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Synchronous programming languages emerged in the 1980s as tools for implementing reactive sys-
tems, which interact with events from physical environments and often must do so under strict timing
constraints. In this report, we encode inside ATS various real-time primitives in an experimental syn-
chronous language called Prelude, where ATS is a staticallytyped language with an ML-like func-
tional core that supports both dependent types (of DML-style) and linear types. We show that the
verification requirements imposed on these primitives can be formally expressed in terms of depen-
dent types in ATS. Moreover, we modify the Prelude compiler to automatically generate ATS code
from Prelude source. This modified compiler allows us to solely rely on typechecking in ATS to
discharge proof obligations originating from the need to typecheck Prelude code. Whereas ATS is
typically used as a general purpose programming language, we hereby demonstrate that it can also
be conveniently used to support some forms of advanced static checking in languages equipped with
less expressive types.

1 Introduction

Building software that must work reliably is an undeniably challenging process. Yet, engineers can still
construct reliable real-time systems that operate under strict temporal requirements. Companies have
long adopted model-based methods for designing real-time software[1]. Model-based design methods
emphasize automatically generating code from high-level models that formally describe the behavior of
a system. In fact, synchronous programming languages helped start a movement towards this paradigm
(of model-based automatic code generation) when they were introduced in the 1980s.

In synchronous programs, tasks communicate through data flows with the assumption that each data
flow produces values instantaneously at every step of a global logical clock. However, the simplicity
of a single system-wide global logical clock can be the source of serious limitation in practice. If a
system consists of communicating periodic tasks that need to run at different rates, the global logical
clock can become an obstacle as the programmer must synchronize all the tasks manually. The process
of manual synchronization is likely to be both tedious and error-prone with little support provided by
the compiler for preventing subtle timing bugs. As a part of his PhD thesis, Julien Forget developed
Prelude[6], a synchronous language that features primitives for describing the real-time behavior of tasks
in a multi-rate periodic system. Synchronizing data flows with different clocks in Prelude is still left to
the programmer, but the language provides operators to directly modify real-time clocks. For example,
a programmer can stretch a clock to accomplish under-sampling or shrink it for over-sampling. The
typechecker of Prelude then automatically verifies that allcommunicating tasks are synchronized. The
advantage of this system is that the language offers the ability to easily adjust the temporal behavior of
tasks while providing support for verification in the type system.

http://dx.doi.org/10.4204/EPTCS.241.3
http://creativecommons.org
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In this report, we encode inside ATS the clock calculus presented in Prelude, where ATS is a statically
typed programming language with a functional core of ML-style. The type system of ATS is rooted in
the Applied Type System framework[11], which gives the language its name. In ATS, both dependent
types[13, 12] (of DML-style) and linear types are supported. We assign dependent types to the real-time
clocks available in Prelude and then develop functions to capture the behavior of clock transformation
operators. With these functions, we can typecheck the automatically generated ATS code from Prelude
source (by a modified Prelude compiler) and formally verify that the data flows in the original Prelude
source are properly synchronized. A running version of our modified compiler can be found online1.

Although ATS is typically used as a source programming language, we hereby demonstrate that it
can also be conveniently used as a target language for the purpose of supporting advanced static checking
in a host language equipped with less expressive types. In addition, the reported use of dependent types
for reasoning about temporal properties should be interesting in its own regard.

2 Multi-Rate Flows in Prelude

An embedded real-time system continuously interacts with its own environment and often must do so
under strict timing constraints. For example, a task may periodically sample a sensor and provide data
that can in turn be used by the application logic to adjust theoutput of an actuator. In order to guarantee
that the system is responsive, engineers need to demonstrate that the worst case execution time (WCET)
for the communication from the sensor, to the application logic, and then to the actuator can never exceed
a required deadline. Synchronous programming languages simplify development by abstracting time for
the designer and providing well-defined semantics to enableverification and automatic code generation
from a model of the system.

