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Abstract
Our interest is in automated termination proofs of higher-order rewrite rules in presence of
dependent types modulo a theory T on base types. We first describe an original transformation
to a type discipline without type dependencies which preserves non-termination. Since the user
must reason on expressions of the transformed language, we then introduce an extension of the
computability path ordering CPO for comparing dependently typed expressions named DCPO.
Using the previous result, we show that DCPO is a well-founded order, behaving well in practice.
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1 Introduction

This paper addresses the problem of (semi-)automating termination proofs for typed higher-
order calculi defined by rewrite rules. Since many automated techniques exist for showing
termination of simply typed higher-order rewrite rules, our first approach is to reduce the
former to the latter.

To this end, we introduce a non-termination preserving transformation from dependently
typed algebraic λ-terms to simply typed algebraic λ-terms. Unlike the transformation used
for showing strong normalization of LF [13], the present one uses algebraic symbols and
type constructors in an essential way. Dependently typed rewrite rules can then be shown
terminating via the transformation. The user can therefore benefit from all existing tools
allowing to check termination of higher-order rewrite rules. The drawback is that these tools
will operate on the transformed rules.

Among all termination proof techniques, we favour the one reducing termination proofs
to ordering comparisons between lefthand and righthand sides of rules. These comparisons
require well-founded orders on typed algebraic λ-terms which are stable by context application
and substitution instance. CPO is such an order on simply typed algebraic λ-terms, defined
recursively on the structure of the compared terms [9]. CPO is indeed well-founded on weakly
polymorphic λ-terms, the familiar ML-discipline for which quantifiers on types can only occur
in prefix position. A recent extension of core CPO to appear in LMCS handles inductive
types, constructors possibly taking functional arguments, and function symbols smaller than
application and abstraction.

We formulate here a new extension DCPO of CPO for dependently typed algebraic
λ-terms. DCPO is then viewed as an infinite set of dependently typed rewrite rules which
are shown terminating by checking the transformed rules with CPO. It follows that DCPO
is a well-founded order of the set of dependently typed λ-terms, whose syntax-directed
comparisons require little input from the user, in the form of a precedence on the algebraic
symbols used in the rules. DCPO is our answer for practice.
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258 Termination of Dependently Typed Rewrite Rules

Variables:
x :σ ∈ Γ

Γ `Σ x :σ

Abstraction:
Γ, x :σ `Σ t :τ

Γ `Σ (λx :σ.t) :σ → τ

Application:
Γ `Σ s :σ → τ

Γ `Σ t :σ
Γ `Σ @(s, t) :τ

Functions:
fn :σ → σ ∈ F

Γ `Σ t :σ
Γ `Σ f(t) :σ

Figure 1 Type system for monomorphic higher-order algebras.

Dependent programming has become a major trend in recent years [23, 16]. In practice,
many types depend on natural numbers. Typing dependent definitions requires then a
convertibility relation T including arithmetic laws [20], see Example 3.4. Our results allow
for dependent types modulo T .

Sections 4 and 5 describe the non-termination preserving transformation and DCPO.

2 Higher-Order Algebras λ
→

Σ

We assume a signature Σ = S
⊎
F of sort symbols in S and function symbols in F . The set

T →S of simple types (in short, types) is generated by the grammar σ, τ := a ∈ S | σ → τ. The
(arrow) type constructor → associates to the right. The output sort of a type σ is itself if
σ ∈ S and the output sort of τ if σ = ν → τ . We use σ, τ, µ, ν for simple types.

Function symbols are meant to be algebraic operators upper-indexed by their fixed arity n.
Function declarations are written fn : σ1 → . . .→ σn → σ (in short, f : σ → σ), where σ and
σ are the input and output types of fn. We use fn, gm for function symbols, possibly omitting
m,n. λx : σ.s, @(s, t) and fn(t1, . . . , tn) (or f(t)) are an abstraction, an application, and a
pre-algebraic raw term. f0() is identified with f . We use x, y, z for variables, s, t, u, v, w, l, r
for raw terms, FV(s) for the set of free variables of s and |s| for the size of s.

Raw terms are seen as finite labeled trees by considering λx : σ.s, for each x : σ, as a
unary abstraction operator taking s as argument to construct the raw term λx : σ.s. We
abbreviate abstraction operators by λ. Positions are strings of strictly positive integers. We
use i, j for positive integers, p, q for arbitrary positions. The empty string Λ is the root or
head position and · is string concatenation. Pos(t) is the set of positions of t.

Given a raw term s, s(p) and s|p denote respectively the symbol and subterm of s at
position p. For example, (λx : σ.u)|1 = u. The result of replacing the subterm s|p by the
term t is written s[t]p. A context term s[x]p, in short s[ ]p or even s[ ], is a term s in which x
is a fresh variable, called hole, occurring at position p. All these notions extend as expected
to a set P of disjoint positions, writing s[t]P for replacement of all terms in s|P by a single
term t, and s[x]P for a context with many holes.

An environment Γ is a finite set of pairs {x1 : σ1, . . . , xn : σn} where xi is a variable,
σi is a type, and xi 6= xj for i 6= j. FV(Γ) = {x1, . . . , xn} is the set of variables of Γ. Our
typing judgements are written as Γ `Σ s : σ. A raw term s has type σ in the environment Γ
if the judgement Γ `Σ s : σ is provable in the inference system given in Figure 1. Typable
raw terms are called algebraic λ-terms (in short, terms or objects), and their set is denoted
by λF (or O→F ). Objects have a unique type in a given, possibly omitted, environment.

Substitutions are type-preserving homomorphisms avoiding captures, see for example [2],
written here in postfix form, using the notation {xi 7→ si}i. The congruence on terms
generated by renaming the free variable x in s by the fresh variable z 6∈ FV(λx.s) to yield
the term λz.s{x 7→ z} is called α-conversion, denoted by =α. We use γ, θ for substitutions.

A higher-order rewrite rule is a quadruple ∆ Σ̀ l→ r : σ made of lefthand and righthand
side terms l, r, and possibly omitted environment ∆ and type σ. Rules β and η are particular
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rewrite rule schemas. Reductions are defined as usual, and are a particular case of reductions
in presence of dependent types, see Definition 3.3. A higher-order reduction ordering � is a
quasi-order on terms satisfying: (i) its strict part � is well-founded ; (ii) its equivalence is a
congruence ; (iii) monotonicity: s� t implies u[s]p�u[t]p (assuming typability); (iv) stability:
s � t implies sγ � tγ for all substitutions γ; and (v) functionality: −→β ∪−→η ⊆�.

