143,480 research outputs found

    OntoMaven: Maven-based Ontology Development and Management of Distributed Ontology Repositories

    Full text link
    In collaborative agile ontology development projects support for modular reuse of ontologies from large existing remote repositories, ontology project life cycle management, and transitive dependency management are important needs. The Apache Maven approach has proven its success in distributed collaborative Software Engineering by its widespread adoption. The contribution of this paper is a new design artifact called OntoMaven. OntoMaven adopts the Maven-based development methodology and adapts its concepts to knowledge engineering for Maven-based ontology development and management of ontology artifacts in distributed ontology repositories.Comment: Pre-print submission to 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE2013). Berlin, Germany, December 2-5, 201

    Relating Individual Characteristics and Task Complexity to Performance Effectiveness in Individual and Collaborative Problem Solving

    Get PDF
    The objective of this research is to examine the variables that influence performance effectiveness on individual and collaborative problem solving. The last few years have seen renewed interest in how team member personal characteristics and team composition characteristics impact team effectiveness. Even with a growing quantity of organizations performing jobs by using groups, little is understood how people included in a team impact intragroup interaction and results. Most research investigates group’s performance based on a single characteristic which causes much confusion and contradictory results of the variables that impact overall group performance. Most research typically does not analyze the composition of individual-member characteristics (e.g., learning styles, dependency, and working memory capacity). There are few investigations in the literature that assess the connection between individual characteristics and collaborative problem-solving abilities. This research explored the effect of individual characteristics of learning styles, dependency, and working memory capacity on both individual problem-solving and collaborative problem solving. For individual problem solving, learning style and dependency interaction affected accuracy while working memory alone affected accuracy. For collaborative problem solving, the three-way interaction of all three characteristics impacted accuracy. Interactions between dependency and working memory and learning style and working memory impacted group performance time. The results of this study may be used by government agencies and industry in job design and employment placement. Assessing the individual characteristics of employees will help the employees to see all those things that are not so obvious in the interview. It makes them one step closer to identifying the right person for the position. In addition, to have their CVs, experiences, and education, some individual characteristics tests (i.e. learning style, dependency, and working memory) may provide more information important for team members. If employers can pair individuals correctly based on their characteristics, they might be able to decrease conflicts and improve collaboration between employees

    Collaborative Leadership and the Design of a School-Based Chemical Health Service System

    Get PDF
    This work-related project used strategies of collaborative leadership behavior to facilitate the design and implementation of a county-wide, comprehensive, and coordinated school-based chemical health service system. People involved in the design included representatives from school districts, county government departments, chemical dependency treatment agencies, nonprofit organizations, and a parent. The goal of this project was to create an effective, sustainable, and cohesive collaboration through the use of a facilitation process that illustrated the principles of collaborative leadership. The project demonstrated that interagency collaboration, along with effective leadership skills, can be successful in achieving meaningful system change that benefits adolescents and their families

    The layered dependency structure matrix for managing collaborative design processes

    Get PDF
    Cataloged from PDF version of article.Effective collaboration and knowledge management are the major contributors of success in the construction industry. Although a huge amount of interdisciplinary knowledge is exchanged in building design processes, there is a lack of tools for representing information flows. Therefore, this paper focuses on the collaboration between architects and structural engineers and introduces an innovative matrix-based tool named “The Layered Dependency Structure Matrix” for modeling and managing the discipline-specific and collaborative design activities. The proposed method is compared with the conventional techniques used in the industry and its application is demonstrated in a beam design example

    Online Modeling and Monitoring of Dependent Processes under Resource Constraints

    Full text link
    Adaptive monitoring of a large population of dynamic processes is critical for the timely detection of abnormal events under limited resources in many healthcare and engineering systems. Examples include the risk-based disease screening and condition-based process monitoring. However, existing adaptive monitoring models either ignore the dependency among processes or overlook the uncertainty in process modeling. To design an optimal monitoring strategy that accurately monitors the processes with poor health conditions and actively collects information for uncertainty reduction, a novel online collaborative learning method is proposed in this study. The proposed method designs a collaborative learning-based upper confidence bound (CL-UCB) algorithm to optimally balance the exploitation and exploration of dependent processes under limited resources. Efficiency of the proposed method is demonstrated through theoretical analysis, simulation studies and an empirical study of adaptive cognitive monitoring in Alzheimer's disease