When a synchronous program is compiled, all of the nodes and flows are translated into a single-
step function that is invoked repeatedly. The time between steps is the period of the system, and the
Synchronous Hypothesis states that all the flows must be re-evaluated before the end of each step. It is up
to the system designer to ensure that this requirement is met. Several synchronous languages[2, 3] have
been developed since the 1980s, with Lustre[4] currently serving as the underlying language powering
the SCADE Suite developed by Esterel Systems.

This abstraction for time in a synchronous language is of great convenience because it not only
alleviates the need for the programmer to worry about low-level timing details but also produces fully
deterministic code. However, it makes it difficult at the same time to compose systems where tasks may
run at different rates. In order to make tasks execute at the desired rates, the programmer must essentially
schedule tasks by hand in terms of a global logical clock, which can be both tedious and error-prone.

Prelude addresses the problem of manual synchronization for multi-rate periodic systems by remov-
ing the notion of a single system-wide global clock. Instead, it assigns each periodic flowF its own clock
C represented as a pair(n, p) wheren∈ N+ (that is,n is a positive integer) andp∈ Q+ (that is,p is a
positive rational number); the integern is referred to as the period ofC andp the phase offset. Note that
the period of a flowF is just the inter-arrival time of values produced byF and the phase offset is the
initial delay of the flow. The activation time of a flow (that is, its start date) is given byn· p. In Prelude’s
clock calculus, every date (that is, a point in time in the program) is required to be an integer so as to
simplify schedulability analysis. Therefore, we need to ensure that the datet0 is an integer for every flow.
In other words, a clock defined as(n, p) is valid if and only if bothn∈ N+ andn· p∈N+ hold.

1An end-to-end demonstration of our system is available athttps://travis-ci.org/wdblair/overture

https://travis-ci.org/wdblair/overture
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imported node

database (i: int rate (10, 0))

returns (o: int rate (10, 0));

imported node

controller(i: int rate (100, 0); j: int rate (100, 0))

returns (o: int rate (100, 0); p: int rate (100, 0));

sensor i;

actuator o;

node

sampling (i: rate (10, 0)) returns (o: rate (100, 0))

var command: rate (100, 0);

var response: rate (10, 0);

let

(o, command) = controller(i/ˆ10, (0 fby response)/ˆ10);

response = database(command*ˆ10);

tel

Figure 1: A multi-rate periodic system in the Prelude language

In Prelude, a generic flow consists of an infinite list of tuples ∀i ∈ N. (vi , ti), wherevi is the value
of the flow produced at timeti. Under the normal synchronous paradigm, every flow producessome
value during each tick of the logical clock. There is no longer the notion of a global time scale in
Prelude. Instead, every flow is assigned its own clock, whichcan be lengthened as well as shortened.
By modifying a clock, we alter the rate at which values are produced in a program. If a value contained
in a flow is undefined for some arbitrary date, we cannot adjustits real-time behavior while expecting
deterministic results. As such, it is useful to define a classof data flows that are strictly periodic. Formally
speaking, a data flow is strictly periodic if and only if

∃n∈ N+.∀i ∈ N. ti+1− ti = n

wheren is the period of the clock assigned to the flow andti is the date when valuei is produced by
the flow[6]. Intuitively, a strictly periodic data flow produces a value after each period. In Prelude,
a set of operators are provided to transform the clocks assigned to strictly periodic flows which greatly
facilitates communication between tasks that execute at different rates. In Figure 3 presented in Section 3
we describe how to encode the semantics of these operators into the ATS programming language.

As an example, let us consider a simple system where a controller runs with a clock of(100,0)
and interacts with a fast running task that provides critical data from the environment with a clock of
(10,0). Figure 1 implements this system where thecontroller node sends a command to thedatabase
node and receives a response back from it. Observe that thecontroller executes 10 times slower than
thedatabase. If we want thecontroller node’s outputcommand to be synchronized with thedatabase,
we must over-sample it using the*ˆ operator. Likewise, we under-sample thedatabase node’s output
response in order to synchronize it with thecontroller node by using the/ˆ operator.