Given a set E the notation s shall be used for a list, multiset, or set of elements of E.
Given a binary relation � on E, we use s �lex t and s �mul t for its lexicographic and
multiset extensions respectively. We use s � t for (∀t ∈ t) s � t, and s � t for (∃s ∈ s) s � t.

A rewrite relation generated by a set of rules R ∪ {β, η} can be proved terminating by
checking whether l � r for all rules in R with some higher-order reduction ordering � [14].
CPO is such a higher-order reduction ordering based on three ingredients [9]:

an order ≥→ on simple types, whose strict part >→ satisfies

(i) well-foundedness: >→ ∪{〈σ → τ, σ〉 | σ, τ ∈ T →S } is well-founded ;
(ii) right arrow subterm: σ → τ >→ τ ;
(iii) preservation: σ→τ=→ ν iff ν=σ′→τ ′, σ=→σ′, τ=→ τ ′ and
(iv) decreasingness: σ → τ >→ ν implies τ≥→ ν or ν = σ → µ and τ >→ µ.

a quasi-order ≥F on F ∪ {@, λ} ∪ X called precedence s.t.: (i) its strict part >F restricts
to F ∪ {@, λ}, is well-founded, and satisfies (∀f ∈ F) f >F @ >F λ; (ii) its equivalence
=F contains pairs in F × F and all pairs {(x, x) |x ∈ X}.
(∀f ∈ F ∪ {@, λ}), a status operator _f ∈{lex,mul} in postfix index position such that
_@ = mul. Equivalent symbols have the same status.

The following auxiliary relations are used to define CPO [9] :
s≥X t iff s =α t or s>X t, for a set of variables X disjoint from FV(s), is the main order ;
s>X t̄ and s̄ >X t defined respectively as (∀v ∈ t̄) s>X v and (∃u ∈ s̄)u>X t ;
s : σ >X t : τ (resp., s : σ ≥X t : τ) for s>X t (resp., s≥X t) and σ ≥→ τ ;
we are interested in the typed order s : σ >∅ t : τ , written s : σ > t : τ .

I Definition 2.1. Given Γ `F s : σ and Γ `F t : τ , s>X t iff either
t ∈ X and s 6∈ X var
s = λx :µ.u and u{x 7→z} :ν≥X t :τ subtλ
s=f(s), t=λx :µ.v and s>X∪{z:µ}v{x 7→ z} Fλ
s=@(u,w), t = λx :µ.v, x 6∈ FV(v) and s>Xv @λ
s=λx :µ.u, t=λy :µ.v and u{x 7→ z}>Xv{y 7→ z} λλ

s = @(λx :µ.u, w) and u{x 7→ w}≥X t beta
s = λx :µ.@(u, x), x 6∈ FV(u) and u≥X t eta
otherwise s = f(s), t = g(t) with f, g∈ F∪{@, λ} ∪ X , and either
subt s : σ ≥ t : τ prec f >F g and s>X t stat f=F g, s>X t and s : σ >f t : τ

This definition of CPO is organized differently from [9] to be more compact. The last three
cases originating in Dershowitz’ recursive path ordering [12] describe the normal behaviour of
head symbols, whether or not in F . Note here that >f is the status extension (lexicographic
or multiset) of the order >. The first 7 cases describe other behaviours, either specific (var,
beta, eta), or using explicit α-conversion for the others. In its recursive call, caseFλ increases
the set X of upper variables, while other recursive calls either keep it unchanged or reset it
to ∅. Relaxations of these recursive calls are indeed ill-founded.

I Theorem 2.2 ([9]). >+ is a higher-order reduction ordering.

TLCA’15
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3 Dependent algebras λ
Π

Σ

We move to a calculus with dependent types inspired by Edinburgh’s LF [13], an extension
of the simply typed λ-calculus which can be seen as a formal basis for dependently typed
programming languages and their formal study as done with Elf [18].

In higher-order algebras, types are typable by a single, usually omitted constant TYPE.
In dependent algebras, as in other type theories, types (called type families) are typed by
kinds, TYPE being one of them, which describe their functional structure. Let S,F and
V be pairwise disjoint sets of respectively type symbols, algebraic function symbols, and
variables. Algebraic function symbols in F may carry an arity upper-indexing their name.
Type symbols in S are curried constants which kind may be functional. We use respectively f
and a for a typical function or type symbol. Raw terms are given by the following grammar:

Kinds K := TYPE | Πx : A.K Types A,B := a | Πx : A.B | λx : A.B | A N

Objects M,N := x | λx : A.M | M N | fn(M1, ...,Mn)

λ and Π are LF’s binders. Notation =α stands for similarity. Here, λ and Π are binary
operators, whose arguments are a type ((λx : A.u)|1 = A), and the body of the abstraction
or product ((λx : A.u)|2 = u). Both may originate computations. We write f for f0().

3.1 Typing judgements
All LF expressions are typed, objects by types, types by kinds, kinds by a special untyped
constant KIND (the universe) asserting their well-formedness, we also call them valid. Five
kinds of judgement are recursively defined by the LF type system of Figure 2.

`sig Σ Σ is a valid signature
Σ`C Γ Γ is a valid context assuming `sig Σ
Σ ; Γ`KK : KIND K is a valid kind assuming Σ`C Γ
Σ ; Γ`T A : K type A has kind K assuming Σ ; Γ`KK : KIND
Σ ; Γ`OM : A object M has type A assuming Σ ; Γ`T A : K
Σ ; Γ`T ∨O C : D and Σ ; Γ`T ∨K C : D are self explanatory

Environments pair up a signature and a context. Signatures assign kinds to type symbols
and product types to function symbols. Contexts assign product types to variables.
Env Θ := Σ ; Γ where nil is the empty set,
Sig Σ := nil |Σ, a : K |Σ, fn : Π{xi : Ai}n.A Π{xi : Ai}n.A is
Con Γ := nil |Γ, x : A Πx1 : A1.(. . . (Πxn : An.A) . . .)

In dependent calculi, the order of constants or variables in the environment is determined
by their types. This impacts the expression of the so-called substitution lemma:

I Lemma 3.1. Let Σ ; Γ`OM : A and Σ ; Γ, x : A, Γ′ `T ∨O s : σ. Then, Σ ; Γ, Γ′{x 7→
M} `T ∨O s{x 7→M} : σ{x 7→M}.

Applying the substitution lemma several times introduces an order on the application
of elementary substitutions. We use the notation M ◦n{xi 7→ Ni}i to denote the sequential
application to M of the elementary substitutions {x1 7→ N1}, ..., {xn 7→ Nn} in this order.
We use the word dependent substitution to stress this sequential behaviour of substitutions.