    A multi-user selective undo/redo approach for collaborative CAD systems

    Get PDF
    AbstractThe engineering design process is a creative process, and the designers must repeatedly apply Undo/Redo operations to modify CAD models to explore new solutions. Undo/Redo has become one of most important functions in interactive graphics and CAD systems. Undo/Redo in a collaborative CAD system is also very helpful for collaborative awareness among a group of cooperative designers to eliminate misunderstanding and to recover from design error. However, Undo/Redo in a collaborative CAD system is much more complicated. This is because a single erroneous operation is propagated to other remote sites, and operations are interleaved at different sites. This paper presents a multi-user selective Undo/Redo approach in full distributed collaborative CAD systems. We use site ID and State Vectors to locate the Undo/Redo target at each site. By analyzing the composition of the complex CAD model, a tree-like structure called Feature Combination Hierarchy is presented to describe the decomposition of a CAD model. Based on this structure, the dependency relationship among features is clarified. B-Rep re-evaluation is simplified with the assistance of the Feature Combination Hierarchy. It can be proven that the proposed Undo/Redo approach satisfies the intention preservation and consistency maintenance correctness criteria for collaborative systems

    Collaborative support for distributed design

    Get PDF
    A number of large integrated projects have been funded by the European Commission within both FP5 and FP6 that have aimed to develop distributed design solutions within the shipbuilding industry. VRShips-ROPAX was funded within FP5 and aimed to develop a platform to support distributed through-life design of a ROPAX (roll-on passenger) ferry. VIRTUE is an FP6 funded project that aims to integrate distributed virtual basins within a platform that allows a holistic Computational Fluid Dynamics (CFD) analysis of a ship to be undertaken. Finally, SAFEDOR is also an FP6 funded project that allows designers to perform distributed Risk-Based Design (RBD) and simulation of different types of vessels. The projects have a number of commonalities: the designers are either organisationally or geographically distributed; a large amount of the design and analysis work requires the use of computers, and the designers are expected to collaborate - sharing design tasks and data. In each case a Virtual Integration Platform (VIP) has been developed, building on and sharing ideas between the projects with the aim of providing collaborative support for distributed design. In each of these projects the University of Strathclyde has been primarily responsible for the development of the associated VIP. This paper describes each project in terms of their differing collaborative support requirements, and discusses the associated VIP in terms of the manner that collaborative support has been provided

    A collaborative platform for integrating and optimising Computational Fluid Dynamics analysis requests

    Get PDF
    A Virtual Integration Platform (VIP) is described which provides support for the integration of Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) analysis tools into an environment that supports the use of these tools in a distributed collaborative manner. The VIP has evolved through previous EU research conducted within the VRShips-ROPAX 2000 (VRShips) project and the current version discussed here was developed predominantly within the VIRTUE project but also within the SAFEDOR project. The VIP is described with respect to the support it provides to designers and analysts in coordinating and optimising CFD analysis requests. Two case studies are provided that illustrate the application of the VIP within HSVA: the use of a panel code for the evaluation of geometry variations in order to improve propeller efficiency; and, the use of a dedicated maritime RANS code (FreSCo) to improve the wake distribution for the VIRTUE tanker. A discussion is included detailing the background, application and results from the use of the VIP within these two case studies as well as how the platform was of benefit during the development and a consideration of how it can benefit HSVA in the future

    The Mirroring Hypothesis: Theory, Evidence and Exceptions

    Get PDF
    The mirroring hypothesis predicts that the organizational patterns of a development project (e.g. communication links, geographic collocation, team and firm co-membership) will correspond to the technical patterns of dependency in the system under development. Scholars in a range of disciplines have argued that mirroring is either necessary or a highly desirable feature of development projects, but evidence pertaining to the hypothesis is widely scattered across fields, research sites, and methodologies. In this paper, we formally define the mirroring hypothesis and review 102 empirical studies spanning three levels of organization: within a single firm, across firms, and in open community-based development projects. The hypothesis was supported in 69% of the cases. Support for the hypothesis was strongest in the within-firm sample, less strong in the across-firm sample, and relatively weak in the open collaborative sample. Based on a detailed analysis of the cases in which the mirroring hypothesis was not supported, we introduce the concept of actionable transparency as a means of achieving coordination without mirroring. We present examples from practice and describe the more complex organizational patterns that emerge when actionable transparency allows designers to 'break the mirror.'Modularity, innovation, product and process development, organization design, design structure, organizational structure, organizational ties
    • …
    corecore