In the rest of the paper, we will define the Prelude operators necessary to implement this program in
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node

monitor (temperature: int rate (10, 0), fault: bool rate(100, 0))

returns (alert: int rate (100, 0))

let

alert = (temperature /ˆ 10) when fault

tel

Figure 2: The boolean flowalert given here produces data only whenfault producestrue.

ATS so that all synchronization constraints are checked by the type checker. Then, we will describe how
we can transform Prelude programs like this one into ATS to verify all communication is synchronized.

3 Assigning Types to Flows in ATS

At a high level, Prelude modifies the semantics of traditional synchronous languages by refining the
basic flow type to have its own clock as opposed to a global clock. This refinement generates a proof
obligation for the compiler as a flow going from one task to another is not necessarily synchronized. We
can readily defer this obligation to typechecking in ATS by assigning the following type (written in the
concrete syntax of ATS) to strictly periodic flows:

abstype SFlow(a: type, n: int, p: rat)

Note thatint andrat refer to the sorts for integers and rational numbers, respectively. There is another
sort nat for natural numbers that will appear later. Givena, n, and p, the typeSFlow(a,n, p) is for a
strictly periodic flow of values of the typea such that the clock assigned to the flow is of the periodn and
phase offsetp. Formally speaking, a flowF of the typeSFlow(a,n, p) consists of the following pairs:

∀i ∈ N.(vi , ti) ∈ F

where eachvi is a (defined) value of the typea andti = n· (p+ i). Flows that are not strictly periodic are
also useful in Prelude. For instance, the following typeBFlow is for boolean flows:

abstype BFlow(a: type, n: int, p: rat)

Boolean flows differ from strictly periodic flows by allowingvalues to be produced only on a subset of
the dates given by a flow’s clock. In Figure 2, we define a boolean flow alert to give the value of a
temperature sensor only at dates whenfault produces atrue value.

Modifying a flow’s clock affects the values that are includedin the flow. In order to determine
precisely what values remain in a flow after its clock is modified, Prelude requires that every flow passed
to a clock transformation operator be strictly periodic. Bythe same token, all clock operators yield
strictly periodic flows.

In Prelude, only integer dates are considered valid. Therefore, any flow’s clock is subject to the
requirement thatn· p∈N holds, wheren andp are the period and phase offset of the clock, respectively.
If this was not true, then a task’s start time could not be represented as an integer date. When assigning
types to a clock transformation operator, we often add a precondition to ensure that only a clock satisfying
the requirement can be actually returned by the operator.
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mul : ∀a : type∀n : int∀p : rat∀k : nat. (k | n)⊃ (SFlow(a,n, p), int(k))→ SFlow(a,n/k, p·k)
div : ∀a : type∀n : int∀p : rat∀k : nat. (k | n)⊃ (SFlow(a,n, p), int(k))→ SFlow(a,n·k, p/k)

shift : ∀a : type∀n : int∀p : rat∀k : rat. (n·k∈ N)⊃ (SFlow(a,n, p),rat(k))→ SFlow(a,n, p+k)
fby : ∀a : type∀n : int∀p : rat. (a,SFlow(a,n, p)) → SFlow(a,n, p)

Figure 3: Some clock transformation operators and their types

The clock transformation operators in Prelude are to be translated into regular functions in ATS.
Synchronous flows resemble infinite lazy streams in traditional functional programming languages. For
instance, we can introduce an operatorcons of the following type:

cons : ∀a : type∀n : int∀p : rat. (a,SFlow(a,n, p)) → SFlow(a,n, p−1)

Basically,cons adds a given value to the beginning of a given flow to form a new flow that starts one
period ahead of the given flow; the first produced value of the new flow is simply the given value, and
the rest are those produced by the given flow. As another example, we can introduce an operatortail
of the following type:

tail : ∀a : type∀n : int∀p : rat. SFlow(a,n, p) → SFlow(a,n, p+1)