Given a valid signature Σ and a context Γ valid in Σ, the set λΣ of valid expressions,
called terms is the (disjoint) union of the sets KΠ

Σ of valid kinds, T Π
Σ of valid types and OΠ

Σ of
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Signatures

[Empty]
`sig nil

[TConst]
Σ ; nil`KK : KIND

`sig Σ, a : K
a /∈ dom(Σ)

[Const]
`sig Σ Σ ; {xi : Ai}k `T Ak+1(k = 0..n) : TYPE

`sig Σ, fn : Π{xi : Ai}n.An+1
f 6∈ dom(Σ)

Contexts

[Empty]
`sig Σ

Σ`C nil
[Var]

Σ`C Γ Σ ; Γ`T A : TYPE
Σ`C Γ, x : A

x /∈ dom(Γ)

Kinds

[Univ]
Σ`C Γ

Σ ; Γ`KTYPE : KIND
[Prod]

Σ ; Γ, x : A`KK : KIND
Σ ; Γ`KΠx : A.K : KIND

Types

[Ax]
Σ`C Γ

Σ ; Γ`T a : K
a : K ∈ Σ [Abs]

Σ ; Γ, x : A`T B : K
Σ ; Γ`T λx : A.B : Πx : A.K

[App]
Σ ; Γ`T A : Πx : B.K Σ ; Γ`OM : B

Σ ; Γ`T AM : K{x 7→M}
[Prod]

Σ ; Γ, x : A`T B : TYPE
Σ ; Γ`T Πx : A.B : TYPE

[Conv]
Σ ; Γ`T A : K Σ ; Γ`KK ′ : KIND

Σ ; Γ`T A : K ′
K ≡ K′

Objects

[Ax]
Σ`C Γ x : A ∈ Γ

Σ ; Γ`Ox : A
[Fun]

Σ ; Γ`OMi : Ai{x1 7→M1, ..., xi−1 7→Mi−1}
Σ ; Γ`Ofn(M1, ...,Mn) : A ◦n {xi 7→Mi}i
where fn : Π{xi : Ai}n.A ∈ Σ

[Abs]
Σ ; Γ, x : A`OM : B

Σ ; Γ`Oλx : A.M : Πx : A.B
[App]

Σ ; Γ`OM : Πx : A.B Σ ; Γ`ON : A
Σ ; Γ`OM N : B{x 7→ N}

[Conv]
Σ ; Γ`T ∨O s : σ Σ ; Γ`T ∨K σ′ : TYPE/KIND

Σ ; Γ`T ∨O s : σ′
σ ≡ σ′

Figure 2 LF Typing rules.

TLCA’15
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valid objects (possibly abbreviated as K, T ,O). Our presentation of LF performs classically
the necessary sanitary checks when forming the signatures and contexts and only those.
≡ denoting the convertibility relation, a congruence discussed next in more details, that

is generated by βη-conversion on similar terms on the one hand and on the other hand by
an additional arbitrary congruence between object terms stable by substitution (possibly
identifying them all [4]). By its definition as a congruence, convertibility respects our syntactic
categories, objects, types and kinds.

Our dependently typed calculus is referred to as λΠ
Σ to stress the signature Σ, or simply LF.

Lexicography: we use K for kinds, A,B,C,D for types, M,N for objects, s,t,u,v,w,l,r for
(objects or types), σ, τ, µ, ν for (type or kinds), and γ, θ for substitutions.

3.2 Dependent rewriting and convertibility
In LF, the usual rules of the λ-calculus apply at the object and type levels, making four
different rules generating a congruence called βη-convertibility:

beta: (λx :A.B) M →βT B{x 7→M} (λx :A.M) N →βO M{x 7→ N}
eta: λx :A.(B x) →ηT B if x 6∈ FV(B) λx :A.(M x) →ηO M if x 6∈ FV(M)

Convertibility plays a key role for typing via Conv. In LF, convertibility is defined as the
congruence generated by βη-reductions. In reality, convertibility must be strengthened on
object level terms in order to type most examples. This problem has been considered in the
framework of the calculus of constructions with the Calculus on Inductive Constructions [17],
the Calculus of Algebraic Constructions [7] and the Calculus of Constructions Modulo
Theory [20, 3], for which convertibility includes respectively: primitive recursion at higher
type generated by the user’s inductive types; the user’s higher-order rules; and a decidable
object-level first-order theory like Presburger arithmetic. These frameworks can be restricted
to the LF type system seen as a particular case of the calculus of constructions. In the
context of LF, it relates to the liquid types discipline [19], which shares similar objectives.

We now introduce dependent rewrite rules and rewriting.

I Definition 3.2. Given a valid signature Σ, a plain dependent rewriting system is a set
{∆i ` li : σi → ri : τi}i of quintuples made, for every index i, of a context ∆i, lefthand and
righthand side terms li, ri, and terms σi, τi, s.t. FV(ri) ⊆ FV(li), Σ ; ∆i `T ∨O li : σi and
Σ ; ∆i `T ∨O ri : τi with σi ≡ τi. ∆i, σi and τi may be omitted.

I Definition 3.3 (Dependent rewriting). Given a rewriting system R, one step rewriting is a
relation over terms, written Σ ; Γ`R s−→p t (in short, s−→R t) defined as:

s and t are both types or objects which are typable under Σ; Γ,
∆ ` l→ r : A ∈ R, where FV(∆) ∩ FV(Γ) = ∅.
s = s[l ◦ γ]p and t = s[r ◦ γ]p, where γ is a dependent substitution wrt to ∆.

A major semantic property expected from rewrite rules is that rewriting preserves types.
In presence of dependencies, types are usually preserved up to some congruence defined
by the rules themselves, as in the Calculus of Inductive Constructions or the Calculus of
Algebraic Constructions [7]. Here, preservation of typing by rewriting, up to type erasures,
follows from Lemma 4.7.

I Example 3.4. Here is a simple example with dependent lists of elements of a given type A.
We allow ourselves with some OBJ-like mixfix syntax, using “_” for arguments’ positions:
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nat,A :TYPE; List :Πm :nat.TYPE;
0 :nat; _ + 1:Πn :nat.nat; _ + _:Π{m,n :nat}.nat
cons : Π{n : nat, a : A, l : List n}.List (n + 1)
app : Π{m,n : nat, k : Listm, l : List n }. List (m+ n)

0 + n→ n app(0, n, nil, l)→ l

(m+ 1) + n→(m+ n) + 1 app(m+1, n, cons(m, a, k), l)→cons(m+n, a, app(m,n, k, l))

Using LF’s typing rules given in Figure 2, we get:

{m,n : nat} ` n, 0 + n, (m+ 1) + n, (m+ n) + 1 : nat

{n :nat, l :List n} ` app(0, n, nil, l) : List (0 + n)
{m,n :nat, k :Listm, l :List n} ` app(m+1, n, cons(m, a, k), l) : List ((m+ 1) + n)
{m,n :nat, k :Listm, l :List n} ` cons(m+n, a, app(m,n, k, l)) : List ((m+ n) + 1)

Typing these rules requires a conversion relation extending βη-conversion on objects with
Presburger arithmetic to identify List (0+n), List n and List ((m +1)+n), List ((m+n)+1).

