a careful look at the code prasenkegure 1. This issue cannot be addressed
by simply reordering expressions as circular definitioreskanth legal and common in Prelude. Instead,
we address this issue by using a combination of linear typeésapport for proof terms in ATS. For each
locally declared flow, we generate a linear proof term. Ireotd consume this proof term, we specify a
proof function our Prelude compiler must call with two ATSwiethat have equal clocks to ensure the
Prelude flow they represent is given exactly one clock. Iruféigd you can see this approach used to
verify theresponse andcommand flows maintain their specified clock.

After modifying the Prelude compiler, we automatically geate ATS code directly from the abstract
syntax tree of Prelude source; potential synchronizatioorgin the Prelude source can be captured by
typechecking the ATS code translated from it. For instatitePrelude example in Figure 1 is translated
into the ATS program in Figure 4 for the purpose of typechegkiNote that the lines starting with the
keywordprval are theorem-proving code related to the circularly defineadlin this function.
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fun main (
i: SFlow (int, 10, 0)
): (SFlow (int, 100, 0)) = let
var response : SFlow (int, 10, O0)
prval pfresponse = flow_future_make (response)
var command : SFlow (int, 100, 0)
prval pfcommand = flow_future_make (command)
val response' = (flow_fby (0, response))
val o, command' = controller ((flow_div_clock (i, 10)),
(flow_div_clock (response', 10)))

val response' = server (flow_mul_clock (command, 10))
prval () = flow_future_elim (pfresponse, response, response')
prval () = flow_future_elim (pfcommand, command, command')
in
(o)
end

Figure 4: ATS code automatically generated by a modifiedudeetompiler

5 Conclusion and Future Work

Prelude simplifies the process of composing communicaéiajtime tasks, that possibly run at different
rates, into a fully deterministic system. This desire fastiog out nondeterminism in the development
process was present when synchronous languages weretfisgticed[7] and it continues with methods
applied for industrial tools like Matlab’s SimulinK[5] ariesterel Technologie’s SCADE which uses the
synchronous language Lustre in mission critical softwamr®ss aerospace, automotive, and industrial
applications.

There is also research on synchronous languages that seslithe implementation of Mixed Criti-
cality Systems[14], where some tasks may be allowed totédlee Synchronous Hypothesis and miss
deadlines. One could imagine extending a language likai@edb guarantee synchronized determinis-
tic communication between both hard real-time tasks angldgtical soft real-time tasks. The Liquid
Clocks[10] framework defines a type system for designing sgmchronous languages across different
models of time and communication. Liquid Clocks uses refierintypes and an inference algorithm
inspired by Liquid Type$§[9] to verify time and causality sbraints in a network defined by data flows.
Our approach differs from Liquid Clocks in that we use theregpive types found in ATS, an existing
programming language, to support the implementation ofraaiie specific synchronous language for
multi-rate periodic systems.

In this report, dependent types in ATS of DML-style [13] 12¢ assigned to the multi-rate flows
introduced in Prelude and also to various clock transfaonatperators on these flows. Note that there
is explicit use of quantifiers in the types assigned to thessators, far exceeding what is accomplished
in Prelude, where every clock is either fixed to be a constanao be inferred from a constant one. For
instance, a constraint stating that a node must always peodilow whose clock is twice as fast as its
input node can be readily expressed in ATS but cannot clyriemiPrelude.

The basic building block of composition in synchronous lzames like Prelude is a unidirectional
flow. Yet, in complex embedded systems, individual comptsemy communicate using various dif-



William Blair & Hongwei Xi 43

ferent protocols. While these protocols are implementetbprof flows, there is no formal description
for them in an architecture design language like Preludee &menue for future work is to develop a
synchronous domain specific version of ATS that can use tygbatinels like those found in Session
Types|8] to describe both the temporal behavior of the systed what is communicated inside of it.
The latter information, for instance, can help verify noggiementations in a synchronous program or
detect possible errors.
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