Given a flow,tail returns another one that simply delays the given flow’s activation by one period.
There are four commonly used clock transformation operators in Figure 3 plus the types assigned to

them. Themul operator (that is,*ˆ in Prelude) speeds up a clock by shrinking its period; it implements
over-sampling where every element in the flow is repeatedk times to meet its timing constraint. Likewise,
thediv operator (that is,/ˆ in Prelude) slows a clock by stretching its period; it implements under-
sampling where only one element is taken out of everyk elements of the input flow. Given a flow and a
rational numberk, theshift operator shifts the phase offset of the clock assigned to theflow by k, thus
delaying the activation of the flow. Given an element and a flow, thefby operator does not modify the
flow’s clock at all; it instead simply shifts the flow by one period and sets the first element of the flow
with the given one. For instance,fby can be implemented based oncons andshift in the concrete
syntax of ATS as follows:

implement fby (x, f) = cons(x, shift(f, 1))

Another interesting operatormerge is given the following type:

∀a : type∀n : int∀p : rat. (SFlow(bool,n, p),SFlow(a,n, p),SFlow(a,n, p))→ SFlow(a,n, p)

wherebool is the type for booleans. Essentially,merge takes three strictly periodic flows and returns
one; for eachi, if the value in the first flow atti is true, then the value in the second flow atti is picked to
be the value of the returned flow atti ; otherwise, the value in the third flow atti is picked.

Yet another interesting operatorwhen is given the following type:

∀a : type∀n : int∀p : rat. (SFlow(bool,n, p),SFlow(a,n, p)) → BFlow(a,n, p)

whereBFlow is for boolean flows. Given two strictly periodic flows,when returns a boolean flow; for
eachi, if the value of the first flow is true atti , then the value of the second flow atti is picked to be the
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value of the returned flow atti; otherwise, the returned flow is undefined atti . Note thatwhen is so far
the only operator that does not return a strictly periodic flow.

So far we have only thought of communication through flows in Prelude as individual values arriv-
ing at dates (that is, points in time). Please recall the simple example presented in Figure 1, where a
controller queries a faster data task for information. In order to make the communication between them
synchronous, we specified that only one out of every 10 valuesproduced by the faster task is to be read
by the controller.

Suppose that the controller needs all values produced by thedatabase since it was last invoked. This
requires a queuing mechanism in the clock calculus, which isa feature outlined in Prelude’s specification
but yet to be supported by the compiler. We can readily add verification support for this feature with
dependent types in ATS. Suppose we have a strictly periodic flow F that we want to under-sample by
some factork. We can think of the flow as having values of the typearray(a : type,k : int) for arrays
that each containk elements of the typea. This gives us the following type for a divide operation that
performs queuing rather than under-sampling. In this way, every time the node that consumes this flow
is activated, it has access to allk of the most recent values emitted from the flow. Putting this formally,
the type for such an operator is as follows:

∀a : type∀n : int∀p : rat∀k : int. (k> 0)⊃ (SFlow(a,n, p), int(k))→ SFlow(array(a,k),n·k, p/k)

Clearly, this type directly relates the number of accumulated values produced by a given flow to the
factor by which the flow’s clock is expected to be stretched.

4 Using ATS as a Target Language

With the above outlined operators plus their types, we can write ATS programs that correspond semanti-
cally to their Prelude counterparts in terms of the synchronization checks that must be performed. In this
work, we modified the Prelude compiler to automatically generate ATS code with type signatures from
Prelude source. As we will see in this section, the translation is largely straightforward.