4 Encoding LF in higher-order algebras

We define here a transformation from the source language to a target language which preserves
non-termination of arbitrary reductions, not just β-reductions as in LF. Our target language
is the simply-typed λ-calculus enriched with function symbols and type constants of Section 2,
a choice which has three important advantages: the target vocabulary can be as close as
possible from the source vocabulary; the transformation preserves termination as well as
non-termination; the transformed rules can be checked for termination by CPO.

The higher-order algebra encoding λΠ
Σ will be λ→

Σflat , where Σflat = Sflat
⊎

Σflat is a
higher-order (non-dependent) signature whose two pieces are described next. The set of
types in λ→

Σflat is denoted by T →Sflat
. Terms in λ→

Σflat , whose set is denoted by λΣflat , are meant
to encode LF objects and types in a way which mimics dependently typed computations.
We do not encode LF kinds, since computations in kinds are indeed computations on types
or objects. Indeed, dependent types will be encoded in λ→

Σflat both as types and as terms.

4.1 Type erasures
Types. Types in λ→

Σflat are arrow types built from the set of sorts Sflat = {∗}∪{a | a : K ∈ Σ}.
The new sort ∗ will serve to encode LF product types as terms of sort ∗ in λ→

Σflat . LF
objects will be encoded as terms whose types are erasures of LF types, as defined next.
Type erasures. The classical erasing transformation from families and kinds in λΠ

Σ to types
in λ→

Σflat eliminates dependencies from objects by replacing product types by arrow types:

I Definition 4.1. The erasing map |.| : T ∪ K → T →Sflat
is defined as:

(1)|a| = a (2)|Πx : A.B| = |A| → |B| (3)|λx : A.B| = |B|
(4)|TYPE| = ∗ (5)|Πx : A.K| = |A| → |K| (6)|AN | = |A|

Sorts being constants, an induction shows that variables in types are eliminated in rule (6):

I Lemma 4.2. Let A ∈ T ∪ K. Then FV(|A|) = ∅.

I Corollary 4.3. For any E ∈ K∪T , y ∈ V, and s ∈ O→Σflat , |E{y 7→ s}| = |E|{y 7→ |s|} = |E|.

I Lemma 4.4 (Conversion equality). Let D,E ∈ T such that D ≡ E. Then, |D| = |E|.

TLCA’15
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Proof. Conversion is a congruence generated by βη-rewriting and an equivalence =O on
object terms. We show that the property is true of both relations by induction on D.
1. Case D = a : K. Then E = D.
2. Case D = Πx : A.B : TYPE. Then E = Πx : A′.B′ : TYPE with A ≡ A′ and B ≡ B′.

By induction hypothesis (and definition of the erasing map).
3. Case D = λx : A.B : Πx : A.K. There are two cases:

(a) E = λx : A′.B′ : Πx : A′.K, with A ≡ A′ and B ≡ B′. By induction hypothesis.
(b) D = λx :A.(E x)→η E where x /∈ FV(E). Then |D| = |λx :A.(E x)| = |E x| = |E|.

3. Case D = A M : K, where M is an object. Again two cases:
(a) E = A′ M ′, A≡A′ and M≡M ′. Then, |D|= |A| and |E|= |A′|. By induction.
(b) D=(λx :F.G)M→βG{x 7→M}=E. By Corol. 4.3, |D|= |G|= |G{x 7→M}|= |E|.

J

Erasing is extended to environments Σ ; Γ by: |Γ| = {x : |A| | x : A ∈ Γ} and
|Σ| = {a : |K| | a : K ∈ Σ} ∪ {fn : |A1| → . . . |An| → |A| where fn : Π{xi : Ai}n.A ∈ Σ}.

Note here that a constructor like cons : Πn : Nat, x : Nat, l : List(n).List(n + 1) ∈ Σ
becomes cons : Nat → Nat → List → List ∈ |Σ|. Eliminating the first (type) argument
from cons would easily allow writing rules for which termination is not preserved by the
transformation. This does not mean, however, that writing such rules is actually impossible.

4.2 Term flattening
Besides types and function symbols in |Σ|, the signature Σflat will contain algebraic symbols,
called flattening constructors, used to mimic LF’s abstraction and product.
Σflat = |Σ| ∪ {lo2

σ : ∗ → σ → σ, lf 2
σ : ∗ → σ → σ, pif 2

σ : ∗ → (σ → ∗)→ ∗ | σ ∈ T →Sflat
}

We may omit subscripts σ, τ in constructor’s names, and use lof 2 for (lo2
σ/lf 2

σ). The first
argument of the flattening constructors, of type ∗, is the flattening of some dependent type
A. The second argument of lo2

σ is the interpretation of some object M : A, hence σ = |A|,
while that of lf 2

σ is the interpretation of a type A : K, hence σ = |K|. Since signatures are
monomorphic and σ is arbitrary, the flattening constructors must be indexed by these types.
We now define a flattening transformation for expressions of LF which are typed in some
environment left unspecified to expressions of λ→

Σflat :

I Definition 4.5. The flattening function ‖_ from λΣ to λΣflat (the context in which the
input term is valid is omitted) is defined as

‖x : A = x : |A| ‖Πx : A.B : TYPE = pif 2
|A|(‖A, λx : |A|.‖B)

‖M N : A = @(‖M, ‖N) ‖λx : A.M : Πx : A.B = λx : |A|.lo2
|B|(‖A, ‖M)

‖A N : K = @(‖A, ‖N) ‖λx : A.B : Πx : A.K = λx : |A|.lf 2
|K|(‖A, ‖B)

‖a : K = a ‖fn(M1, ...,Mn) : A = fn(‖M1, ..., ‖Mn)
Since flattening is not surjective, we denote by ‖λΣ⊂λΣflat its target.
Note that type symbols in S become both sorts in Sflat and function symbols in Σflat,

with the same (overloaded) name. This definition obeys the following principles: (i) flattening
is a homomorphism, hence commutes with substitutions; (ii) because types may depend
on objects, the type information associated with bound variables must be recorded by
the encoding to preserve non-termination; (iii) the types of the flattening constructors are
compatible with the erasing transformation, which allows to trace the syntactic categories
in the transformed world; (iv) the encoding of abstractions and products preserves their
variable’s binding, but two different encodings are used. The encoding of abstractions is an
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abstraction, in order to preserve beta-redexes via the transformation. Nothing like that is
needed for product types which cannot be applied, and can therefore be transformed into
terms of sort |TYPE| = ∗. In that case, the abstraction is encapsulated in the flattening
constructor. This allows to single out easily products’ encodings in the flattened world. Now,

an LF object M : A is translated as a term ‖M of type |A|,
an LF type A : K is translated as both a type |A| and a term ‖A of type |K|,
an LF kind K : KIND is translated as a type |K|.