Every imported node is declared as an external function withtheir input and output flows having the
same clock, and every node that is actually implemented in Prelude is translated into a function definition
in ATS. Probably the biggest issue is to bridge the semantic gap between Prelude, a concurrent declarative
language, and ATS, a call-by-value language with an ML-likefunctional core. This is especially evident
when we translate programs where certain flows are passed as arguments before they are actually defined.
For instance, please take a careful look at the code presented in Figure 1. This issue cannot be addressed
by simply reordering expressions as circular definitions are both legal and common in Prelude. Instead,
we address this issue by using a combination of linear types and support for proof terms in ATS. For each
locally declared flow, we generate a linear proof term. In order to consume this proof term, we specify a
proof function our Prelude compiler must call with two ATS flows that have equal clocks to ensure the
Prelude flow they represent is given exactly one clock. In Figure 4 you can see this approach used to
verify theresponse andcommand flows maintain their specified clock.

After modifying the Prelude compiler, we automatically generate ATS code directly from the abstract
syntax tree of Prelude source; potential synchronization errors in the Prelude source can be captured by
typechecking the ATS code translated from it. For instance,the Prelude example in Figure 1 is translated
into the ATS program in Figure 4 for the purpose of typechecking. Note that the lines starting with the
keywordprval are theorem-proving code related to the circularly defined flows in this function.
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fun main (

i: SFlow (int, 10, 0)

): (SFlow (int, 100, 0)) = let

var response : SFlow (int, 10, 0)

prval pfresponse = flow_future_make (response)

var command : SFlow (int, 100, 0)

prval pfcommand = flow_future_make (command)

val response' = (flow_fby (0, response))

val o, command' = controller ((flow_div_clock (i, 10)),

(flow_div_clock (response', 10)))

val response' = server (flow_mul_clock (command, 10))

prval () = flow_future_elim (pfresponse, response, response')

prval () = flow_future_elim (pfcommand, command, command')

in

(o)

end

Figure 4: ATS code automatically generated by a modified Prelude compiler

5 Conclusion and Future Work

Prelude simplifies the process of composing communicating real-time tasks, that possibly run at different
rates, into a fully deterministic system. This desire for rooting out nondeterminism in the development
process was present when synchronous languages were first introduced[7] and it continues with methods
applied for industrial tools like Matlab’s Simulink[5] andEsterel Technologie’s SCADE which uses the
synchronous language Lustre in mission critical software across aerospace, automotive, and industrial
applications.

There is also research on synchronous languages that addresses the implementation of Mixed Criti-
cality Systems[14], where some tasks may be allowed to violate the Synchronous Hypothesis and miss
deadlines. One could imagine extending a language like Prelude to guarantee synchronized determinis-
tic communication between both hard real-time tasks and less critical soft real-time tasks. The Liquid
Clocks[10] framework defines a type system for designing newsynchronous languages across different
models of time and communication. Liquid Clocks uses refinement types and an inference algorithm
inspired by Liquid Types[9] to verify time and causality constraints in a network defined by data flows.
Our approach differs from Liquid Clocks in that we use the expressive types found in ATS, an existing
programming language, to support the implementation of a domain specific synchronous language for
multi-rate periodic systems.

In this report, dependent types in ATS of DML-style [13, 12] are assigned to the multi-rate flows
introduced in Prelude and also to various clock transformation operators on these flows. Note that there
is explicit use of quantifiers in the types assigned to these operators, far exceeding what is accomplished
in Prelude, where every clock is either fixed to be a constant or can be inferred from a constant one. For
instance, a constraint stating that a node must always produce a flow whose clock is twice as fast as its
input node can be readily expressed in ATS but cannot currently in Prelude.

The basic building block of composition in synchronous languages like Prelude is a unidirectional
flow. Yet, in complex embedded systems, individual components may communicate using various dif-
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ferent protocols. While these protocols are implemented ontop of flows, there is no formal description
for them in an architecture design language like Prelude. One avenue for future work is to develop a
synchronous domain specific version of ATS that can use typedchannels like those found in Session
Types[8] to describe both the temporal behavior of the system and what is communicated inside of it.
The latter information, for instance, can help verify node implementations in a synchronous program or
detect possible errors.
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