I Lemma 4.6. The following properties hold:
1. soundness: let Σ ; Γ`T A : K. Then Σflat ; |Γ| ` ‖A : |K|;
2. soundness: let Σ ; Γ`OM : A. Then Σflat ; |Γ| ` ‖M : |A|;
3. preservation: let Σ ; Γ`T ∨O s : σ. Then FV(s) = FV(‖s);
4. stability: let Σ ; Γ`T ∨O s, t : σ, τ and x : τ ∈ Γ. Then ‖s{x 7→ t} = ‖s{x 7→ ‖t}.

Proof. The first three are proved by induction on the typing derivations of A, M and s

respectively, using Lemma 4.4 for the third (translation of products) and for the conversion
rule. Stability follows by induction on the typing derivation of s. J

4.3 Preservation of reductions by flattening
Our goal now is to show that the reductions on objects and types in λΠ

Σ are mimicked in λ→

Σflat .
Since rewriting a term cannot not increase its set of free variables, rewriting commutes with
the η-rule. A consequence is that, given a dependent rewrite system R, −→βηR terminates
iff −→βR terminates: encoding the η-rule will not be necessary. To ease the reading, we use
⇀ for our rewriting symbol in λ→

Σflat , and decorate subterms in flattened rules by their type.

[βO] @(λx : σ.lo2
τ (A : ∗,M : τ), N : σ) ⇀M{x 7→ N}

[βT ] @(λx : σ.lf 2
τ (A : ∗, B : τ), N : σ) ⇀ B{x 7→ N}

In these rules, A and σ are the term flattening and type erasure of the same dependent
type D, a relationship that cannot be expressed in λ→

Σflat , hence is not kept in the transformed
rules. For example, assuming A, s, t ∈ ‖λΣ and |‖A−1| 6= σ, then u = @(λx : σ.lof 2(A, s), t)
is a redex which has no counter-part in λΠ

Σ. There are indeed new rewrites in the flattened
world, making preservation of non-termination a weaker property.

We use [R], [β], [βR] and β[βR] for {‖l ⇀ ‖r | l→ r ∈ R}, {[βT ], [βO]}, [β]∪ [R], and
{β}∪[βR].

As with A,M,N, σ, τ used in [β], variables of R that denote expressions in λΠ
Σ keep their

name in [R], denoting now expressions of λ→

Σflat belonging to the same syntactic categories
as in the dependent world. Then, an instance of a [β]-rule may not be the encoding of an
instance of the β-rule in the dependent world if M/B match flattened terms which are no
encoding of dependent expressions. Despite these approximations, reductions are preserved:

I Lemma 4.7. Let Σ; Γ `T ∨O s : σ, s →βR t and Σ; Γ `T ∨O t : τ . Then, |σ| = |τ | and
‖s⇀[βR] ‖t.

Proof. The proof is by induction on the typing derivation of s. All cases are by induction
except those where the βR redex is at the top. We carry out four typical cases:

1.
[App]

Σ ; Γ`T A : Πx :B.K Σ ; Γ`OM : B
Σ ; Γ`T s = AM : K{x 7→M} andM →βR M

′, hence A M →βR A M ′ =
t. By induction hypothesis, Σ ; Γ`T ∨OM ′ : B′, |B′| = |B| and ‖M ⇀[βR] ‖M ′. By
definition of flattening, ‖A M = @(‖A, ‖M) : |K{x 7→M}| = |K| by Corollary 4.3. By
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definition of erasing, |Πx : B.K| = |B| → |K|. By Lemma 4.6 (soundness) ‖A : |B| → |K|
and ‖M ′ : |B′|. Finally, ‖t = @(‖A, ‖M ′) : |K|, we are done.

2.
[Conv]

Σ; Γ `T ∨O s : σ′ Σ; Γ `T ∨K σ : TYPE/KIND
Σ ; Γ`Os : σ

σ≡σ′.
By induction hypothesis,

Σ; Γ`T ∨O t :τ , |τ |= |σ′| and ‖s⇀[βR] ‖t. By Lemma 4.6, ‖t : |τ |. Lemma 4.4 concludes.

3.
[App]

Σ ; Γ`Oλx : A.u : Πx : A.B Σ ; Γ`OM : A
Σ ; Γ`Os = λx : A.uM : B{x 7→M} and t = u{x 7→M}. By inversion,

Σ ; Γ`Ou :B, thus t :B{x 7→M} by Lemma 3.1. ‖λx :A.uM=@(λx :A.lo2
|B|(‖A, ‖u), ‖M)

⇀[β] ‖u{x 7→ ‖M} by definition of [βO]. Lemma 4.6 and Corollary 4.3 conclude.
4. Σ ; Γ`T ∨O s : σ, s = l ◦γ and t = r ◦γ for some l→ r ∈ R such that l, r have convertible

types µ, ν in their environment. By Lemma 3.1 applied repeatedly, s, t have types σ = µ◦γ
and τ = ν ◦ γ, and since ≡ is a congruence, σ ≡ τ . By Lemma 4.6(stability), ‖lγ = ‖l‖γ
and ‖rγ = ‖r‖γ hence ‖s ⇀[R] ‖t by definition of ⇀[R]. J

This Lemma contains the analog of the type-preservation property of non-dependent
rewriting, equivalence by conversion being here equivalence modulo type erasures: subject
reduction holds for dependent rewriting modulo type erasures.

Thus λΠ

Σ is terminating for an empty set R, implying strong normalisation of βη-reductions
at both object and type level, for any convertibility relation ≡ containing βη-convertibility.
In particular, ≡ can contain Presburger arithmetic, an important known extension of LF.

I Example 4.8. Here are the transformed signature and rules for our example on Lists:

nat,A : ∗ 0 : nat _ +1 : nat→ nat

List : nat→ ∗ nil : List + : nat→ nat→ nat

cons : nat→ A→ List→ List app : nat→ nat→ List→ List→ List

0 + n→ n (m+ 1) + n→ (m+ n) + 1
app(0, n, nil, l)→ l app(m+1, n, cons(m, a, k), l)→ cons(m+n, a, app(m,n, k, l))

These dependently typed rewrite rules being algebraic, their encoding is the identity. CPO
proves their termination with app>F cons>F nil>F+>F _ + 1>F 0, and List>→ {nat,A}.

I Theorem 4.9. Given a signature Σ, a dependent term rewriting system βηR is terminating
in λΠ

Σ if its flattening β‖βR is terminating in λ→

Σflat .

Proof. By using Lemma 4.7 and a commutation argument for η. J

4.4 Inverse encoding
Lemma 4.7 justifies our method for checking strong normalization by a transformation to a
higher-order algebra where we can use standard techniques including CPO. But the flattened
world is richer than the dependent world, there are more terms and rewrites. Nonetheless,
we can also show that termination is partly preserved by defining an inverse transformation
such that composing both is the identity. First, we define the inverse transformation on the
subset ‖λΣ ⊆ λΣflat , hence allowing us to show that flattening is injective.

I Definition 4.10. The inverse ‖_−1 : ‖λΣ → λΣ is defined as:
‖x−1 = x ‖a−1 = a ‖fn(s1, ..., sn)−1 = fn(‖s1

−1, ..., ‖sn−1)
‖@(s, t)−1 = ‖s−1 ‖t−1 ‖pif 2(s, λx : σ.t)−1 = Πx : ‖s−1.‖t−1

‖λx :σ.lf 2(s, t)−1 = λx :‖s−1.‖t−1 ‖λx : σ.lo2
τ (s, t)−1 = λx : ‖s−1.‖t−1
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I Lemma 4.11 (Reversibility). Assume Σ; Γ ` s :σ in λΠ
Σ. Then Σ; Γ ` ‖(‖s)−1 =s :σ.

Proof. By induction on s. Variables, type constants, applications and pre-algebraic terms
are clear. We carry out one remaining case, the others being similar. ‖(‖Πx :A.B)−1 =
‖pif 2

|A|(‖A, λx : |A|.‖B)−1 =Πx :‖(‖A)−1
.‖(‖B)−1. We conclude by induction. J

I Corollary 4.12. Let σ; Γ `T ∨O s : σ and ‖s|p ∈ ‖λΣ for some p. Then ‖s|p = ‖s|q for
some q.

Flattening being an injection from λΣ to λΣflat , hence a bijection between λΣ and its
target ‖λΣ, provides strong evidence that λΠ

Σ is faithfully encoded by flattening. It follows
that, if ‖s=‖t for s, t∈λΣ, then s= t since s=‖‖s−1 =‖‖t−1 = t. We apply to Lemma 4.6:

I Corollary 4.13 (inverse stability). Assume u{x 7→ v} ∈ ‖λΣ. Then, ‖u{x 7→ v}−1 =
‖u−1{x 7→ ‖v−1}.

Therefore, rewrites in ‖λΣ can be mapped back to λΣ, showing both that ‖λΣ is closed
under rewriting by [βR], and that termination in λΣ implies termination in ‖λΣ:

I Lemma 4.14. Let Σ ; Γ`T ∨O s : σ and ‖s ⇀[βR] u. Then u=‖t for some t st s→βR t.

Proof. By assumption ‖s|p = ‖lγ ⇀[βR] u|p for some p ∈ Pos(‖s), where l→ r ∈ {β}∪R, γ a
substitution in ‖λΣ and u|p = ‖rγ. By Corollary 4.12, ‖s|p = ‖s|q for some q. By Lemma 4.11,
s|q = ‖‖lγ −1 = ‖‖l−1‖γ −1 (by Corollary 4.13) = lθ with ‖θ = γ by Lemma 4.11. Hence
s−→βR s[rθ]q = t. Now, since flattening is a homomorphism, ‖t = ‖s[‖rθ]p (by definition of
q) = ‖s[‖rγ]p (by definition of θ) = u. J

This does not prove, however, that termination in λ
Π

Σ implies termination in λ
→

Σflat .
The problem is that flattening is non-surjective, since many terms, like those headed by
lof 2, are no flattening of a dependent term. Further, some seemingly good-looking terms,
like pif 2

σ(s, λx:σ.t) may not be either, even assuming that s, t are themselves flattening
of dependent terms. This is the case because the flattened signature checks that term s

has type ∗, hence is the encoding of some dependent type A, but cannot check whether
|A| = σ as it should. The same happens with applications and pre-algebraic terms: (s, t)
may not be typable in λ

Π

Σ when s, t are typable in λ
Π

Σ and @(‖s, ‖t) is typable in λ
→

Σflat .
Indeed, termination in λΠ

Σ does not imply termination in λ→

Σflat as shown by this example:
let o : TYPE; List : Πx : o.TYPE; a, b : o; la : List a; lb : List b; f2 : Πm : o, l : Listm . o;
and {f(a, la)→ f(b, lb); b→ a, lb→ la}, whose dependent derivations are all finite since b
cannot rewrite to a in f(b, lb), a non-typable term. In the flattened signature, o and List are
sorts, and a, b : o; la, lb : List; f2 : o→ List→ o; and {f(a, la)→ f(b, lb); b→ a; lb→ la}.
We now have the following infinite derivation: f(a, la) → f(b, lb) → f(a, lb) → f(a, la) . . ..
Restricting rewrites on parameters could be a solution.

5 The Dependent Computability Path Ordering

DCPO is an extension of CPO obtained by adding new cases for products. All notations
for DCPO are simply and systematically obtained by replacing the CPO ordering notation
> by �. For example, the precedence will be denoted by �Σ. Type families are compared
alternatively as types with �Π and as terms with �. The basic ingredients of DCPO are:

a precedence �Σ on F∪S∪{@, λ,Π} s.t. �Σ is well-founded, and (∀f ∈F)f�Σ @�Σ {λ,Π}.
a status f ∈ {Mul,Lex} for every symbol f ∈ F ∪ {@} with @ ∈ Mul.
a quasi-order �Π on K ∪ T , whose strict part �Π and equivalence =Π satisfy:
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(i) compatibility: ≡⊆ =Π ;
(ii) well-foundedness: �Π ∪{〈Πx : A.σ,A〉 | A ∈ T , σ ∈ T ∪ K} is well-founded ;
(iii) product body subterm: (∀σ ∈ T ∪ K) Πx : A.σ �Π σ ;
(iv) product preservation: |Πx :A.σ|=Π|τ | implies τ = Πx :B.µ for some B, µ, such that

|A|=Π|B|, |σ|=Π|µ| ;
(v) decreasingness: Πx :A.σ�Π τ implies σ�Π τ or else τ=Πx :B.ν, A=ΠB and τ�Π ν.

Building quasi-orders �Π on types and kinds with a non-trivial equivalence =Π is not
hard [14].

We now define a first version of DCPO which can be justified by using CPO [9]. We will
then discuss briefly an enhanced version justified by a more elaborated version of CPO [10].
In the following definition, z denotes a fresh variable of type A/B.

I Definition 5.1 (DCPO). Given Γ `Σ s : σ and Γ `Σ t : τ , then s�X t iff either:
1. t ∈ X and s 6∈ X (var)
2. s = (u N) and u�X t or N : B�X t : τ (subt@)
3. s = λ/Πx : A.u and u{x 7→ z} : µ�X t : τ (subtλΠ)
4. s=f(s), f ∈Σ, t=(λ/Πy :B.v) :Πy :B.K, and s�X B and s�X∪{z} v{y 7→z} (ΣprecλΠ)
5. s = λx : A.u : Πx : A.C, t = λy : B.v : Πy : B.D, |A| = |B|, A�X B and u{x 7→ z} :

C �X v{y 7→ z} :D (statλ)
6. s = Πx :A.u, t = Πy :B.v, |A| = |B|, A�X B and u{x 7→ z}�X v{y 7→ z} (statΠ)
7. s = ((λx : A.u) : (Πx : A.C) w : A), and u{x 7→ w}� t (beta)
8. otherwise s = f(s), t = g(t) with f, g∈ F∪ S∪{@} ∪ X , and either of (rpo)

s :σ � t :τ (subt) f >F g and s�X t (prec) f=Σ g, s�X t and s :σ (�)f t :τ (stat)

All terms built by DCPO are well-typed under the assumption that both starting terms
s, t are well-typed. Note (i) the importance of all our assumptions on �Π, see for example
Case statλΠ; (ii) the order may recursively compare objects with types, even when the input
comparison operates on expressions in T 2 ∪ O2; (iii) compared products cannot be kinds.

5.1 Example

We now consider our list example, skipping the rules on natural numbers which do not have
dependencies. We shall use the (user defined) precedence app �Σ {+, cons, nil}, multiset
status for app, and a quasi-order on types in which, for all n : nat, then List n �Π A

and Listm=ΠList n for all m,n of type nat. Such a type order is easy to get by using a
restricted RPO on type erasures, which equivalence therefore contains Presburger arithmetic.
See [14]. The goal app(0, n, nil, l) : List 0 + n� l : List n is easy, although already requiring
identification of 0 + n in List 0 + n with n in List n. We proceed with the second goal:
app(m+1, n, cons(m, a, k), l) : List (m+1)+n� cons(m+n, a, app(m,n, k, l)) :List (m+n)+1
The type comparison List (m + 1) + n �Π List (m + n) + 1 succeeds by using our type
ordering which indeed equates both types, and we are left with the term comparison:
app(m + 1, n, cons(m, a, k), l) � cons(m + n, a, app(m,n, k, l)) Using (prec), we get three
subgoals, which are processed in turn, using indentation to identify the dependencies between
recursive calls, the used Case being indicated between parentheses:
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app(m+ 1, n, cons(m, a, k), l)�m+ n (prec)
app(m+ 1, n, cons(m, a, k), l)�m (subt)
m+ 1 : nat�m : nat which yields
nat �Π nat which succeeds and m+ 1�m which succeeds by (subt)

app(m+ 1, n, cons(m, a, k), l)� n which succeeds by (subt)
app(m+ 1, n, cons(m, a, k), l)� a (subt)
cons(m, a, k) : List (m + 1)� a : A which yields
List (m + 1) �Π A which succeeds and cons(m, a, k)� a which succeeds by (subt)

app(m+ 1, n, cons(m, a, k), l)� app(m,n, k, l) (stat)
{m+ 1 : nat, n : nat, cons(m, a, k) : List m+ 1, l : List n}

�mul {m : nat, n : nat, k : List m, l : List n} which yields
m+ 1 : nat � m : nat and cons(m, a, k) : List m+ 1 � k : List m, for the reader.

5.2 Properties of DCPO
I Lemma 5.2 (Monotonicity, stability). Let s, t ∈ λΣ st s : σ� t : σ, C(x : σ) a context, and
γ a substitution. Then C{x 7→ sγ}� C{x 7→ tγ}.

Proof. By induction on the definition of s� t and stability of the type order for monotonicity.
By induction on the context, and use of the status rules for stability. J

As anticipated, we now reduce the well-foundedness of DCPO to the well-foundedness of
CPO by using Theorem 4.9, termination in the target higher-order algebra being checked by
CPO. To this end, we need to show that, whenever s : σ� t : τ , then ‖s : |σ|> ‖t : |τ |.

We start showing that an order on types and kinds of LF satisfying the requirements for
DCPO becomes naturally an order on types of λ→

Σflat satisfying the requirements for CPO.

I Definition 5.3. Given σ, τ ∈T →Sflat
, let σ≥→Σflat τ iff ∃µ, ν∈T ∪K, |µ|=σ, |ν|=τ , and µ �Π ν.

Transitivity is clear. Of course, different choices of µ, ν may sometimes lead to contradict-
ory orderings for σ, τ , hence the equality =→Σflat may be strictly larger than the corresponding
equality =Π. This has indeed no negative impact since the strict part �Π is never used in
comparisons. Further, the properties of �Π transfer naturally to ≥→Σflat . Soundness follows:

I Lemma 5.4. Assume �Π is a DCPO type order. Then ≥→Σflat is a CPO type order.

The set Σflat of function symbols of Σflat is the union of S, F and the flattening construct-
ors. The precedence >Σflat is obtained by letting the flattening constructors be equivalent
minimal symbols. The strict part of >Σflat is clearly well-founded, while its equivalence is
increased by the equality of the flattening constructors. We take status Mul for lo2, lf 2, pif 2.

I Lemma 5.5. Let s :σ, t :τ and X⊆X such that s�X t by any DCPO rule. Then ‖s>X ‖t.

Proof Sketch. The proof is by induction on the definition of DCPO, assuming by induction
hypothesis that the property holds at every recursive call. Note that if s : σ, t : τ , σ �Π τ

and ‖s>X ‖t, then ‖s : |σ|>X ‖t : |τ | by Definition 5.3. J

We then obtain the second main result of the paper as a corollary:

I Theorem 5.6 (Well-foundedness of DCPO). �Π is well-founded.

Proof. By theorem 4.9. Note that we use the full strength of that result, including the
need for type-level rules instances of the various DCPO rules instances which compare
types. This is possible since we only need preservation of non-termination by the flattening
transformation, that is, the if direction of Theorem 4.9. J
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It follows that �Π ∪ η is well-founded. One may wonder why we did not include η-rules
in the definition of DCPO, since it is in the definition of CPO. The reason is the comparison
of lefthand and righthand sides of [η], λx : |A|.lof 2(‖A, @(‖B, x))> ‖B which does not go
through: the type comparison of the subgoal lof 2(‖A, @(‖B, x)) :σ > ‖B : |A| → σ fails.

5.3 A realistic example
We consider here a more complex, non-algebraic, higher-order example. Given a list l of
natural numbers x1, ..., xm, and a natural number y, a higher-order variable g which is meant
to be instantiated by +, we define a higher-order function foldr such that (foldr(m, l, y) g)
calculates g(x1, g(x1, ...g(xm, y))), while (map(m, l) f) calculates the list f(x1), ..., f(xm).
nat : TYPE | 0 : nat | + 1 : Πx : nat.nat
List :Πm :nat.TYPE | nil :List 0 | cons :Π{m :nat, x :nat, l :List m}.List m+ 1
map : Π{m : nat, l : List m}.(Πf : (Πx : nat.nat).List m)
foldr : Π{m : nat, l : list m, y : nat}.Πg : (Π{x1 : nat, x2 : nat}.nat).nat
map(0, l)→ λf : (Πx :nat.nat).nil | foldr(0, l, y)→ λg :Π{x1 :nat, x2 :nat}.nat.y
map(m+ 1, cons(m, x, l))→ λf : Π{x : nat}.nat.cons((f x), map(m, l))
foldr(m+ 1, cons(m, z, l), y)→ λg : Π{x1 : nat, x2 : nat}.nat.(g z (foldr(m, l, y) g))
To carry out the example, we let List >T nat, foldr > map > cons > nil > lf 2 > lo2

> List > nat and (∀σ >T τ) lf 2
σ > lf 2

τ and lo2
σ > lo2

τ . We consider the last rule only.

CPO comparison. It generates the following goals (omitting the type comparisons):
‖l > λg : nat→ nat→ nat.lo2

nat

(lf 2
nat(nat, λx1 : nat.lf 2

nat(nat, λx2 : nat.nat)), @(@(g, z),@(foldr(m, l, y) g))) Fλ
‖l >{g}lo2

nat(lf 2
nat(nat, λx1 :nat.lf 2

nat(nat, λx2 :nat.nat)),@(@(g, z),@(foldr(m, l, y), g)))
‖l >{g} lf 2

nat(nat, λx1 : nat.lf 2
nat(nat, λx2 : nat.nat)) prec

‖l >{g} nat succeeds by prec
‖l >{g} λx1 : nat.lf 2

nat(nat, λx2 : nat.nat) Fλ
‖l >{g,x1} lf 2

nat(nat, λx2 : nat.nat) prec
‖l >{g,x1} nat succeeds by prec
‖l >{g,x1} λx2 : nat.nat Fλ
‖l >{g,x1,x2} nat succeeds by prec

‖l >{g}@(@(g, z),@(foldr(m, l, y) g)) prec
‖l >{g}@(g, z) prec
‖l >{g} g succeeds by var
‖l = foldr(m+ 1, cons(m, z, l), y)>{g} z subt
cons(m, z, l) : List(m+ 1)>{g} z : nat which succeeds by subt
‖l >{g}@(foldr(m, l, y), g) prec
‖l = foldr(m+ 1, cons(m, z, l), y)>{g} foldr(m, l, y) stat
{m+ 1, cons(m, z, l), y}(>{g})mul{m, l, y} which succeeds by repeated subt
‖l >{g} g which succeeds by var, therefore ending the computation successfully.

DCPO comparison. We now carry out the same computation with DCPO directly:
foldr(m+ 1, cons(m, z, l), y)� λg :Π{x1 :nat, x2 :nat}.nat.(g z (foldr(m, l, y) g)) (ΣprecλΠ)
l�Π{x1 : nat, x2 : nat}.nat (ΣprecλΠ)
l� nat which succeeds by (prec)
l�{x1}Πx2 : nat.nat (ΣprecλΠ)
l�{x1} nat which succeeds by (prec)
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l�{x1,x2} nat which succeeds by (prec)
l�{g}(g z (foldr(m, l, y) g)) -we keep the @ operator implicit this time- (prec)
l�{g} g (var)
l�{g} z (subt)
cons(m, z, l) : List(m+ 1)�{g} z : nat succeeds by (subt)
l�{g}(foldr(m, l, y) g)} (prec)
l�{g} foldr(m, l, y) (stat)
{m+ 1, cons(m, z, l), y}�{g}{m, l, y} which succeed by repeated (subt)
l�{g} g succeeds by (var), therefore ending the computation successfully.

6 Conclusion

The amount of research work targeting automatic termination is vast. Among the most
popular techniques are dependency pairs, introduced by Aart and Giesl and the size-changing
principle, pioneered by Neil Jones, which have been generalized to dependently-typed rules [5].
Dependent types can also be used to store annotations useful for proving termination [22].
Despite these proposals that recent prototypes try to combine, techniques used in Coq and
Agda are still poor, as acknowledged by the authors on their websites. Using our techniques
would improve this situation.

Our first contribution is a new transformation for eliminating type dependencies using a
framework richer than the simply-typed λ-calculus, which provides with a natural encoding,
and allows us to consider arbitrary rewrite rules, not only β- and η-reductions. Furthermore,
these results hold for a practical dependent type system made richer than LF’s via a
convertibility relation possibly stronger than βη-convertibility, hence allowing us to type many
more terms. This easily implementable transformation allow us using existing implementations
targeting termination of rules in presence of simple types. The transformation also allows
us to show well-foundedness of DCPO, a version of CPO applying to dependently typed
terms directly. This is done by considering pairs ordered by DCPO as dependently typed
rewrite rules to which the transformation applies. Note that DCPO will naturally benefit
from improvements of CPO, without changing the proof technique. In particular, we could
easily accommodate size interpretations by using them as a precedence as in [11], or type
level rules such as s=(A u), t=Πy :B.v, with s�X B and s�X∪{z} v{y 7→z} flattened as
‖s= @(‖A, ‖u), and ‖t= pik|B|(‖B, λy : |B|.‖v), with ‖s>X ‖B and ‖s>X∪{z} ‖v{y 7→ z},
whose justification requires the extension of CPO with small function symbols, here pik|B|,
which behave as if they were smaller than application and abstraction [10]. We can then
break the main goal into the above solvable subgoals.

Our main interest is indeed to prove termination directly at the dependent type level.
Using DCPO allows the programmer, in case of failure, to get an error message in her/his
own dependently typed syntax, rather than in the transformed syntax as would be the case
when using CPO on the transformed rules. To our knowledge, this is the very first general
– Coq and Agda’s techniques are very limited –, purely syntactic method that allows one to
show termination of a set of dependently typed rewrite rules via computations taking place
on the user’s dependently typed rules.
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